
The International Conference on Computational Methods
December 15–17, 2004, Singapore

PARTICLE–PARTITION OF UNITY METHODS IN ELASTICITY

Michael Griebel and Marc Alexander Schweitzer
Institut für Numerische Simulation, Universität Bonn,

Wegelerstrasse 6, D-53115 Bonn, Germany
griebel@iam.uni-bonn.de, m.a.schweitzer@ins.uni-bonn.de

Abstract
We consider discretizations of problems in elasticity using the particle–partition of unity
method (PUM). We focus on discretization issues and fast solution techniques. Numer-
ical results for applications in two and three dimensions also for obstacle problems are
presented.

Key words: meshfree method, partition of unity, multilevel solvers, Nitsche’s method

1. Introduction

The particle–partition of unity method (PUM) [1, 2, 3, 4, 5, 8] is a meshfree Galerkin
method for the numerical treatment of partial differential equations (PDE). In essence, it
is a generalized finite element method (GFEM) which employs piecewise rational shape
functions rather than piecewise polynomial functions. The PUM shape functions, however,
make up a basis of the discrete function space unlike other GFEM approaches which allows
us to construct fast multilevel solvers in a similar fashion as in the finite element method
(FEM).
The paper is organized as follows: In section 2 we shortly review the construction of PUM
spaces, the Galerkin discretization of a linear elliptic PDE using our PUM as well as the
fast multilevel solution of the arising linear system. Then we present some numerical re-
sults with respect to approximation as well as fast solution techniques in two and three
space dimensions obtained with our PUM for the numerical solution of the Navier–Lamé
equations in section 2.4. The discretization of constrained minimization problems like the
obstacle problem is the subject of section 3. Then, some numerical results for the obstacle
problem in two space dimensions are given in section 3.2. Finally, we conclude with some
remarks.

2. Partition of Unity Method

In the following, we shortly review the construction partition of unity spaces and the mesh-
free Galerkin discretization of an elliptic PDE, see [1, 2] for details. Furthermore, we give
a summary of the efficient multilevel solution of the arising linear block-system, see [3] for
details.

2.1. Construction of Partition of Unity Spaces

In a partition of unity method, we define a global approximation uPU simply as a weighted
sum of local approximations ui,

uPU(x) :=
N

∑

i=1

ϕi(x)ui(x). (2.1)

These local approximations ui are completely independent of each other, i.e., the local
supports ωi := supp(ui), the local basis {ψn

i } and the order of approximation pi for ev-
ery single ui :=

∑

un
i ψ

n
i ∈ V

pi

i can be chosen independently of all other uj. Here, the



functions ϕi form a partition of unity (PU). They are used to splice the local approxima-
tions ui together in such a way that the global approximation uPU benefits from the local
approximation orders pi yet it still fulfills global regularity conditions. Hence, the global
approximation space on Ω is defined as

V PU :=
∑

i

ϕiV
pi

i =
∑

i

ϕi span〈{ψn
i }〉 = span〈{ϕiψ

n
i }〉. (2.2)

The starting point for any meshfree method is a collection of N independent points P :=
{xi ∈ R

d | xi ∈ Ω, i = 1, . . . , N}. In the PU approach we need to construct a partition of
unity {ϕi} on the domain of interest Ω to define an approximate solution (2.1) where the
union of the supports supp(ϕi) = ωi covers the domain Ω ⊂

⋃N
i=1 ωi and ui ∈ V

pi

i (ωi)
is some locally defined approximation of order pi to u on ωi. Thus, the first (and most
crucial) step in a PUM is the efficient construction of an appropriate cover CΩ := {ωi}.
Throughout this paper we use a tree-based construction algorithm for d-rectangular covers
CΩ presented in [2, 8]. Here, the cover patches ωi are products of intervals (xl

i−h
l
i, x

l
i +hl

i)
for l = 1, . . . , d. With the help of weight functions Wk defined on these cover patches ωk

we can easily generate a partition of unity by Shepard’s method, i.e., we define

ϕi(x) =
Wi(x)

∑

ωk∈Ci
Ω

Wk(x)
, (2.3)

where Ci := {ωj ∈ CΩ |ωi ∩ ωj 6= ∅} is the set of all geometric neighbors of a cover
patch ωi. Due to the use of d-rectangular patches ωi, the most natural choice for a weight
function Wi is a product of one-dimensional functions, i.e., Wi (x) =

∏d
l=1W

l
i (xl) =

∏d
l=1 W (

x−xl
i+hl

i

2hl
i

) with supp(W) = [0, 1] such that supp(Wi) = ωi. It is sufficient for this
construction to choose a one-dimensional weight function W with the desired regularity
which is non-negative. The partition of unity functions ϕi inherit the regularity of the
generating weight function W . Throughout this paper we use a linear B-spline as the
generating weight function W .
In general, a partition of unity {ϕi} can only recover the constant function on the domain
Ω. Hence, we need to improve the approximation quality to use the method for the dis-
cretization of a PDE. To this end, we multiply the partition of unity functions ϕi locally
with polynomials ψn

i . Since we use d-rectangular patches ωi only, a local tensor product
space is the most natural choice. Here, we use products of univariate Legendre polynomials
as local approximation spaces V pi

i , i.e., we choose

V
pi

i = span〈{ψn
i |ψ

n
i =

d
∏

l=1

Ln̂l

i , ‖n̂‖1 =

d
∑

l=1

n̂l ≤ pi}〉,

where n̂ is the multi-index of the polynomial degrees n̂l of the univariate Legendre polyno-
mials Ln̂l

i : [xl
i − hl

i, x
l
i + hl

i] → R, and n is the index associated with the product function
ψn

i =
∏d

l=1 L
n̂l

i .
For the approximation of vector-fields we employ vector-valued shape functions ϕiψ

n
i ; i.e.,

we simply change the definition of our local approximation spaces V pi

i = span〈~ψn
i 〉 but

keep the partition of unity functions ϕ. To this end, we choose the local vector-valued basis
functions

~ψn
i := ~ψ

ñ,l
i := ψñ

i ~el



where we simply multiply the scalar functions ψñ
i with an appropriate unit vector ~el. In

the following we will drop the explicit vector notation and use the symbol ψn
i also for

vector-valued functions.
In summary, we can view the construction given above as follows





{xi}
W
{pi}



 →





{ωi}
{Wi}

{V pi

i = span〈ψn
i 〉}



 →

(

{ϕi}
{V pi

i }

)

→ V PU =
∑

ϕiV
pi

i ,

where the set of points P = {xi}, the generating weight function W and the local approxi-
mation orders pi are assumed to be given.

2.2. Galerkin Discretization

Consider the elliptic boundary value problem

Lu = f in Ω ⊂ R
d , Bu = g on ∂Ω , (2.4)

where L is a symmetric partial differential operator of second order and B expresses suit-
able boundary conditions. The imposition of essential boundary conditions within meshfree
methods is more involved than in the FEM for a number of reasons and many different ap-
proaches have been proposed. We use Nitsche’s method [7] to enforce Dirichlet boundary
conditions. The main advantages of this approach are that it does not require a second
function (or multiplier) space and that it leads to a positive definite linear system, see [5, 8]
for a more detailed discussion of Nitsche’s method in the PUM context. Here, we just state
resulting weak formulation a(u, v) = l(v) of the simple Poisson problem

−∆u = f in Ω ⊂ R
d,

u = gD on ΓD ⊂ ∂Ω,
un = gN on ΓN = ∂Ω \ ΓD,

with mixed boundary conditions which reads as
∫

Ω

∇u∇v +

∫

ΓD

u(βv − vn) − unv =

∫

Ω

fv +

∫

ΓD

gD(βv − vn) +

∫

ΓN

gNv, (2.5)

where the subscript n denotes the normal derivative and β is the Nitsche regularization
parameter which depends on the employed PUM space but can be pre-computed without
much additional cost. Finally, for the Galerkin discretization of (2.5) we have to compute
the stiffness matrix

A = (A(i,n),(j,m)) , with A(i,n),(j,m) = a (ϕjψ
m
j , ϕiψ

n
i ) ∈ R ,

and the right-hand side vector

f̂ = (f(i,n)) , with f(i,n) = 〈f, ϕiψ
n
i 〉L2 =

∫

Ω

fϕiψ
n
i ∈ R .

The stable approximation of these integrals is somewhat more involved than in the finite
element method (FEM). Due to the meshfree construction given above the shape functions
ϕiψ

n
i are piecewise rational functions only so that the respective integrands have a number

of jumps within the integration domain which need to the resolved. For the stable numerical
integration of the weak form we use a tree-based decomposition scheme together with
efficient sparse grid integration rules, see [2, 8].



2.3. Multilevel Solution of Resulting Linear System

The product structure of the shape functions ϕiψ
n
i implies two natural block-partitions of

the resulting linear system Aũ = f̂ , where ũ denotes a coefficient vector and f̂ denotes a
moment vector.

1. The stiffness matrix A can be arranged in spatial blocks. A spatial block Anm

corresponds to a discretization of the PDE on the complete domain Ω using the trial
functions ϕjψ

m
j and the test function ϕiψ

n
i with fixed n and m. Here, all blocks

Anm are sparse matrices and have the same row and column dimensions which
corresponds to the number of partition of unity functions ϕi.

2. The stiffness matrix A may also be arranged in polynomial blocks. Here, a single
blockAij corresponds to a local discretization of the PDE on the domain ωi∩ωj∩Ω.
The polynomial blocks Aij are dense matrices and may have different dimensions
corresponding to the dimensions of the local approximation spaces V pj

j and V pi

i .

This separation of the degrees of freedom into local approximation functions ψn
i and par-

tition of unity functions ϕi can be used to define two different multilevel concepts [3].
Throughout this paper we assume that the stiffness matrix is given in polynomial block-
form and we use the corresponding spatial multilevel solver developed in [3] for the fast
and efficient solution of the resulting large sparse linear block-system Aũ = f̂ , where ũ
denotes a coefficient block-vector and f̂ a moment block-vector.
In a multilevel method we need a sequence of discretization spaces Vk with k = 0, . . . , J
where J denotes the finest level. To this end we construct a sequence of PUM spaces V PU

k

with the help of a tree-based algorithm developed in [2, 3]. As a first step we generate a
sequence of point sets Pk and coversCk

Ω from a given initial point set P̃ with this algorithm,
see Figure 2.1. Following the construction given in §2.1 we can then define an associated
sequence of PUM spaces V PU

k . Note that these spaces are nonnested, i.e., V PU
k−1 6⊂ V PU

k ,
and that the shape functions ϕi,kψ

n
i,k are non-interpolatory. Thus, we need to construct

appropriate transfer operators Ik
k−1 : V PU

k−1 → V PU
k and Ik−1

k : V PU
k → V PU

k−1. With such
transfer operators Ik

k−1, Ik−1
k and the stiffness matrices Ak coming from the Galerkin dis-

cretization on each level k we can then set up a standard multiplicative multilevel iteration
to solve the linear system AJ ũJ = f̂J . Our multilevel solver utilizes special localized L2-
projections for the interlevel transfers and a block-smoother to treat all local degrees of
freedom ψn

i within a patch ωi simultaneously. Namely, we use the so-called local-to-local
L2-projections as prolongation operators Ik−1

k for scalar as well as vector-valued problems.
For further details see [3, 8].

2.4. Numerical Results for Linear Elasticity

In the following we consider the numerical solution of the Navier–Lamé equations

−µ∆u− (λ+ µ)∇(∇ · u) = f in Ω ⊂ R
d, d = 2, 3

together with suitable boundary conditions uD = gD on ΓD ⊂ ∂Ω and σ(u) · n = gN on
ΓN = ∂Ω \ ΓD where σ(u) := λ∇ · uI + 2µ ε(u) denotes the symmetric stress tensor and
ε(u) := 1

2
(∂iuj + ∂jui) the strain tensor associated with the displacement field u = (ui),

i = 1, . . . , d. The parameters λ and µ are the so-called Lamé parameters. They are related
to the Poisson ratio ν and the Young modulus E of the material via λ = Eν

(1+ν)(1−2ν)
and



FIG. 2.1. Point sets Pk and covers Ck
Ω

for k = 10, . . . , 8 generated for an initial graded Halton(2, 3)
point set P̃ with Ñ = 678 points. The number N of generated points on the finest level J = 10 is N = 1293.

µ = E
2(1+ν)

. The associated bilinear form arising from Nitsche’s approach is given by

a(u, v) =

∫

Ω

σ(u) : ε(v)+

∫

ΓD

2µβεu ·v+λβdiv(u ·n)(v ·n)−
(

(σ(u) ·n) ·v+u ·(σ(v) ·n)
)

and the linear form on the right-hand side by

l(v) =

∫

Ω

f · v +

∫

ΓN

gN · v +

∫

ΓD

2µβεgD · v + λβdiv(gD · n)(v · n) − gD · (σ(v) · n).

We measure the convergence of our multilevel solver via a simple test problem, where
we use a sequence of uniform point sets in the domain Ω = [−1, 1]d for d = 2, 3. In
this example we use the parameters E = 1 and ν = 1

3
for the material and the boundary

conditions u = 0 on ΓD := {x ∈ ∂Ω : x0 = −1}, σ(u) · n = 0 on ΓN1
:= {x ∈ ∂Ω :

x1 = −1 or x1 = 1}, and σ(u) · n = (0,−1)T . In two dimensions the finest discretization
is based on N = 1048576 points and employs dof = 6291456 degrees of freedom, in three
dimensions the finest discretization uses N = 262144 and dof = 1048576.
In Table 2.1 we give the measured convergence rates ρ for our multilevel solver using the
V - and W -cycle (ρ1 and ρ2 respectively) with 2, 3, and 4 smoothing steps, the number of
points N on the finest level J , the polynomial degree p and the dimension Dp of the local
approximation spaces V p

i . These rates ρ := ‖ur‖
1/r
L2 are determined using a vanishing right-

hand side and the stopping criteria ‖ur‖L2 < 10−12 or r = 50 where ur denotes the current
iterate. From these numbers we can observe an optimal level-independent convergence of
our solver. The slight fluctuations in the measured rates are due to the parallelization of the
block-Gauss–Seidel smoother, see [4, 8] for details on the parallelization.
For the approximation of more complicated geometries we reuse the tree-based cover con-
struction to define so-called domain integration cells, see Figures 2.2 and 2.3. Note, how-
ever, that the resolution of the domain is not directly coupled to the cover construction.



TABLE 2.1
Convergence rates ρ

ν,ν
1

for the V ν,ν-cycle and convergence rates ρ
ν,ν
2

for the W ν,ν-cycle with ν = 2, 3, 4
in two and three dimensions.

N J p Dp ρ
2,2
1

ρ
3,3
1

ρ
4,4
1

ρ
2,2
2

ρ
3,3
2

ρ
4,4
2

16384 7 1 3 0.502 0.438 0.388 0.240 0.182 0.150
65536 8 1 3 0.503 0.437 0.389 0.229 0.170 0.141
262144 9 1 3 0.504 0.437 0.389 0.221 0.162 0.136
1048576 10 1 3 0.505 0.437 0.389 0.217 0.158 0.134

512 3 1 4 0.769 0.712 0.678 0.549 0.415 0.398
4096 4 1 4 0.741 0.714 0.677 0.367 0.268 0.222
32768 5 1 4 0.735 0.706 0.675 0.285 0.221 0.195
262144 6 1 4 0.726 0.694 0.671 0.261 0.202 0.175

FIG. 2.2. Domain approximation using the cover tree. Left: Domain and all sampling points. Center:
Domain and constructed cover. Right: Domain and respective integration cells.

Currently, the approximation of the boundary of the domain is given by the boundary of
the respective tree-cells. However, a higher order reconstruction of the boundary is straight-
forward, see e.g. [6].
In summary, these results show that the PUM can be used effectively for the numerical
solution of linear elliptic PDE, i.e. for unconstrained minimization problems. Let us now
focus on the approximation of constrained minimization problems.

3. Constrained Minimization Problems

A classical example for such a minimization problem with constraints is the Poisson-
Obstacle problem

−∆u ≤ f on Ω,
u = 0 on ∂Ω,
u ≤ o on Ω,

(−∆u− f)(u− o) = 0 on Ω,

(3.1)

or the more involved Poisson–Signorini problem

−∆u = f on Ω,
u = gD on ΓD ⊂ ∂Ω,

∂u

∂n
= gN on ΓN ⊂ ∂Ω,

∂u

∂n
≥ 0, u

∂u

∂n
≥ 0, u ≥ 0 on ΓC ⊂ ∂Ω.

(3.2)

In the obstacle problem (3.1) the constraints are enforced throughout the entire domain Ω,
whereas in the more involved Signorini problem the constraints are enforced on a certain
part of the boundary ΓC , the contact boundary, only.



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIG. 2.3. Displacement field on a L-shaped domain (left), comparison of deformed geometry (red) and
original geometry (black) in two dimensions (center), and deformed geometry in three dimensions.

Let us consider the respective weak formulation of such a constrained problem. To this
end, we define the classical energy function

J (u) :=
1

2
a(u, u) − 〈f, u〉L2

associated with the underlying PDE problem, i.e. for (3.1) a(u, v) = ‖∇u‖2
L2 and restrict

its minimization to the closed cone

K := {v ∈ H1 | v(x) ≤ o(x) a.e. in Ω}.

That is we are now looking for the minimum in a convex subsetK ⊂ H 1 only, i.e., we try to
find u ∈ K such that J (u) ≤ J (v) for all v ∈ K holds. This is unlike in the unconstrained
minimization case where we are looking for the minimum in the linear space H 1. The
discretization of this cone K of valid functions is the main issue in the numerical treatment
of problems like (3.1) and (3.1). For instance, within the FEM pointwise conditions like

v(x) ≤ o(x) for almost all x ∈ Ω

on the functions v ∈ H1 are approximated in the vertices xi of the mesh. Since the linear
FEM shape functions are interpolatory, this approximation directly translates into a simple
comparison of the coefficient vectors ṽh = (vi) ∈ R

n and õh = (oi) ∈ R
n associated with

the discrete function vh ∈ Vh and the obstacle oh ∈ Vh. Hence, in the FEM the cone K is
usually discretized as

Kh := {vh ∈ Vh | vh(xi) ≤ oh(xi)} = {ṽh ∈ R
n | vi ≤ oi}.

3.1. Partition of Unity Discretization

In the PUM, however, this approach is not valid since the shape functions of the PUM are
non-interpolatory. Hence, we cannot directly compare the discrete coefficients of the cur-
rent solution and the obstacle to determine whether the solution is valid. However, if we
employ just linear local spaces V pi=1

i then we can easily compute the minimum and maxi-
mal function value of the difference ui − oi locally on the patch ωi. Hence, we discretize
the closed cone KPUM of valid functions within our PUM via

KPUM := {v ∈ V PUM | max
ωi

(vi − oi) ≤ 0 for all i}.

Here, we exploit the PU property of the functions ϕi to localize the pointwise conditions
v =

∑

ϕivi ≤
∑

i ϕioi = o on the global shape functions ϕiψ
n
i to the local shape functions

ψn
i patches ωi.



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIG. 3.1. Active sets for right-hand side f = 2.5 (left) and f = 10 (right).

3.2. Numerical Results for Obstacle Problem

Let us now present some numerical results obtained with our PUM for the obstacle problem
(3.1) with o = distΩ on the unit square [−1, 1]2. From the isoline plots depicted in Figure
3.1 we can observe that we capture the active set, i.e. the part of the domain where the
solution actually coincides with the obstacle, very well.

4. Concluding Remarks

In this paper we presented the PUM and its application to unconstrained as well as con-
strained minimization problems in elasticity. The presented numerical results clearly indi-
cate the applicability of the PUM in this context. An open question at this time is the exten-
sion of our multilevel solver to the constrained minimization case, where certain monotony
properties are essential. The implementation of these properties within our PUM, how-
ever, is not trivial due to the fact that the sequence of PUM function spaces are non-nested
and the bilinear form involves level-dependent regularization parameters due to the Nitsche
approach for essential boundary conditions.

REFERENCES

[1] M. GRIEBEL AND M. A. SCHWEITZER, A Particle-Partition of Unity Method for the Solution of
Elliptic, Parabolic and Hyperbolic PDE, SIAM J. Sci. Comput., 22 (2000), pp. 853–890.

[2] , A Particle-Partition of Unity Method—Part II: Efficient Cover Construction and Reliable Inte-
gration, SIAM J. Sci. Comput., 23 (2002), pp. 1655–1682.

[3] , A Particle-Partition of Unity Method—Part III: A Multilevel Solver, SIAM J. Sci. Comput., 24
(2002), pp. 377–409.

[4] , A Particle-Partition of Unity Method—Part IV: Parallelization, in Meshfree Methods for Par-
tial Differential Equations, M. Griebel and M. A. Schweitzer, eds., vol. 26 of Lecture Notes in
Computational Science and Engineering, Springer, 2002, pp. 161–192.

[5] , A Particle-Partition of Unity Method—Part V: Boundary Conditions, in Geometric Analysis
and Nonlinear Partial Differential Equations, S. Hildebrandt and H. Karcher, eds., Springer, 2002,
pp. 517–540.

[6] O. KLAAS AND M. S. SHEPARD, Automatic Generation of Octree-based Three-Dimensional Dis-
cretizations for Partition of Unity Methods, Comput. Mech., 25 (2000), pp. 296–304.

[7] J. NITSCHE, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von
Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36
(1970–1971), pp. 9–15.

[8] M. A. SCHWEITZER, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential
Equations, vol. 29 of Lecture Notes in Computational Science and Engineering, Springer, 2003.


