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Abstract. For the efficient numerical solution of elliptic variational inequalities on closed convex
sets, multigrid methods based on piecewise linear finite elements have been investigated over the past
decades. Essential for their success is the appropriate approximation of the constraint set on coarser
grids which is based on function values for piecewise linear finite elements. On the other hand, there
are a number of problems which profit from higher order approximations. Among these are the
problem of prizing American options, formulated as a parabolic boundary value problem involving
Black–Scholes’ equation with a free boundary. In addition to computing the free boundary, the
optimal exercise prize of the option, of particular importance are accurate pointwise derivatives of
the value of the stock option up to order two, the so–called Greek letters.

In this paper, we propose a monotone multigrid method for discretizations in terms of B–splines
of arbitrary order to solve elliptic variational inequalities on a closed convex set. In order to maintain
monotonicity (upper bound) and quasi–optimality (lower bound) of the coarse grid corrections, we
propose an optimized coarse grid correction (OCGC) algorithm which is based on B–spline expansion
coefficients. We prove that the OCGC algorithm is of optimal complexity of the degrees of freedom of
the coarse grid and, therefore, the resulting monotone multigrid method is of asymptotically optimal
multigrid complexity.

Finally, the method is applied to a standard model for the valuation of American options. In
particular, it is shown that a discretization based on B–splines of order four enables us to compute
the second derivative of the value of the stock option to high precision.
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AMS subject classifications. 65M55, 35J85, 65N30, 65D07.

1. Introduction. The motivation for this paper stems from an application in
Mathematical Finance, the fair prizing of American options. In a standard model,
this problem can be formulated as a parabolic boundary value problem involving
Black–Scholes’ equation [BS] with a free boundary. In addition to computing the free
boundary (the optimal exercise prize of the option), pointwise higher order derivatives
of the solution (the value of the stock option) are particularly important. These so–
called Greek letters are needed with high precision as they play a crucial role as hedge
parameters in the analysis of market risks. Thus, a discretization in terms of higher
order basis functions is preferable.

On the other hand, for the fast numerical solution of the resulting (semi–discrete)
elliptic variational inequality, the method of choice is the monotone multigrid method
developed in [Ko1, Ko2]. Multigrid methods have been proposed previously for such
problems using second order discretizations (i.e., standard finite difference stencils
or piecewise linear finite elements) in different variants [BC, HM, Ho, Ma] where,
however, not all of them have assured consequently that the obstacle criterion is met.
Using piecewise linear finite element ansatz functions, geometric considerations based
on point values are used in [Ko1] to represent the problem–inherent obstacles on
coarser grids in such a way that a violation of the obstacle is excluded. The difficulty
to correctly identifying coarse grid approximations has also been the motivation for a

∗ This work has been supported in part by the Deutsche Forschungsgemeinschaft SFB 611, Uni-
versität Bonn.

†Institut für Numerische Simulation, Universität Bonn, Wegelerstr. 6, 53115 Bonn, Germany,
{holtz,kunoth}@ins.uni-bonn.de, www.ins.uni-bonn.de/∼kunoth.

1



2 Markus Holtz and Angela Kunoth

cascadic multigrid algorithm for variational inequalities in [BBS] for which, however,
no convergence theory is yet available.

In this paper, we generalize the monotone multigrid (MMG) method from [Ko1,
Ko2] to discretizations involving higher order B–splines. One of the key ingredients
of an MMG method are restrictions of the obstacle to coarser grids which satisfy the
(upper) bound imposed by the obstacle (monotonicity) as well as a lower one which
corresponds to the condition of quasi–optimality in [Ko1]. We formulate the con-
struction of coarse grid approximations as a linear constrained optimization problem
with respect to the B–spline expansion coefficients. Our construction heavily profits
from properties of B–splines [Bo, Sb]. In particular, we present with our optimized
coarse grid correction (OCGC) algorithm a method to construct monotone and quasi–
optimal coarse grid approximations to the obstacle function in optimal complexity of
the coarse grid for B–spline basis functions of any degree.

Building the OCGC scheme into the MMG method, our higher-order MMG
method is shown to be of optimal multigrid complexity. Moreover, following the
arguments in [Ko1], we can prove that our method is globally convergent and reduces
asymptotically to a linear subspace correction method once the contact set has been
identified [HzK]. Hence, we can expect particular robustness of the scheme and full
multigrid efficiency in the asymptotic range in the numerical experiments. This is
confirmed by computations for an American option pricing problem in terms of cubic
B–splines. Details about the derivation of the problem of fair prizing American op-
tions and its formulation as a free boundary value problem and corresponding results
can be found in [WHD, Hz2]. Of course, once higher-oder MMG methods are avail-
able, they may be applied to other obstacle problems like Signorini’s problem which
has been solved using piecewise linear hat functions in [Kr].

This paper is structured as follows. In Section 2 we introduce monotone multigrid
methods (MMG), recollect the main features of B–splines and specify a B–spline–
based projected Gauss–Seidel relaxation as smoothing component of the scheme. In
Section 3 the crucial ingredients of the higher-order MMG schemes, suitable restriction
operators for the obstacle function, are presented for B–spline functions of arbitrary
degree in the univariate case. Their construction for higher spatial dimensions is pre-
sented in Section 4 using tensor products. In Section 5 some short remarks concerning
the convergence theory for B–spline–based monotone multigrid schemes are made.
Finally, in Section 6 we present a numerical example of prizing American options.
The convergence behavior of the projected Gauss–Seidel and the multigrid schemes is
compared for basis functions of different orders. We conclude with an estimation of
asymptotic multigrid convergence rates which exhibit full multigrid efficiency for the
truncated version.

2. Monotone Multigrid Methods.

2.1. Elliptic Variational Inequalities and Linear Complementary Prob-

lems. Let Ω be a domain in R
d and J (v) := 1

2a(v, v) − f(v) a quadratic func-
tional induced by a continuous, symmetric and H1

0– elliptic bilinear form a(·, ·) :
H1

0 (Ω) ×H1
0 (Ω) → R and a linear functional f : H1

0 (Ω) → R. As usual, H1
0 (Ω) is the

subspace of functions belonging to the Sobolev space H1(Ω) with zero trace on the
boundary. We consider the constrained minimization problem

find u ∈ K : J (u) ≤ J (v) for all v ∈ K (2.1)
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on the closed and convex set

K := {v ∈ H1
0 (Ω) : v(x) ≤ g(x) for all x ∈ Ω} ⊂ H1

0 (Ω).

The function g ∈ H1
0 (Ω) represents an upper obstacle for the solution u ∈ H1

0 (Ω).
Lower obstacles can be treated in the obvious analogous way. If g satisfies g(x) ≥ 0
for all x ∈ ∂Ω, problem (2.1) admits a unique solution u ∈ K by the Lax–Milgram
theorem. It is well–known that (2.1) can be rewritten as a variational inequality, see,
e.g., [EO, KS]: find u ∈ K : a(u, v − u) ≥ f(v − u) for all v ∈ K or, equivalently, as
a linear complementary problem

Lu ≥ f,

u ≤ g,

(u − g)(Lu − f) = 0

(2.2)

almost everywhere in Ω. Here L : H1
0 (Ω) → H−1(= (H1

0 (Ω))′) is the Riesz operator
defined by 〈Lu, v〉 := a(u, v) for all v ∈ H1

0 (Ω).

Discretizing in a finite dimensional spline space SL of piecewise polynomials on a
grid ∆L with uniform grid spacing hL leads to the discrete formulation of (2.1),

find uL ∈ KL : J (uL) ≤ J (vL) for all vL ∈ KL (2.3)

on the closed and convex set KL := {vL ∈ SL : vL(x) ≤ gL(x) for all x ∈ Ω} ⊂ SL,
or, equivalently,

LLuL ≥ fL,

uL ≤ gL,

(uL − gL)(LLuL − fL) = 0.

(2.4)

In [BHR] regularity u ∈ H5/2−ε(Ω) of the solution u to (2.2) is shown for arbitrary
ε > 0. Moreover, error estimates ‖u − uL‖H1(Ω) = O(hL) and ‖u − uL‖H1(Ω) =

O(h
3/2−ε
L ) are proved in the case of piecewise linear, respectively piecewise quadratic,

functions, provided the functions f, g are sufficiently regular.

2.2. The MMG–algorithm. For solving (2.3) numerically, a by now popular
method is the monotone multigrid method (MMG) [Ko1]. By adding a projection step
and employing specific restriction operators, it can be implemented as a variant of a
standard multigrid scheme. Let S1 ⊂ S2 ⊂ . . . ⊂ SL ⊂ H1

0 (Ω) be a nested sequence of
finite–dimensional spaces, and let uν

L ∈ SL be the approximation in the ν– th iteration

of the MMG method. The basic multigrid idea is that the error vL := uL − uν,1
L

between the smoothed iterate uν,1
L := S (uν

L) (S always being the standard Gauss–
Seidel iteration) and the exact solution uL can be approximated without essential loss
of information on a coarser grid ∆L−1. We explain how this is realized in the case of
a linear complementary problem for two grids ∆L and ∆L−1. Introducing the defect
dL := fL −LLuν,1

L , (2.4) can be written as

LLvL ≥ dL,

vL ≤ gL − uν,1
L ,

(vL − gL + uν,1
L )(LLvL − dL) = 0.

(2.5)
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On a coarser grid ∆L−1 the defect problem can now be approximated by

LL−1vL−1 ≥ dL−1,

vL−1 ≤ gL−1,

(vL−1 − gL−1)(LL−1vL−1 − dL−1) = 0,

where dL−1 := r dL and gL−1 := r̃(gL − uν,1
L ) with (different) restriction operators

r, r̃ : SL → SL−1. The solution vL−1 of the coarse grid problem is then used as
an approximation to the error vL. It is first transported back to the fine grid by a
prolongation operator p and is then added to the approximation uν,1

L . It is important
that the restriction r̃ is chosen such that the new iterate satisfies the constraint

uν,2
L := uν,1

L + pvL−1 ≤ gL (2.6)

on the fine grid. Applying this idea recursively on several different grids, one obtains
the monotone multigrid method (MMG) for linear complementary problems.

Algorithm 2.1. MMG` (ν– th cycle on level ` ≥ 1)
Let uν

` ∈ S` be a given approximation.

1. A priori smoothing and projection : uν,1
` := (P ◦ S(uν

` ))η1 .

2. Coarse grid correction: d`−1 := r(f` −L`u
ν,1
` ),

g`−1 := r̃(g` − uν,1
` ),

L`−1 := rL`p.

If ` = 1, solve exactly the linear complementary problem

L`−1v ≥ d`−1,

v ≤ g`−1,

(v − g`−1)(L`−1v − d`−1) = 0

and set v`−1 := v.
If ` > 1, do γ steps of MMG`−1 with initial value u0

`−1 := 0 and solution v`−1.

Set uν,2
` := uν,1

` + pv`−1.

3. A posteriori smoothing and projection : uν,3
` := (P ◦ S(uν,2

` ))η2 .

Set uν+1
` := uν,3

` .

The number of a priori and a posteriori smoothing steps is denoted by η1 and η2,
respectively. For γ = 1 one obtains a V–cycle, for γ = 2 a W–cycle. P denotes a
projection operator defined in (2.7) and (2.11) below.

Condition (2.6) leads to an inner approximation of the solution set KL and ensures
that the multigrid scheme is robust [Ko1]. Striving for optimal multigrid efficiency,
satisfaction of the constraint should not be checked by interpolating v` back to the
finest grid. Instead, special restriction operators r̃ are needed for the obstacle function.
A corresponding construction for B–splines of general order k will be introduced in
Sections 3 and 4. Next we discuss the projection step for general order B–splines.

2.3. A B–Spline–Based Projected Gauss–Seidel Scheme. Since the op-
erator L is symmetric positive definite and continuous piecewise linear functions are
used for discretization, the discrete form (2.4) can be solved by the projected Gauss–
Seidel scheme, see, e.g., [Cr]. Given an iterate uν

L, a standard Gauss–Seidel sweep
ūν

L := S (uν
L) is supplemented by a projection uν+1

L = P ūν
L into the convex set KL. If
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SL consists of hat functions, the projection can be defined for given grid points {θi}i

by

P vL(θi) := min{vL(θi), gL(θi)}. (2.7)

For higher–order functions vL, the difficulty arises already in the univariate case that
for given x ∈ [θi, θi+1] the estimate

min {vL(θi), vL(θi+1)} ≤ vL(x) ≤ max {vL(θi), vL(θi+1)} (2.8)

is not valid any more. Thus, controlling function values on grid points is not a
sufficient criterion in this case. We propose here instead a construction using higher
order B–splines, which compares B–spline expansion coefficients instead of function
values and heavily profits from the fact that B–splines are nonnegative. We begin
with the univariate case. For readers’ convenience, we recall the relevant facts about
B–spline bases from [Bo].

Definition 2.2 (B–Spline Basis Functions). For k ∈ N and n ∈ N let T :=
{θi}i=1,...,n+k be an expanded knot sequence with uniform grid spacing hL in the
interior of the interval I := [a, b] of the form

θ1 = . . . = θk = a < θk+1 < . . . < θn < b = θn+1 = . . . = θn+k. (2.9)

Then the B–spline basis functions Ni,k of order k are recursively defined for i =
1, . . . , n by

Ni,1(x) =

{

1, if x ∈ [θi, θi+1)
0, else

,

Ni,k(x) =
x − θi

θi+k−1 − θi
Ni,k−1(x) +

θi+k − x

θi+k − θi+1
Ni+1,k−1(x)

(2.10)

for x ∈ I.
It is known that supp Ni,k ⊆ [θi, θi+k] (local support), Ni,k(x) ≥ 0 for all x ∈ I

(nonnegativity) and Ni,k ∈ Ck−2(I) (differentiability) holds. Moreover the set ΣL :=
{N1,k, . . . , Nn,k} constitutes a locally independent and unconditionally stable basis
with respect to ‖ · ‖Lp

, 1 ≤ p ≤ ∞, for the finite dimensional space SL = Nk,T :=
spanΣL of the splines of order k.

Lemma 2.3. If the B–spline coefficients of vL, gL ∈ Nk,T = SL satisfy vi ≤ gi for
all i = 1, . . . , n, then vL(x) ≤ gL(x) holds for all x ∈ I.

Proof. Using the representation vL =
∑n

i=1 vi Ni,k and gL =
∑n

i=1 gi Ni,k and the
nonnegativity Ni,k(x) ≥ 0 for all x ∈ I , we deduce that gL(x) − vL(x) =

∑n
i=1(gi −

vi) Ni,k(x) ≥ 0 for all x ∈ I.
Here and below in Section 5, we use the subscript i in vi = (vL)i to denote

B–spline expansion coefficients.
The projection can now be defined for B–spline functions of general order k similar

to (2.7) but now involving expansion coefficients by setting

P vi := min{vi, gi}. (2.11)

Using the same arguments as in [Cr], the resulting projected Gauss–Seidel scheme still
converges since the discrete solution set {v ∈ IRn : vi ≤ gi for i = 1, . . . , n} describes a
cuboid in IRn. Moreover, if the problem is non–degenerate, the contact set, defined by
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all coefficients for which equality holds, is identified after a finite number of iterations
[Cr, EO].

We treat the multivariate case by taking tensor products. Specifying the domain
Ω as Ω :=

∏d
`=1[a`, b`] ⊂ R

d, the i-th d-dimensional tensor product B–spline of order
k on a tensorized extended knot sequence T (d) is defined by

N
(d)
i,k (x) :=

d
∏

`=1

Ni`,k(x`), x ∈ Ω, (2.12)

where i := (i1, . . . , id) denotes a multi-index. Defining SL in analogy to the univariate
case, the result of Lemma 2.3 immediately carries over to the d-dimensional setting.

3. Construction of Monotone and Quasi–optimal Obstacle Approxima-

tions. In this section, the second essential ingredient for our B–spline–based mono-
tone multigrid methods is provided, the construction of so–called monotone and quasi–
optimal coarse grid approximations of the obstacle function, which lead to suitable
restriction operators r̃. We begin with the univariate case; the extension to d di-
mensions follows in Section 4. We consider in the following only two grids, as the
generalization to several grids is obvious. Given an obstacle function S̃ which is de-
fined on a fine grid ∆ ⊂ I , we provide an approximation S with respect to a coarser
grid T which satisfies

1. S(x) ≤ S̃(x) for all x ∈ I ;
2. S(x) ≥ Lk(x) for all x ∈ I and a still to be specified lower barrier Lk(x)

provided below in Section 3.2;
3. S ≈ S̃ with respect to a target functional Fk defined below in (3.10).

The first condition ensures the monotonicity and robustness of the multigrid scheme,
the second an asymptotical reduction of the method to a linear relaxation and the third
an efficient coarse grid correction. As the construction is used as a component of the
monotone multigrid scheme, striving for optimal computational multigrid complexity,
it also has to satisfy

4. the number of arithmetic operations must be of order O(n) where n denotes
the number of degrees of freedom on the coarse grid.

Specifically, let T be an extended knot sequence with grid spacing H as in (2.9) and
let ∆ := {θ̃i}i=1,...,ñ+k be a finer knot sequence

θ̃1 = . . . = θ̃k = a < θ̃k+1 < . . . < θ̃ñ < b = θ̃ñ+1 = . . . = θ̃ñ+k (3.1)

with grid spacing h = 1
2H . It is defined such that θi = θ̃2i−k for i = k, . . . , n + 1 and

1
2 (θi−1 + θi) = θ̃2i−k−1 for i = k + 1, . . . , n + 1. Then it holds

ñ = 2n + 1 − k. (3.2)

The corresponding spline spaces are Nk,∆ and Nk,T with member functions Ni,k,∆

and Ni,k,T , respectively. Let now the obstacle function on the fine grid S̃ ∈ Nk,∆ and
its approximation S ∈ Nk,T be expanded as

S̃ =
ñ

∑

i=1

c̃i Ni,k,∆ =: c̃T Nk,∆, S =
n

∑

i=1

ci Ni,k,T =: cT Nk,T . (3.3)

There is a natural prolongation operator p from Nk,T to Nk,∆ for B–splines Ni,k,T in
terms of their refinement or mask coefficients [Bo, Sb]. In the special case H = 2 h
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considered here the refinement relation is given by

Ni,k,T =

k
∑

j=0

aj N2i−k+j,k,∆ (3.4)

with the subdivision or mask coefficients

aj := 21−k

(

k

j

)

for j = 0, . . . , k. (3.5)

In Step 2 of Algorithm 2.1, we choose the restriction r as the adjoint of p, following
[Ha]. However, for the obstacle function the restriction operator r cannot be used
since it does not satisfy condition (2.6).

3.1. Monotone Coarse Grid Approximations. There is a vast amount of
literature, see, e.g., [DV, Mv, Pi] especially from approximation theory, dealing with
monotone approximations to a given function g. The function ĝ is a monotone (or
one–sided) lower approximation to g if ĝ(x) ≤ g(x) for all x ∈ I . There the number
n of degrees of freedom of the function ĝ is chosen such that a given approximation
accuracy can be reached. In contrast to these studies, the question here is different,
since the number n of degrees of freedom is given by the mesh size H .

Definition 3.1 (Monotone Coarse Grid Approximation). For knot sequences T
and ∆ from (2.9) and (3.1), respectively, we call S ∈ Nk,T a monotone lower coarse

grid approximation to S̃ ∈ Nk,∆ if S(x) ≤ S̃(x) holds for all x ∈ I.
For hat functions such approximations are constructed in [Ma, Ko1]. A cor-

responding construction for higher–order functions has to our knowledge not been
provided so far. In view of Lemma 2.3 we propose here to control B–spline expansion
coefficients.

Theorem 3.2 (Monotone Coarse Grid Approximation). Let S̃ ∈ Nk,∆ be an

upper obstacle with S̃ = c̃T Nk,∆ for a given order k and the knot sequence ∆ from
(3.1). Then S ∈ Nk,T with S = cT Nk,T defined on the knot sequence T from (2.9)

is a monotone lower coarse grid approximation to S̃ if the inequality system

Ak c ≤ c̃ (3.6)

is satisfied. The two–slanted matrix Ak is defined by

Ak :=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

ak−1 ak−3

ak ak−2

.

.

.

ak−1 a0

ak a1

.

.

. a2

.

.

.

ak−1

.

.

.

ak

.

.

. a0

a1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

∈ R
ñ×n

with the subdivision coefficients aj from (3.5) and has maximal rank.
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Proof. The proof relies on the subdivision property (3.4) and on the nonnega-
tivity of B–splines. We only consider the case k even as the other case is analogous.
Substituting (3.4) into (3.3) and sorting according to the basis functions Ni,k,∆ leads
to

S(x) =

ñ
∑

i=1
i odd

(

ak−1 c(i+1)/2 + ak−3 c(i+3)/2 + . . . + a1 c(i+k−1)/2

)

Ni,k,∆(x)

+
ñ−1
∑

i=2
i even

(

ak ci/2 + ak−2 c(i+2)/2 + . . . + a0 c(i+k)/2

)

Ni,k,∆(x),

where all cj with j < 1 or j > n are treated as zero. Defining the coefficients

di :=

{

c̃i −
(

ak−1 c(i+1)/2 + ak−3 c(i+3)/2 + . . . + a1 c(i+k−1)/2

)

, if i is odd,

c̃i −
(

ak ci/2 + ak−2 c(i+2)/2 + . . . + a0 c(i+k)/2

)

, if i is even,

which can be written in compact matrix/vector form as

di = c̃i − (Ak c)i (3.7)

(involving the ith component of the vector Ak c), we obtain

S̃(x) − S(x) =

ñ
∑

i=1

di Ni,k,∆(x). (3.8)

By Lemma 2.3 we have S̃(x) − S(x) ≥ 0 for all x ∈ I , provided di ≥ 0 holds for all
i = 1, . . . , ñ. By (3.7), we obtain the inequality system (3.6). Since the B-splines form
bases for Nk,T and Nk,∆, the matrix Ak has full rank for each k.

Example 3.3. In the special case of continuous, piecewise linear functions
(k = 2), C1–smooth, piecewise quadratic (k = 3) and C2–smooth, piecewise cubic
(k = 4) splines one has

A2 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1
1
2

1
2

1
1
2

1
2

.

.

.

1
2

1
1
2

1
2

1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

∈ R
(2n−1)×n

, A3 =
1

4

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

3 1
1 3

3 1
1 3

.

.

.

.

.

.

3 1
1 3

3 1
1 3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

∈ R
(2n−2)×n

,

A4 =
1

8

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

4 4
1 6 1

4 4
1 6 1

.

.

.

.

.

.

1 6 1
4 4
1 6 1

4 4

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

∈ R
(2n−3)×n

.
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3.2. Quasi–optimal Coarse Grid Approximations. Now we can immedi-
ately derive a monotone lower coarse approximation.

Proposition 3.4. The spline Lk := qT Nk,T ∈ Nk,T with coefficients

qi := min {c̃2i−k, . . . , c̃2i} for i = 1, . . . , n (3.9)

(leaving out c̃j in the right hand side if j < 1 or j > ñ) is a monotone lower coarse

grid approximation to S̃ = c̃T Nk,∆ ∈ Nk,∆.
Proof. As all row sums of Ak are equal to one, the vector q := (q1, . . . , qn)T defined

in (3.9) obviously satisfies the inequality system Ak q ≤ c̃ so that the assertion directly
follows from Theorem 3.2.

Remark 3.5. In the special case k = 2, the restriction operator r̂ : N2,∆ → N2,T ,

S̃ 7→ L2 induced by Proposition 3.4 coincides with the restriction operator from [Ma].
As it is illustrated in Figure 3.1 and 3.2 for the cases k = 2 and k = 3, the

approximation Lk can be further improved in many cases. This will be the subject of
the next subsections: there q is interpreted as a componentwise lower barrier for the
B–spline coefficients c of the desired coarse grid approximation.

Definition 3.6 (Quasi–optimal Coarse Grid Approximation). We call a mono-
tone lower coarse grid approximation S = cT Nk,T to the spline S̃ = c̃T Nk,∆ quasi–
optimal if it is an improvement over Lk in the sense that c ≥ q holds with q defined
in (3.9).

3.3. A Linear Optimization Problem. Aiming at improving the coarse grid
approximation Lk from Proposition 3.4, we define an optimal monotone and quasi–
optimal coarse grid approximation S = cT Nk,T to a given S̃ = c̃T Nk,∆ by formulat-
ing a linear optimization problem. We choose a target functional Fk which estimates
the sum of the distances from approximation to obstacle on all coarse grid points, i.e.,

Fk(c) :=
∑

θ∈T

|S̃(θ) − S(θ)|. (3.10)

Lemma 3.7. The function Fk defined in (3.10) is a linear function R
n → R of

the form

Fk(c) = ξT c + η (3.11)

where

ξ := −AT
k sk ∈ R

n, sk := (βk, γk, βk, . . .)T ∈ R
ñ and η := sT

k c̃ ∈ R. (3.12)

The values βk and γk can be computed explicitly: for odd k we have βk = γk = 1
2 , and

for even k = 2, 4, 6, 8 the values are displayed in Table 3.1.

k 2 4 6 8

βk 1 2
3

17
30

166
315

γk 0 1
3

13
30

149
315

Table 3.1
The values βk and γk for orders k = 2, 4, 6, 8.
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Proof. By Theorem 3.2 we have |S̃(x)− S(x)| = S̃(x)− S(x) for all x ∈ I . Using
(3.8) we obtain

Fk(c) =
∑

θ∈T

(

S̃(θ) − S(θ)
)

=
∑

θ∈T

ñ
∑

i=1

di Ni,k,∆(θ) =

ñ
∑

i=1

di

∑

θ∈T

Ni,k,∆(θ). (3.13)

Abbreviating (̃sk)i :=
∑

θ∈T Ni,k,∆(θ), we show next that s̃k coincides with sk defined
in (3.12). In fact,

∑

θ∈∆ Ni,k,∆(θ) = 1 is easily shown by induction for k ∈ N. For
odd k we can use a simple symmetry argument to conclude (̃sk)i = 1

2 . For even k
two cases must be distinguished according to the position of Ni,k,∆. Evaluating the
B–spline on coarse grid points leads to (̃sk)i = βk if θi+k/2 ∈ T , and (̃sk)i = γk in the
other case. For orders k = 2, 4, 6, 8, the concrete values βk and γk are displayed in
Table 3.1. Thus, we have (sk)i = (̃sk)i and employing (3.7) in (3.13) leads to (3.11),

i.e., Fk(c) =
∑ñ

i=1(sk)i (c̃i − (Ak c)i) = sT
k c̃− sT

k Ak c = ξT c + η.
We can now define an optimal monotone and quasi-optimal coarse grid approxi-

mation as the solution of the linear optimization problem

Minimize the target functional Fk(c) = ξT c + η

with respect to the constraints Ak c ≤ c̃ and c ≥ q.
(3.14)

Here Ak ∈ R
ñ×n, c̃ ∈ R

ñ and q ∈ R
n are defined as before with ñ = 2n − k + 1

and ξ ∈ R
n and η ∈ R are given as in (3.12). The upper inequality guarantees the

monotonicity of the approximation by Theorem 3.2, while the second one ensures
quasi–optimality by Proposition 3.4.

3.4. Solution of the Linear Optimization Problem. Via the linear opti-
mization formulation (3.14) a (with respect to the target functional Fk) optimal
monotone and quasi–optimal coarse grid approximation may now be obtained, in
principle, by the simplex algorithm, see, e.g., [Sj]. Here the point q ∈ R

n could be
used as a starting corner by Proposition 3.4. In a multigrid scheme, however, the
simplex algorithm should not be used because the optimal complexity O(n) would be
destroyed. As shown next, a direct solution for k = 2 can be obtained by the Fourier–
Motzkin elimination, see, e.g., [Sj]. For the general case k > 2 we present afterwards
an approximate solution algorithm which can be applied in optimal complexity.

Lemma 3.8 (Direct Solution for Hat Functions). For k = 2 and given c̃ ∈ R
ñ

the solution of the linear optimization problem (3.14) is recursively given by

c1 := min{c̃1, 2c̃2 − q2}

ci := min{2 c̃2i−2 − ci−1, c̃2i−1, 2 c̃2i − qi+1} for i = 2, . . . , n − 1,

cn := min{2 c̃2n−2 − cn−1, c̃2n−1}

(3.15)

with qi = min {c̃2i−2, c̃2i−1, c̃2i} for i = 1, . . . , n defined in (3.9). In particular, S =
cT Nk,T is a monotone and quasi–optimal coarse grid approximation to the obstacle

S̃ = c̃T N2,∆.
Proof. First the n conditions −c ≤ −q are integrated into the inequality system

A2 c ≤ c̃ from Theorem 3.2. Then Fourier–Motzkin elimination is applied to the
resulting (3n − 1) × n inequality system so that we obtain the solution range

q1 ≤ c1 ≤ min{c̃1, 2c̃2 − q2},

qi ≤ ci ≤ min{2c̃2i−2 − ci−1, c̃2i−1, 2c̃2i − qi+1} for i = 2, . . . , n − 1,

qn ≤ cn ≤ min{2c̃2n−2 − cn−1, c̃2n−1}.
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Because of (3.9), q1 ≤ min{c̃1, 2c̃2 − q2} holds. To minimize the target function F2

given by Lemma 3.7, all coefficients ci must be chosen as large as possible which leads
to (3.15).

Remark 3.9. The restriction operator r̃ : N2,∆ → N2,T , S̃ 7→ S, implied by
Lemma 3.8 corresponds to the restriction operator from [Ko1] which is derived by
geometric considerations. It is an improvement of the restriction operator r̂ from
Remark 3.5 or [Ma] since r̃(S̃) ≥ r̂(S̃) holds for all S̃ ∈ N2,∆.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.5  1  1.5  2  2.5  3  3.5  4

upper fine grid obstacle
optimal coarse grid approximation

quasioptimal coarse grid approximation

Fig. 3.1. Continuous piecewise linear upper obstacle function on the fine grid [0, 4] ∩ Z/2 and
coarse grid approximations according to Lemma 3.8 and Proposition 3.4, respectively, on the coarse
grid [0, 4] ∩ Z.

In Figure 3.1 a continuous piecewise linear, upper obstacle function, the optimal
coarse grid approximation according to Lemma 3.8 and the coarse grid approximation
according to Proposition 3.4 are displayed. The improvement of the simple approx-
imation L2 is clearly visible. Since the band width of Ak increases with increasing
order k and since the Fourier–Motzkin elimination is only suited for small matrices
or for matrices with mainly zero entries [Sj], a different approach must be found to
solve the linear optimization problem in the higher order case k > 2.

To simplify the notation we define in addition to (3.5) that aj := 0 for j > k and
j < 0.

Theorem 3.10 (Optimized Coarse Grid Correction (OCGC) Scheme). Let S̃ ∈
Nk,∆ be given with S̃ = c̃T Nk,∆. Let Lk ∈ Nk,T with Lk = qT Nk,T be as in (3.9)
and define

b̃j = b̃j(c1, . . . , cb(j+k)/2c−1) := c̃j −

b(j+k)/2c−1
∑

ν=1

aj+k−2ν cν (3.16)

for j = 1, . . . , ñ and b̃j := ∞ for j < 1. Let b̂m,i := ∞ for m > ñ or m < 1 and

b̂m,i = b̂m,i(c1, . . . , ci−1) := c̃m −
i−1
∑

ν=1

am+k−2ν cν −

b(m+k)/2c
∑

ν=i+1

am+k−2ν qν (3.17)

for i = 1, . . . , n and m = 2i − k + 2, . . . , 2i where qj := 0 for j > n. Let further the
vector c be recursively defined by

ci := min

{

b̃2i−k

a0
,

b̃2i−k+1

a1
,

b̂2i−k+2,i

a2
, . . . ,

b̂2i,i

ak

}

for i = 1, . . . , n. (3.18)
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Then S = cT Nk,T ∈ Nk,T is a monotone and quasi–optimal coarse grid approxima-

tion to S̃, i.e.,

Lk(x) ≤ S(x) ≤ S̃(x) for all x ∈ I.

Proof. We only consider the case k odd as the other case is analogous.
We first derive conditions which guarantee monotonicity (3.6) of the approxi-

mation. Moving all entries ai+k−2jcj of the inequality system (3.6) except for the
rightmost nonzero ones in each row to the right hand side leads to

0

B

B

B

B

B

B

B

B

B

@

a0 0
a1 0
0 a0 0
0 a1 0

. . .

0 a0

0 · · · 0 a1

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

@

c`+1

c`+2

...
cn

1

C

C

C

A

≤

0

B

B

B

B

B

B

B

B

B

B

@

b̃1

b̃2

b̃3

b̃4

...

b̃ñ−1

b̃ñ

1

C

C

C

C

C

C

C

C

C

C

A

(3.19)

with ` := b(k − 1)/2c and the new right hand side coefficients b̃i defined in (3.16).
From (3.19) we immediately obtain that the inequality system Akc ≤ c̃ is satisfied
for arbitrary c1, . . . , c` if

ci ≤ min

{

b̃2i−k

a0
,

b̃2i−k+1

a1

}

for i = ` + 1, . . . , n (3.20)

holds.
Secondly, we derive conditions which ensure quasi–optimality c ≥ q of the approx-

imation. For an arbitrary j ∈ {1, . . . , n} the first inequality of (3.20) and definition
(3.16) imply

a0cj ≤ b̃2j−k = c̃2j−k −

j−1
∑

ν=1

a2j−2ν cν .

For every i ∈ {1, . . . , j − 1}, we therefore obtain the condition

a2j−2ici ≤ c̃2j−k −

j
∑

ν=1
ν 6=i

a2j−2ν cν .

When we determine ci, we can assume that the cν ’s for ν = 1, . . . , i − 1 are already
computed. For the cν , ν = i + 1, . . . , j, which are yet to be determined, demanding
quasi-optimality cν ≥ qν leads to

a2j−2ici ≤ c̃2j−k −
i−1
∑

ν=1

a2j−2ν cν −

j
∑

ν=i+1

a2j−2ν qν = b̂2j−k,i (3.21)

with b̂j,i defined in (3.17). Analogously we get

a2j−2i+1ci ≤ b̂2j−k+1,i (3.22)
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for i < j using the second inequality of (3.20). Because of am = 0 for m > k, the
inequalities (3.21) and (3.22) only apply for i + 1 ≤ j ≤ i + ` so that we obtain the
conditions

ci ≤ min

{

b̂2i−k+2,i

a2
, . . . ,

b̂2i,i

ak

}

(3.23)

for i = 1, . . . , n. Then both (3.20) and (3.23) are satisfied by defining ci, i = 1, . . . , n,
as in (3.18) which completes the proof.

Remark 3.11. If one only aims at a coarse grid approximation S which is
monotone by construction, one could use the relation (3.20) and replace the inequality
by an equality sign. However, in many cases the as–large–as–possible–choice of the
components ci according to (3.20) then has to be balanced to preserve monotonicity
by very small, maybe even negative components cj , j > i, which leads to undesirable
oscillations in the solution. This is avoided by taking in addition the lower bounds
into consideration.

Example 3.12. In the case k = 2 the recursion (3.18) recovers the direct solution

ci = min{2 c̃2i−2 − ci−1, c̃2i−1, 2 c̃2i − qi+1} (3.24)

from Lemma 3.8. For k = 3 the recursion (3.18) simplifies to

ci = min
{

4 c̃2i−3 − 3 ci−1,
4
3 c̃2i−2 −

1
3ci−1,

4
3 c̃2i−1 −

1
3qi+1, 4 c̃2i − 3 qi+1

}

. (3.25)

In the case k = 4, one obtains

ci := min
{

8c̃2i−4 − ci−2 − 6ci−1, 2c̃2i−3 − ci−1,
4
3 c̃2i−2 −

1
6 (ci−1 + qi+1),

2c̃2i−1 − qi+1, 8c̃2i − 6qi+1 − qi+2} (3.26)

where we use the notation that all terms in (3.24)–(3.26) which involve cj with j < 1
or qj with j > n have to be omitted.

Using (3.2) and exploiting the fact that the number of the non–zero terms in each
of the sums in the definitions (3.16) and (3.17) is bounded by k, the above algorithm
works in optimal complexity.

Theorem 3.13. For fixed k ∈ N, the costs of the algorithm OCGC is restricted
by O(n) operations.

Next we visualise the effect of our algorithm. In Figure 3.2, one can see a C1–
smooth, piecewise quadratic upper obstacle, the coarse grid approximation obtained
by the OCGC algorithm, the coarse grid approximation L3 ∈ N3,T according to
Proposition 3.4 and the optimal coarse grid approximation obtained by the simplex
algorithm. (Recall, however, that the simplex algorithm does not yield the solution
in optimal complexity.) The improvement of the OCGC approximation over the
spline L3 is clearly visible. There is no difference of our OCGC approximation to the
optimal coarse grid approximation obtained by the simplex method, except for a slight
variation in the interval [0,2]. This difference seems to be caused by boundary effects
which has been confirmed in further numerical experiments. As expected, smooth
parts of the obstacle are very well approximated, while variations of the obstacle
of higher frequency can only be partly approximated as it is visible in the interval
[10, 12]. In this example, the control polygon of the B–spline coefficients of the OCGC
approximation (which is not displayed here) is partly above the control polygon of
the obstacle function, although by construction the OCGC approximation always lies
below the obstacle. This indicates that the result of our OCGC algorithm is superior
to alternative methods in which monotone approximations are obtained via monotone
restrictions of control polygons.
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3

4

5

6

7

8

9

0 2 4 6 8 10 12

upper fine grid obstacle
simplex method approximation
OCGC--optimized approximation

quasioptimal approximation

Fig. 3.2. Right: C1–smooth, quadratic upper obstacle function on the fine grid ∆ := [0, 13]∩Z/2
with OCGC–optimized quadratic restriction, the optimal coarse grid approximation obtained by the
simplex method and lower quasi–optimal barrier L3, all three of which are defined on the coarse grid
T := [0, 13] ∩ Z.

4. Higher Spatial Dimensions. In the multivariate case Ω ⊂ IRd, using (2.12),
a d-dimensional spline S : Ω → R of order k can be represented by

S(x) =
∑

i∈IIc

ci N
(d)
i,k,T (x) =: cT N

(d)
k,T (x), x ∈ Ω, (4.1)

with coefficients c ∈ R
nd

and indices from IIc := {i ∈ N
d : 1 ≤ im ≤ n, m = 1, . . . , d}.

The two-scale relation (3.4) attains the multivariate refinement relation

N
(d)
i,k,T =

∑

j∈J

a
(d)
j N

(d)
2i−k+j,k,∆ (4.2)

with the index set J := {j ∈ N
d : 0 ≤ jm ≤ k for m = 1, . . . , d} and the subdivision

coefficients

a
(d)
j := 2(1−k)d

d
∏

ν=1

(

k

jν

)

for j ∈ J. (4.3)

The extension of Theorem 3.2 then reads as follows.
Theorem 4.1 (Monotone Coarse Grid Approximation). The spline S = cT Nk,T

is a monotone coarse grid approximation to the upper obstacle S̃ = c̃T Nk,∆ if their
B–spline expansion coefficients satisfy the linear inequality system

A
(d)
k c ≤ c̃ (4.4)

with the tensor product matrix A
(d)
k := Ak ⊗ . . .⊗Ak ∈ R

(ñ×n)d

and Ak as in (3.6).
Proof. The proof follows by the same arguments as in the univariate case, by

using the refinement relation (4.2) and applying the multivariate version of Lemma
2.3 to

S̃(x) − S(x) =
∑

i∈IIf

(A
(d)
k c − c̃)i N

(d)
i,k,∆(x),
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where IIf := {i ∈ N
d : 1 ≤ im ≤ ñ, m = 1, . . . , d} using the non–negativity of (tensor

product) B–splines.
Example 4.2. In the special case of C2–smooth, piecewise cubic (k = 4) splines

on a two–dimensional domain, the system (4.4) reads

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

4
8

A4
4
8

A4

1
8

A4
6
8

A4
1
8

A4

4
8

A4
4
8

A4

1
8

A4
6
8

A4

.

.

.

.

.

.

6
8

A4
1
8

A4

4
8

A4
4
8

A4

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

c1,1

.

.

.

c1,n

.

.

.

.

.

.

cn,1

.

.

.

cn,n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

≤

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

c̃1,1

.

.

.

c̃1,ñ

c̃2,1

.

.

.

c̃2,ñ

.

.

.

c̃ñ,1

.

.

.

c̃ñ,ñ

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

As all rows in the system (4.4) sum to one we immediately obtain from Theorem
4.1 the following generalization of Proposition 3.4.

Proposition 4.3. The spline Lk := qT N
(d)
k,T with expansion coefficients

qi := min{c̃j : 2im − k ≤ jm ≤ 2im, m = 1, . . . , d} for i ∈ IIc (4.5)

(leaving out c̃j in the right hand side if jm < 1 or jm > ñ) is a monotone coarse grid

approximation to the obstacle function S̃ = c̃T Nk,∆.
In the special case k = 2 Fourier–Motzkin elimination can be applied to the

inequality system (4.4) with the constraint c ≥ q as in the univariate case to obtain
Lemma 3.8 for arbitrary d.

Lemma 4.4 (Direct Solution for Hat Functions). Define the sum s`,i of all neigh-
boring coarse grid coefficients cj to a given fine grid coefficient c̃` except ci by

s`,i :=
∑

{j∈IIc: j 6=i, |θj+1−θ̃`+1|<H}

cj for ` ∈ IIf , i ∈ IIc,

with the Euclidean distance | · | and the mesh size H of the coarse grid. Define s̄`,i as
s`,i with the modification that all coefficients cj in the sum which are not yet known
are replaced by qj given from (4.5). Then, for k = 2, a monotone and quasi–optimal
coarse grid approximation is recursively given by

ci := min{2
Pd

m=1 |`m−(2im−1)| c̃` − s̄`,i : 2im − 2 ≤ `m ≤ 2im for m = 1, . . . , d}

for i ∈ IIc, leaving out c̃j in the right hand side if jm < 1 or jm > ñ.
To improve the approximation from Proposition 4.3 in the case k > 2, the OCGC-

algorithm can be applied recursively with respect to the dimension d as follows.
Theorem 4.5 (Optimized Coarse Grid Correction (OCGC) Scheme for d > 1).

The OCGC–algorithm applied dimension–recursively to the multivariate inequality
system (4.4) provides in optimal complexity of O(nd) arithmetic operations a coarse
grid approximation S which satisfies the monotonicity and quasi–optimality condition

Lk(x) ≤ S(x) ≤ S̃(x) for all x ∈ Ω.
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Proof. We provide the proof for the case k = 3; the other cases follow immediately

by exchanging the system matrix A
(d)
3 by A

(d)
k . The (n × ñ)d tensor product matrix

A
(d)
3 can be written as a n × ñ matrix of (n × ñ)(d−1) tensor product matrices

A
(d)
3 :=









































3
4 A

(d−1)
3

1
4A

(d−1)
3

1
4A

(d−1)
3

3
4 A

(d−1)
3

3
4 A

(d−1)
3

1
4A

(d−1)
3

1
4A

(d−1)
3

3
4 A

(d−1)
3

. . .
. . .

3
4A

(d−1)
3

1
4A

(d−1)
3

1
4A

(d−1)
3

3
4A

(d−1)
3









































.

Accordingly, we define ci• := (cij)i=1,...,n,j∈N(d−1): 1≤jl≤n ∈ R
n(d−1)

. Applying the

OCGC–algorithm for d = 1 (3.25) to this formulation, we obtain for i = 1, . . . n the
conditions

A
(d−1)
3 ci• ≤ min{ 4 c̃2i−3• − 3A

(d−1)
3 ci−1•,

4
3 c̃2i−2• −

1
3A

(d−1)
3 ci−1•,

4
3 c̃2i−1• −

1
3A

(d−1)
3 qi+1•, 4 c̃2i• − 3A

(d−1)
3 qi+1•}

for ci• ∈ R
n(d−1)

. Each of these conditions can again be reduced by one dimension by
a further application of the OCGC algorithm until the whole system is solved. As the
complexity of the OCGC algorithm is O(n), the overall complexity is given by O(nd)
arithmetic operations.

Example 4.6. In the case k = 3 and d = 2 the multivariate OCGC algorithm is
defined as follows: For given c̃ ∈ R

ñ2

determine q ∈ R
n2

by (4.5).

For i = 1, . . . , n
define g ∈ R

n by gj := qi,j and f ∈ R
ñ by fj := min{4 c̃2i−3,j − 3A3 ci−1,j ,

4
3 c̃2i−2,j −

1
3A3ci−1,j ,

4
3 c̃2i−1,j −

1
3A3qi+1,j , 4 c̃2i,j − 3A3 qi+1,j},

solve the univariate problem A3e ≤ f , e ≥ g by the 1d–Algorithm OCGC,

set ci,j := ej .
The splines which correspond to the coefficient vector q and c from Proposition 4.3
and Theorem 4.5, respectively, are displayed in Figure 4.1 for a given upper obstacle
function defined on the fine grid [0, 6]2 ∩ (Z/2)2.

The resulting monotone multigrid method in the multivariate case can now be
implemented by adding the projection operator (2.11) and the obstacle approximation
from Theorem 4.5 to a standard multigrid method. The standard multigrid method
for tensor products of higher order B-splines is described, e.g., in [Hö, HRW] for the
case d > 1.

5. Convergence Theory for B–Spline–Based MMG Methods. It is shown
in [Ko1] that monotone multigrid methods are globally convergent and asymptotically
reducing to a linear subspace correction method, provided nodal basis functions and
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Fig. 4.1. Two–dimensional C1–smooth, quadratic, upper obstacle function defined on fine grid
[0, 6]2 ∩ (Z/2)2 and coarse grid approximations from Proposition 4.3 (quasi–optimal) and Theorem
4.5 (OCGC) on the coarse grid [0, 6]2 ∩ Z2 .

monotone and quasi–optimal restriction operators r̃ are used. Because of the lack of
such restriction operators for smooth functions, the MMG method has so far been
restricted to hat functions. Using B–splines as basis functions, we have already trans-
ferred the scheme to functions of general smoothness in Section 2. Suitable restriction
operators have been constructed in Sections 3 and 4. We have established in the ex-
tended version of this paper [HzK] that all convergence results from [Ko1] can be
transferred to B–spline basis functions, using their expansion coefficients instead of
function values.

6. Numerical Example. To present a numerical example from Mathematical
Finance, we choose the domain ΩL := R

+ × [0, T ), the differential operator

L := ∂
∂t + 1

2σ2S2 ∂2

∂S2 + rS ∂
∂S − r, (6.1)

and the function H(S) := (K − S)+. We consider the linear complementary problem
to find V = V (S, t) ∈ H1(Ω), such that

(LV ) (V (S, t) −H(S)) = 0,
LV ≤ 0,

V (S, t) ≥ H(S)
(6.2)

holds for all (S, t) ∈ ΩL, with boundary data V (S, t) = 0 for S → ∞, V (S, t) = H(S)
for S → 0 and final data V (S, T ) = H(S) for S ∈ R

+.
As it is shown in [WHD], the solution V describes the fair value of an American

put option with strike price K and maturity T which depends on an underlying stock
with value S and volatility σ. No analytical solution is known for the problem (6.2)
so that one has to resort to numerical solution schemes. In the numerical experiments
we used for the linear complementary problem (6.2) the parameters K = 10 for the
strike price, T = 1 for maturity, σ = 0.6 for volatility and r = 2.5% for the interest
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Fig. 6.1. Solution V (S, t) of the linear complementary problem (6.2).

rate. The numerical solution V and the obstacle function H are displayed in Figure
6.1 in the case of M = N = 64 grid points in space and time.

If the obstacle function is set to minus infinity, the solution V describes the fair
value of an European put option (s. [WHD]). In that case a analytical solution is
known and given by the famous Black–Scholes formula, see [BS].

Using a Crank–Nicholson finite difference scheme for the time discretisation and at
least continuous piecewise finite elements for the space discretisation, the method con-
verges quadratically. Employing higher–order finite element functions, the derivatives
of the solution V which provide important hedge parameters in the option pricing con-
text can be determined by direct differentiation of the basis functions. Using B–spline
bases of order k we obtain all derivatives up to the (k − 2)–th derivative in quadratic
convergence. In particular, pointwise derivatives, the so–called Greek letters, can be
computed up to high accuracy. These results as well as extensive discussions can
be found in [Hz2]. As an illustration of the impressible difference a variable order k
may offer, we display here in Figure 6.2 only the pointwise errors of Delta:= ∂V

∂S and

Gamma:= ∂2V
∂S2 .
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Fig. 6.2. Comparison of pointwise error for Delta and Gamma at time t = 0 for orders
k = 2, 3, 4 and N = M = 275.

In view of this application, we would like to point out that our higher order
MMG could also be applied to the valuation of basket options, at least for small
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baskets with d = 2 or d = 3. Similar to the univariate case, the multivariate Black-
Scholes equation can be transformed into a multivariate heat diffusion problem, as
shown in [Me, Rs, RW].

6.1. Convergence Behavior of Gauss–Seidel and MMG Schemes. In the
following only one time step of problem (6.2) is considered to analyze the performance
of the multigrid scheme. In Figure 6.3, the iteration errors of the projected Gauss–
Seidel scheme are displayed for different orders k. The impact of the order k is clearly
visible. Next we compare the convergence behavior of the following methods:
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Fig. 6.3. PSOR–iteration history of one time step with M = 256.

PSOR Projected Gauss–Seidel scheme

MMG Monotone multigrid method with optimized approximation of
the obstacle according to Lemma 3.8 and Theorem 3.10

TrMMG Truncated version of the monotone multigrid method with op-
timized approximation of the obstacle according to Lemma 3.8
and Theorem 3.10

MMG (q–opt) Monotone multigrid method with simple approximation of the
obstacle according to Proposition 3.4

TrMMG (q–opt) Truncated version of the monotone multigrid method with sim-
ple approximation of the obstacle according to Proposition 3.4

MG Linear multigrid method applied to the unrestricted problem

To analyze the influence of the order k on the convergence behavior, the case
k = 2 is systematically compared to the case k = 3. For k > 3 similar results are
expected. In the experiments the finance parameters used in the previous section,
the finest level L = 7 and a random initial guess have been chosen. To make sure
that the iteration does not terminate too early, we have selected independently of the
discretisation error the stopping criterion

‖uν+1
L − uν

L‖∞ ≤ 10−12,

where uν
L denotes the ν– th iterate on the finest grid L.

The numerical results are summarized in Figure 6.4 and in Table 6.1. In the
third column in Table 6.1, the number ν0 of iterations needed to identify the contact
set K•(uL) is displayed. In the next column ]It., we list the number of iterations
which is needed to solve the problem up to machine accuracy. To compare the costs
of the schemes, we employ the definition of a work unit (WU) from [BC]. A work unit
WU = WUL denotes the costs of one iteration step of the projected Gauss–Seidel scheme
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Fig. 6.4. Iteration history for hat functions (k = 2) (left) and for C1–smooth basis functions
(k = 3) (right).

on the finest grid L. The costs WU` of one iteration step on level ` ≤ L is then given
by

WU` = 2L−`
WUL.

The number of work units which is needed to reach the stop criteria is displayed in
the last column ]WU in Table 6.1.

scheme 1 smoothing step 2 smoothing steps
ν0 ] It. ]WU ν0 ] It. ] WU

PSOR 134 403 403 — — —
MMG (q–opt) 6 30 59.06 5 21 82.69

k = 2 TrMMG (q–opt) 7 28 55.13 5 17 66.94
MMG 7 28 55.13 5 14 55.13
TrMMG 7 23 45.28 5 13 51.19

PSOR 103 447 447 — — —
MMG (q–opt) 5 31 61.03 4 20 78.75

k = 3 TrMMG (q–opt) 6 27 53.16 4 17 66.94
MMG 5 27 53.16 4 14 55.13
TrMMG 5 16 31.5 4 11 43.31

Table 6.1
Number of iterations needed to identify the contact set and to compute the solution up to

machine accuracy and the cost in work units.

The numerical results show that already one or two smoothing steps are sufficient
with regard to cost and accuracy. In comparison to the Gauss–Seidel relaxation, the
cost is substantially reduced in the multigrid schemes. The truncated versions Tr-
MMG and TrMMG (q–opt) converge in all cases faster than the standard versions
MMG or MMG (q–opt). Moreover, multigrid methods with an optimized approxima-
tion of the obstacle according to Lemma 3.8 or Theorem 3.10 converge faster than
the simple approximations according to Proposition 3.4. For hat functions, this cor-
responds to the results in [Ko1]. For the higher–order case, this indicates the quality
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of the OCGC approximations from Section 3.4. The contact set is identified correctly
by all methods within only a few iterations.

Considering the above results within the time discretisation when solving the
instationary problem, we wish to point out that the average number of iterations per
time step is much smaller. This is due to the fact that the solution of the previous
time step serves as a good initial guess. Therefore, we can expect that the asymptotic
phase dominates the convergence behavior of the multigrid scheme. The asymptotic
multigrid rates are discussed in the following section.

6.2. Multigrid Convergence Rates. The convergence rate ρ` of a multigrid
scheme with ` + 1 levels is given by

‖uν+1
` − u`‖`2 ≤ ρ`‖u

ν
` − u`‖`2 .

Here u` ∈ S` denotes the exact solution and uν
` ∈ S` the approximate solution in the

ν–th iteration step. A scheme is said to have multigrid convergence if ρ` is bounded
independently of the grid size by a constant ρ∞ < 1.

The asymptotic convergence rates are estimated for the V–cycle of the truncated
version TrMMG with ` + 1 levels according to

ρ` ≈
‖uν∗+1

` − uν∗

` ‖`2

‖uν∗

` − uν∗−1
` ‖`2

.

Here ν∗ is chosen such that ‖uν∗+1
` − uν∗

` ‖`2 ≤ 10−12. In Figure 6.5 the results are
displayed on the left hand side for continuous, piecewise linear and on the right hand
side for C1–smooth, piecewise quadratic basis functions. We recover the favorable
convergence rates of standard multigrid schemes which are bounded in our case by
ρ∞ ≈ 0.31 (k = 2) and ρ∞ ≈ 0.27 (k = 3) in the case of only one smoothing step on
each refinement level.
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Fig. 6.5. Asymptotic convergence rates for the case k = 2 (left) and k = 3 (right) depending
on the number M of unknowns.
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