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Abstract. We report on numerical experiments using adaptive sparse grid dis-
cretization techniques for the numerical solution of scalar hyperbolic conser-
vation laws. Sparse grids are an efficient approximation method for functions.
Compared to regular, uniform grids of a mesh parameter h contain h~< points
in d dimensions, sparse grids require only A" |logh|‘7l_1 points due to a trun-
cated, tensor-product multi-scale basis representation.

For the treatment of conservation laws two different approaches are taken:
First an explicit time-stepping scheme based on central differences is intro-
duced. Sparse grids provide the representation of the solution at each time
step and reduce the number of unknowns. Further reductions can be achieved
with adaptive grid refinement and coarsening in space. Second, an upwind
type sparse grid discretization in d + 1 dimensional space-time is constructed.
The problem is discretized both in space and in time, storing the solution at
all time steps at once, which would be too expensive with regular grids. In
order to deal with local features of the solution, adaptivity in space-time is
employed. This leads to local grid refinement and local time-steps in a natural
way.

1. Sparse Grids

Sparse grids were introduced for the solution of elliptic partial differential equa-
tions, see [4] and references in [2]. They provide an efficient approximation method
of smooth functions, especially in higher dimensions. So far, Galerkin methods [2]
and finite difference schemes [3, 9] for elliptic problems on sparse grids have been
investigated. There are also attempts to solve parabolic problems [1] and Navier-
Stokes equations [9].

The multi-dimensional approximation scheme of sparse grids can be con-
structed as a subspace of the tensor-product of one-dimensional spaces represented
by a hierarchical multi-resolution scheme [5]. Consider piecewise linear interpolants
on a d-dimensional unit hyper-cube. We start with the one-dimensional hierarchi-
cal basis [11]. The space of functions on the regular grid of dyadic level [ and
mesh parameter h = 27! can be represented by the space of all tensor-products
of one-dimensional basis functions of support larger than 27/~1. The correspond-
ing sparse grid space consists of all products of hierarchical basis functions with
support larger than a d-dimensional volume of size 27!~1, see Figure 1. This is
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FigurEe 1. Tableau of supports of hierarchical basis functions for
a regular (left) and a sparse grid.

a subset of the regular grid space. A regular grid has about 2%! nodes, which is
substantially more than the 2 - [9=1 nodes of the sparse grid.

Now it is straightforward to apply a Galerkin scheme to the spaces defined [2].
Another way to discretize equations on sparse grids is the combination technique,
which is an extrapolation scheme applied to solutions obtained on several regular
grids of about 2! and 2/~ nodes [4]. There exists also a Fourier-collocation method
on sparse grids [6].

A different way of a sparse grid discretization is a finite difference scheme [3],
which we will employ throughout this paper. We define the hierarchical transfor-
mation H as the hierarchical basis transformation on the regular grid from nodal
values to hierarchical values which is restricted to the sparse grid nodes. Based on
H, we define the action of a one-dimensional finite difference operator for the dis-
cretization of a differential operator: We apply the associated standard difference
stencil D; along the z;-axis to values located on the sparse grid nodes in a specific
basis representation. To this end the values are given in nodal basis in direction
i and in hierarchical basis representation in all other directions I\ {i}. The as-
sociated transformation is denoted by Hp\ ;3. The stencil D; for each node itself
is chosen as the narrowest finite difference stencil available on the sparse grid. It
is equivalent to the corresponding stencil on a regular (non-equidistant) grid, e.g.
a first order upwind stencil for % In nodal values the finite difference operator

i

reads
gu R~ HI_\{Z.} oD;oHp\ 5 u

A general difference operator is then obtained by dimensional splitting. The linear
advection term, for example, can be discretized in nodal basis representation as

d
-1

i=1



Sparse Grids for Conservation Laws 3

| regular grid sparse grid
# nodes | O(h™7) O(h=1-]log, h|%~1)
TABLE 1. Number of nodes.

d=1 d=2 d=3 |d=1 d=2  d=3
order p=1|N-1 N-1/2 N-I/3|N-1 N-1+7 N-1+v
order p=2 | N-2 N-1 N-2/3| N-2 N-2+7 N-2+v
order p=3 | N-3 N-3/2 N-1 | N-3 N-3+7 N-3+7
TABLE 2. Storage-complexity of a regular (left) and a sparse grid discretization.

where the one dimensional difference operators D; may be chosen as a two-point
upwind stencil ~ _lx —- [—11.]. On adaptively refined grids, the nearest neighbor
nodes are chosen, which may lead to unsymmetric stencils.

The major advantage of sparse grids compared to regular grids is their smaller
number of nodes for the same level [ and resolution 2~'. This is especially true in
higher dimensions d > 1, see Table 1.

However, the question whether sparse grids have an advantage compared to
regular grids does also depend on the accuracy of a solution obtained on a grid.
We are interested in a comparison of accuracy versus number of nodes for both
types of grids. We define the storage e-complexity of an approximation method by
the accuracy £ which can be achieved with a storage of N nodes. The accuracy
depends on the smallest mesh parameter A and an approximation order p like ¢
= O(h?) for smooth data. For regular grids the number of nodes depends on the
space dimension d as Nstorage = h~% which results in ¢ = (’)(N_p/d). In the case
of sparse grids, the dependence on the dimension d is much weaker and we denote
e = O(N~P*7) for every v > 0 and an approximation order p. The sparse grid
approximation breaks the curse of dimensionality.

Let us assume that a sparse grid approximation is of first order p = 1, which
of course depends on the discretization order, the error norm, the smoothness
of the solution and the sparse grid approximation itself. Then the sparse grid is
competitive to a second order method in two dimensions and to a third order
method in three dimensions, which is usually hard to construct, see Table 2.

Furthermore the number-of-operations complexity is of interest, because it is
an estimate for the computing time a specific algorithm needs. In some cases the
work count is proportional to the number of nodes. This is true for a single time-
step of a standard explicit finite difference code. It is also true for the corresponding
sparse grid code, because it is true for each operator H and D. However, the work
count usually is higher than the number of nodes for implicit discretizations and
for stationary problems involving the solution of (non-) linear equation systems,
and for time-dependent problems in general. The number of time-steps for an
evolution problem of a fixed time interval is proportional to A due to the CFL
condition, which leads to a higher work count complexity. On regular grids we
obtain Ny, = O(h~%"1), which is equivalent to the storage complexity in d + 1
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space dimensions. This means that any reduction in storage Nsiorqge, €.g. through
sparse grids, may reduce the number of operations even further.

We still have to check the assumption on the approximation order p = 1 (or
some other constant) of finite difference sparse grids discretizations. Up to now
such orders had been verified for the Poisson equation under strong regularity
assumptions [9]. Furthermore similar estimates are available for the interpolation
error under suitable smoothness assumptions [2]. Numerical experiments indicate
that adaptive sparse grids can weaken the smoothness requirements.

It is the goal of this article to construct suitable finite difference discretiza-
tions for conservation laws and to investigate their numerical order of convergence.

2. Space-Time Schemes

We want to solve the scalar conservation law

up + V-f(u) = 0 for u(z,t),
r € QCR? (2)
t € [0,

written as an initial-boundary value problem. The standard procedure for the nu-
merical solution of (2) is to discretize the space  and the initial value u® = u(z,0)
on Q and to step forward in time. The solution u'*! at time step ¢+ 1 is computed
from u? and the boundary conditions. This “#ime-stepping’scheme is iterated until
t = o is reached. This will be discussed in chapter 3.

An alternative solution algorithm uses a discretization of (2) in the ‘space-
time’ domain © X [0,%o]. The conservation law can be re-written as a boundary
value problem

V-Fu) = 0 for u(z), .
€ Qx[0,f] C R 3)

with F given by Fo(u) = u and Fi.. 4(u) = f(u). The algorithm requires the
numerical solution of a single large (non-) linear equation system and returns an
approximation of u at all time steps at once. This approach is related to wave-
form relaxation [10]. Tt has been used with finite elements for periodic parabolic
equations on sparse grids in [1].

The storage requirements of the space-time formulation are often consid-
ered as too high. However, with sparse grid technique the additional dimension in
storage is affordable. Furthermore there is the advantage of easy adaptive grid re-
finement in space-time. In any stage of the computation it is possible to introduce
a finer grid, which gives better resolution in space and local time steps. This is
often difficult or even impossible for time-stepping algorithms.
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FIGURE 2. Sine wave u = cos(m(z—t)) (left); convergence history:
L error vs. Ngorage (space-time), ‘+’ regular grid and ‘o’ sparse

grid.

2/h Ly Loy Lo Ly Loy Lo

32 | 1.8973 1.8713 1.7746 | 1.4347 1.6189 1.6752

64 | 1.9348 1.9194 1.8696 | 1.5539 1.7186 1.7834

128 | 1.9610 1.9534 1.9297 | 1.6518 1.7985 1.8652

256 1.7247 1.8558 1.9235

512 1.7746  1.8932 1.9606
TABLE 3. Convergence rates on regular (left) and on sparse grids,
sine wave.

2.1. Numerical examples

In this section we will consider the linear, oblique advection equation f(u) := u-1I
as a simple prototype for a conservation law. In space-time formulation it reads

V.eu =10 in QCR! (4)

We use a first order upwind discretization in space-time, which is equivalent to an
implicit Euler discretization in time.
For example on a two dimensional regular grid (one space and one time
dimension), this is
1 1
7 (Wig —uiog) + o (g —uij-1) = 0

The corresponding finite difference sparse grid discretization is
-1 Uiy T U1 -1 Uiy — U1 —
Hpj o o=t o Hpyy + Hijjo =t —=toHpy = 0 (3)
First we test the rate of convergence for smooth data. We choose a sine wave as
initial data and choose the Dirichlet data on the inflow boundary such that the
solution in space-time is u = cos(m(z —t)) on the square [—1, 1] x [0, 2], see Figure
2. The linear equation system is solved with an iterative Krylov method.
Here, the convergence rates of the error in discrete Ly, Ly and L, norms,
that is the ratio of 45 /e5 converges to the factor two for the regular gird and the
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F1GURE 3. Hat function (left); convergence history: Lo, error vs.
Nstorage, ‘+’ regular grid and ‘o’ sparse grid.

2/h | 32 64 128 256 512
regular | 1.3675 1.4021 1.4112
sparse | 1.2226 1.2606 1.2909 1.3030 1.2960
TABLE 4. L convergence rates on regular and on sparse grids,
hat function.

sparse grid discretization, see Table 3. Hence both methods have the numerical
order of convergence p = 1, which we expected for a first order scheme. Sparse grid
Galerkin schemes often show a slightly slower convergence of O(h|loghl), which is
not the case for finite differences, see also [9].

Convergence histories are given in Figure 2, demonstrating the rapid conver-
gence of the sparse grid solution. In the e-N diagram the complexity of the sparse
grid can be seen. The steeper slope of the sparse grid approach is comparable to
the performance of a second order method. Note that Nstorege accounts for the
nodes in space-time.

The performance of sparse grids depends on the smoothness of the function
to be approximated. The sine-wave example was analytic. In order to test the
sparse grid method for data which does not match the smoothness requirements,
we consider a C° hat function as initial data u|t=0. The inflow data is set to zero.
The hat function is advected towards the outflow boundary, see Figure 3. The
solution is continuous and contains a jump in the first derivative. The jump is
not resolved at each time step on a sparse grid, because there are not enough
nodes on each time-slice. The interpolation procedure inherent to the sparse grid
discretization introduces artificial viscosity in these cases.

The convergence rates in Table 4 indicate the numerical order of convergence
p = 1/2 for the regular grid and an even lower order for the sparse grid solution.
However, the complexity of the sparse grid algorithm still is better than of the
regular grid in Figure 3, due to the lower number of nodes.
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error

F1GURE 4. Adapted grid (left); convergence history: L, error vs.
Nstorage, ‘+’ regular grid, ‘o’ sparse grid and ‘+” adaptive strategy.

2.2. Adaptive space-time schemes

The performance of the sparse grid for the hat-function example degraded because
of the jumps in the first derivative of the solution. Similar effects can be observed
for many other discretizations. A common method to fix this is adaptivity.

The sparse grid is refined locally, to resolve such jumps. We employ an error
indicator on the space-time mesh which indicates nodes with large errors. It is
based on the absolute value of the associated hierarchical basis coefficient, see
[3], and is related to residual based error indicators. The grid is refined in the
neighborhood of nodes with large errors, inserting the hierarchical sons of a node.
Locally a sparse grid of level [ + 1 is obtained. A new solution is computed on the
refined grid. The cycle of error indication, grid refinement and solution is iterated
until a final error tolerance is matched, for further details see [2, 3].

A solution algorithm based on adaptive grid refinement is applied to the
previous non-smooth test example. An adapted grid and the corresponding con-
vergence history are depicted in Figure 4.

The complexity of the adaptive sparse grid in this case is similar to the second
order complexity of the standard sparse grid in Figure 2. This means that, with the
help of the adaptive grid refinement process, the original sparse grid performance
is regained. The adaptive refinement does work as expected. However, the solve-
refine cycle adds some overhead to the run time of the solution process.

Adaptive grid refinement added some features to the solution algorithm for
time dependent problems: There is only one error indicator operating in the space-
time domain, instead of several indicators, which operate separately in space and
time and are coupled through CFL type of conditions. Grid refinement now en-
hances local space-resolution and at the same time introduces local time-stepping.
However, due to the discretization implicit in time, there is no CFL condition.
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3. Time-Stepping Schemes

Now we briefly look at the construction of time-stepping schemes based on sparse
grids in space. We consider central difference schemes which are explicit in time in
contrast to Godunov schemes. This means we are able to avoid Riemann solvers
and can concentrate on finite difference stencils. We start with the first order
prototype of all central scheme, the Lax-Friedrichs scheme [7]. We choose the non-
staggered version

1
t+1 ¢ t ¢ ¢
uitt = 5(%’-1 +uiy) = A (fluipd) = fluiy)) (6)
with flux f, which can be extended to systems of equations easily. The construction
of a sparse grid version of (6) requires a formulation that is invariant with respect

to the hierarchical basis transformations Hp\(;}, e.g. a basis free formulation. In
order to achieve this, we define the field

fi = f(uj)
for a given solution u’ in nodal basis. Equation (6) can be re-written as
1
uit! = 5(“5—1 + i) =N = fo0) (7)

which is linear in u* and in f*. Hence equation (7) holds in any basis, especially in
the hierarchical basis. As in the linear case, see equation (1), we apply (first order)
dimensional splitting. We obtain the following algorithm for a single time step:

~t — t
U, = Hppyug,
t — t
i/j = Hyy f(ui,j)
~t+1/2  _ 1(~t At At £t £t
Gy T = gl Ui ) — R (g — finay)
L2 gl At+1/z
%] {2} 8
aiti/2 o — H, ut+1/2 (®)
2,7
~th1/2 + /2
9i; = Hpy g( )
~t+l _(~t+1/2 _|_ ~t+1/z) At (~t+1/2 _ ~t+1/2)
1,7 —  2\%5-1 2]+1 A2y; ; Vi, j+1 gi,j—l
t+1 H—l ~t+1
ui,] {1} i,g

Note that the hierarchical basis transform has to be applied to both the fields u’
and f* and to utt1/2 and ¢**+1/2.
3.1. Numerical experiments

We consider Burgers’ equation in two space dimensions.
1 .

with smooth initial data u|;=o = sinmz sinmy. We compute until ¢ = .2 which
is before the shock at ¢t = 1/m, with a CFL. number = 1/2. This means that the
solution remains smooth, see Figure 5 (left). We use the usual sparse grid without
adaptive refinement. The numerical convergence rates are depicted in Table 5.
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1/h | 8 16 32 64 128 256 512
regular | 1.4559 1.6623 1.8927
sparse | 1.2622 1.2575 1.5461 1.5009 1.4357 1.4422 1.4662
TABLE 5. L convergence rates on regular and sparse grids for
CFL number = 1/2, sine example.

error

10° 10" 10° N 10° 10t 10°

FIGURE 5. Solution for fixed At, sine example (left); convergence
history: Lo error vs. Ngorage (space), ‘+’ regular grid and ‘o’
sparse grid for fixed At.

We obtain a numerical order of convergence of p = 1 for the regular grid case
and a rate of about p = 1/2 for the sparse grid. This means that both methods
seem to have comparable complexity. However, for the same number of nodes N,
the sparse grid solution uses a finer h, which implies a smaller time step At and a
better resolution of the non-linearity.

In order to compare both algorithms, we fix the time step At instead of the
CFL number in the following. Choosing At = 1/1024, we obtain the convergence
history and the solution of Figure 5.

The sparse grid algorithm shows a better complexity and a better complex-
ity order (slope) than the regular grid algorithm. This is due to the smooth solu-
tion, which can be resolved on the standard sparse grid. We expect an adaptive
algorithm, which refines and coarsens the sparse grid in space and resolves the
boundary layer at z; = 1 to perform even better.

We again consider Burgers’ equation (9) to test less smooth data, now with
non-smooth initial data u|;=o chosen as a jump tg = .5. The jump is advected with
constant velocity towards the corner (1, 1). We fix the time step At = 1/256. The
solution and the convergence rates are depicted in Figure 6.

Both regular grid and sparse grid show slow convergence. The sparse grid
demonstrates a better convergence than regular grid algorithm. The sparse grid is
able to resolve the jump at specific locations such as short binary fractions z; = Z,
1/2Z,1/47Z, . ... Tt cannot resolve the jump at locations in between and uses linear
interpolation through the hierarchical basis. Hence the time evolution algorithm
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error

DL VA

FIGURE 6. Solution for fixed At, jump example (left); conver-
gence history: Lo, error vs. Ngiorage, ‘+ regular grid and ‘o’ sparse

grid for fixed At.

creates slight oscillations. In our further experiments, even a piecewise constant
basis, as proposed in [5] did not improve the performance significantly.

The initial data is no longer C, but discontinuous. However, we still use the
linear hierarchical basis and C° approximations. We expect an adaptive grid in
space, which resolves the jumps, to improve the convergence substantially.

3.2. Higher order central differences

As a brief outlook we propose a second order sparse grid central differencing scheme
based on the scheme by Nessyahu-Tadmor [8]. We define the field f and a field
u’z of reconstructed slopes u’, which can be obtained with a slope limiter in nodal
basis.

t . t A 10t
fi = f(ui—gf (“J)

The scheme can be written as

1 1, t

UZH = 5(“5—1 + U§+1) - )‘i(fit+1 —fiz1) - g(“li+1 —u'i_y) (10)
in any basis, because it is linear in u”, in u'" and in ft. A second order sparse
grid version can be obtained easily with second order Strang-splitting. In addition
adaptive grid refinement will improve the performance of the scheme for non-

smooth data.

t

4. Conclusion

We have constructed several numerical schemes based on sparse grids: An implicit
discretization in space-time, an adaptive algorithm in space-time and an explicit
central differencing scheme were proposed. Sparse grids have the advantage of
a lower complexity than regular grids, especially in higher dimensions. Sparse
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grids can be interpreted as a global higher order method. Such methods usually
require regularity, which either is given by smooth data or can be substituted by
suitable adaptive grid refinement. Grid refinement has been demonstrated for the
sparse grid space-time discretization, where a single error indicator controlled both
refinement in space and in time.
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