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Abstract. In the PhD thesis of Huang with Leung (Huang, A uniform description of Rie-
mannian symmetric spaces as Grassmannians using magic square, www.ims.cuhk.edu.hk/
~leung/; Huang and Leung, Math Ann 350:76–106, 2010), all compact symmetric spaces are
represented as (structured) Grassmannians over the algebra KL := K ⊗R L where K, L are
real division algebras. This was known in some (infinitesimal) sense for exceptional spaces
(see Baez, Bull Am Math Soc 39:145–205, 2001); the main purpose in Huang (www.ims.
cuhk.edu.hk/~leung/) and Huang and Leung (Math Ann 350:76–106, 2010) was to give a
similar description for the classical spaces. In the present paper we give a different approach
to this result by investigating the fixed algebras B of involutions on A = KL with half-
dimensional eigenspaces together with the automorphism groups of A and B. We also relate
the results to the classification of self-reflective submanifolds in Chen and Nagano (Trans
Am Math Soc 308:273–297, 1988) and Leung (J Differ Geom 14:167–177, 1979).

1. Introduction

A main problem in Riemannian geometry is understanding the exceptional sym-
metric spaces. In the present paper we restrict our attention mainly to the type-I case
corresponding to symmetric pairs (G, K ) where G is a compact simple Lie group,
[3]. There are 12 exceptional spaces of this kind. The most prominent examples are
the “Rosenfeld planes” (O ⊗ L)P2 (shortly OLP

2) where L is one of the division
algebras R, C, H, O. These are defined in terms of the (half) spin representations
of Spin8+l on R

n with n = 24+m where l = dimR L = 2m and m = 0, 1, 2, 3.
It seems to be impossible to define these spaces really as projective planes over
the algebra A = O ⊗R L. However, they behave in certain ways like projective
planes. In particular, there is Vinberg’s formula ([1, p. 192]) for the Lie algebra of
G = Aut (An, 〈 , 〉) for A = K ⊗ L,

g = aut(K) ⊕ Ao(A
n) ⊕ aut(L) (1.1)
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where Ao denotes the antihermitian trace zero matrices.1 This formula makes still
sense when K = O and L ∈ {R, C, H, O} provided that n ≤ 3, and it describes
the Lie algebras of the groups G = F4, E6, E7, E8 corresponding to the Rosenfeld
planes. All other exceptional symmetric spaces (with the only exception G2/SO4 =
{H ⊂ O}, the space of quaternion subalgebras of the octonians) are obtained as
spaces of certain self-reflective2 subspaces of the Rosenfeld planes, e.g. E6/F4 =
{OP

2 ⊂ OCP
2}, the set of all subspaces congruent to OP

2 in OCP
2. These facts

motivated Y. Huang and N.C. Leung to investigate structures related to A = K⊗L

on symmetric spaces [4,5]. In some sense they tried to adapt the classical case to
the exceptional one.

The classical type-I symmetric spaces seem to be easy to describe. There are
three families:

(1) Grassmannians {Kp ⊂ K
n} for K ∈ {R, C, H},

(2) R-structures on C
n , {Rn ⊂ C

n},
C-structures on H

n , {Cn ⊂ H
n},

(3) C-structures on R
2n , {R2n ∼= C

n},
H-structures on C

2n , {C2n ∼= H
n}.

The first two families are Grassmannians in a natural way, sets of subspaces W
which are invariant (1) or anti-invariant (2) under some complex structure j ∈ K.
Anti-invariance means jW = W ⊥; this property is also called Lagrangian.3 Only
case (3) is slightly different. How can we assign a subspace to a complex or quatern-
ionic structure J on a real or complex vector space V ? We just take the eigenspace
W corresponding to the eigenvalue i = √−1. But W is contained not in V itself
but in V ⊗ C. So we arrive at subspaces of (C ⊗ C)n and (H ⊗ C)n .

Huang and Leung have studied systematically the various types of Grassman-
nians over V = A

n for A = K ⊗ L with K, L ∈ {R, C, H}. They distinguish four
kinds of such Grassmannians {W ⊂ V }:
(1) pure, {Ap ⊂ A

n},
(2) Lagrangian, {An

1 ⊂ A
n} where A1 = K1 ⊗ L and K1 ⊂ K is the half-dimen-

sional subalgebra,
(3) double Lagrangian, {An

2 ⊕ j ĵAn
2 ⊂ A

n} where A2 = K1 ⊗ L1 and K =
K1 + jK1, L = L1 + ĵL1,

1 Equation (1.1) gives only the vector space decomposition; the Lie bracket is more com-
plicated: For any A = (ai j ), B = (bi j ) ∈ Ao(An) we put [A, B] = (AB − B A)o +
1
3

∑
i j Dai j ,bi j where ( )o denotes the traceless part and Da⊗a′,b⊗b′ = 〈a′, b′〉Da,b +

〈a, b〉Da′,b′ and where Da,bc = [[a, b], c] − 3((ab)c − a(bc)) for any a, b, c ∈ K, see [1].
2 A reflective submanifold Q of a symmetric space P is a fixed set component of some

involution r on P . Reflective submanifolds come in pairs: For any q ∈ Q there is another
reflective submanifold Q′ intersecting Q perpendicularly at q , a fixed set component of the
involution rsq of P , where sq denotes the symmetry at q . If Q and Q′ are congruent, the
submanifold is called self-reflective.

3 The 2-form ω(x, y) = 〈 j x, y〉 is a symplectic form, and W is a Lagrangian subspace
for ω ⇐⇒ jW = W⊥.
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(4) isotropic, {W = (sW )⊥ ⊂ A
n} where s is a paracomplex structure4 commut-

ing with the scalars in A.

All these sets of linear subspaces have in common that they are preserved under the
reflection at any of their elements, thus they define a symmetric subspace of the cor-
responding pure Grassmannian. Moreover, the defining involution descends to an
involution of the projective space P(An) = {A1 ⊂ A

n}. Thus the linear subspaces
of A

n become self-reflective subspaces of P(An). It seems that the latter property
survives for K = O when n ≤ 3 while the linear algebra description breaks down:
By lack of associativity, A

n is not an A-module for A = O ⊗ L.
We are using a different approach which unifies the Grassmannians of type

2,3,4. We first investigate involutions (order-2 automorphims) σ of the algebra
A = K ⊗ L which have eigenspaces of equal dimensions (balanced involutions).
There are two types of such involutions which lead to the Lagrangian and double
Lagrangian subspaces when applied component-wise to A

n . We get a few more
examples by extending our investigation also to the fixed algebra B ⊂ A of every
balanced involution and to the tensor products CA of A with the paracomplex num-
bers C. Then we determine the orthogonal automorphism groups of A and B which
consist of all R-linear maps commuting with the scalar multiplication by the gener-
ators of A or B. Thus we obtain the usual coset representation of the corresponding
symmetric spaces {Ap ⊂ A

n} and {Bn ⊂ A
n}. We end with a glance onto the

exceptional spaces by comparing the tables of [4,5] with the lists of self-reflective
submanifolds in [2] and [6].

Aside from the exceptional spaces, the main subject of the present paper is a
representation of classical symmetric spaces as Grassmannians which seems to be
of some value on its own. There are other representations of a symmetric space
P = G/K as a Grassmannian. The easiest way is probably to assign to every point
p ∈ P the (−1)-eigenspace of the involution σ = Ad(sp) on g where sp is the
symmetry at p. However, this requires already the knowledge of the Lie algebra
g of our group G. Our representation is different: The algebras A and B are not
directly related to P . Thus they define a nontrivial new structure on P . Moreover it
is clear from this representation that there is a larger noncompact group acting on P ,
namely the group of all A-linear automorphism of A

n (not just the orthogonal ones).
This shows immediately that all these spaces are symmetric R-spaces (which does
not hold for most of the exceptional spaces). However, not all symmetric R-spaces
can be represented this way though we have covered all infinitesimal irreducible
types.

It is our pleasure to thank Peter Quast for several valuable hints. The present
research was done while the second author was on sabbatical at the Department
of Mathematics, University of Augsburg, whose hospitality is gratefully acknowl-
edged.

4 A paracomplex structure is an involution with eigenspaces of equal dimensions.
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2. Tensor products of division algebras and involutions

Let A = K ⊗R L =: KL where K, L are two associative division algebras, K, L ∈
{R, C, H}. This becomes an associative algebra with the multiplication

(u ⊗ x)(v ⊗ y) = uv ⊗ xy (2.1)

for u, v ∈ K and x, y ∈ L. Let σ ∈ Aut (A) be an involutive automorphism
(σ 2 = I ). Assume that there is some invertible element ao ∈ A with σ(ao) =
−ao. Then the (left or right) multiplication with ao anticommutes with σ since
σ(aob) = −aoσ(b). Thus it interchanges the fixed and the anti-fixed spaces of σ

and consequently, the fixed algebra

B = A
σ = {a ∈ A : σ(a) = a} (2.2)

has half dimension. We will call such involutions balanced. We have

A = B ⊕ aoB = B ⊕ Bao. (2.3)

We see two kinds of balanced involutions on A: those of type σ ⊗ I or I ⊗ τ and
those of type σ ⊗ τ , where σ and τ are nontrivial involutions of K and L, respec-
tively. We will apply the involutions to “vectors” in A

n rather than to “scalars” in
A. The fixed spaces of involutions of the first (second) kind are called Lagrangian
(double Lagrangian) subspaces in [4,5]. In Table 1, everything with ˆ refers to the
second tensor factor. By C we denote the paracomplex numbers, C = R + sR with
s2 = 1. We have s = j1 ĵ2 for two complex structures j1 ∈ K and j2 ∈ L.

In the second part of the table we are starting with the three new algebras C,
C̃C = C⊗̃C, C̃CC = C⊗̃CC which we have obtained as subalgebras. Note that the
multiplication on C̃A = C⊗̃A is different: the generator s of C anticommutes with
the complex structures (i and i, î , respectively) generating A, see Table 1, No. 7

Table 1.

No. A Generators σ ao B Generators
1 C i κ i R –
2 H i, j Ad(i) j C i
3 CC i, î κ i C i
4 CC i, î κκ̂ i, î C i î
5 HC i, j, î κ̂ î H i, j
6 HC i, j, î Ad(i) j CC i, î
7 HC i, j, î Ad(i)κ̂ j, î C̃C i, j î
8 HH i, j, î, ĵ Ad(i) j CH i, î, ĵ
9 HH i, j, î, ĵ Ad(i)Ad(î) j, ĵ C̃CC i, î, j ĵ
10 C s κ̃ s R –
11 C̃C s, î κ̃ s C i
12 C̃C s, i κ i C s
13 C̃CC s, i, î κ̃ s CC i, î
14 C̃CC s, i, î κ i C̃C s, î
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and 9. These new algebras also allow balanced involutions σ . By κ̃ we denote the
conjugation x + sy �→ x − sy in C (extended to tensor products with C). Table 1
can be further extended, see Sect. 6.

3. The automorphism group of the spaces A
n

We are considering the free (K ⊗ L)-module V = A
n ∼= R

dn with its canoni-
cal inner product, where d = dimR A = dim K dim L. The elements of A

n are
rows x = (x1, . . . , xn) with x1, . . . , xn ∈ A, and scalars a ∈ A act from the left,
ax = (ax1, . . . , axn). An R-linear map A on A

n is A-linear if it commutes with
this scalar multiplication. If we want to express A by a matrix with entries in A, we
have to let A act from the right. However, we will consider A as a map on A

n rather
than as a matrix, thus we keep writing A(x). First we determine the automorphism
group of (An, 〈 , 〉), consisting of all orthogonal A-linear maps on A

n . We just have
to find those orthogonal maps on A

n which commute with the generators of A (see
Table 1).

3.1. A = C ⊗ C

On the real vector space V = (C ⊗ C)n we have two complex structures i = i ⊗ 1
and î = 1 ⊗ i which commute with each other. Thus, the composition S = i î
is self adjoint with S2 = I . Hence V is decomposed into the two eigenspaces
V+ = {S = I } and V− = {S = −I }. On the latter space V−, the two complex
structures agree, for i î = −1 ⇐⇒ î = i, while they differ by a sign on V+. Each
orthogonal and (C⊗C)-linear map A on V preserves i, î, S, and the subspaces V+,
V− together with their complex structures are kept invariant, so A defines a pair
of unitary linear maps (A+, A−) on (V+, V−). Vice versa, each such pair defines
an orthogonal (C ⊗ C)-linear map on V . Let κ̂ denote the conjugation in the sec-
ond tensor factor, κ̂(z ⊗ w) = z ⊗ w̄. This commutes with i and anticommutes
with î , thus it anticommutes with S = i î . Therefore κ̂ interchanges V+ and V−
which shows that V+ and V− have the same dimension, i.e. both are isomorphic to
C

n . Thus

Aut (CC)n ∼= Un × Un . (3.1)

3.2. A = H ⊗ C

On the real vector space V = (H ⊗ C)n , we have the two anticommuting complex
structures i, j (and k = i j) of H ⊗ 1 and a third one, î , of 1 ⊗ C, which commutes
with the two others. As before we define the self adjoint involution S = i î with its
eigenspaces V+, V−. The remaining complex structure j interchanges these sub-
spaces because j anticommutes with S. In particular, the two eigenspaces V± must
have the same dimension. Since V has complex dimension 4n (with respect to the
complex structure î), V− ∼= C

2n . Any H ⊗ C-linear isometry A on V commutes
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with S. Therefore the space V− is invariant under A. The symmetry A is already
determined by A′ = A|V− , because for x ∈ V+ we have j Ax = Ajx = A′ j x .

Conversely, each C-linear isometry A′ on V− defines an (H ⊗ C)-linear isometry
A on V where A on V+ is defined by Ajx = j A′x, x ∈ V−. Thus

Aut (HC)n ∼= U2n . (3.2)

3.3. A = H ⊗ H

On the real vector space V = (H⊗H)n , we have two pairs of anticommuting com-
plex structures i, j and î, ĵ, and complex structures from different pairs commute
with each other. We form two self-adjoint involutions Si = i î and S j = j ĵ , which
also commute with each other: because of the two sign changes, we get

Si S j = i î j ĵ = i j î ĵ = j i ĵ î = j ĵ i î = S j Si .

These have a simultaneous eigenspace decomposition

V = V −− ⊕ V +− ⊕ V −+ ⊕ V ++ (*)

where V +− = V−∩V + etc. Each (H⊗H)-linear isometry A on V commutes with Si

and S j and therefore it leaves the four subspaces invariant. In particular it defines an
orthogonal map A′ on V −− . The mapping Si commutes with i, î and anticommutes
with j , ĵ and for S j , it is vice versa. Therefore, i interchanges the spaces V −− , V +−
and similarly V −+ , V ++ (the lower index is preserved), while j interchanges V −− with
V −+ and V +− with V ++ (the upper index is preserved). In particular, V −− is mapped
onto V +− , V −+ , V ++ by i, j, i j , respectively. Since A commutes with these maps, it
is already completely determined by its restriction A′ = A|V −− . Conversely, each

orthogonal map A′ on V −− can be extended uniquely to a (H ⊗ H)-linear isometry
of A on V by applying i, j, i j . Since all summands of the decomposition (∗) have
the same dimension 4n (a quarter of dim(HH)n = 16n), we have

Aut (HH)n ∼= O4n .

3.4. A = C

On V = Cn , the paracomplex structure s ∈ C acts by scalar multiplication and
decomposes V into two eigenspaces V± which have to be preserved by any automor-
phism A. Since s anti-commutes with the paracomplex conjugation κ̃ , the two eigen-
spaces have equal dimension. Thus A splits into two orthogonal maps A± = A|V± ,
and vice versa, any pair of such maps defines an automorphism of Cn . Hence we
obtain

Aut Cn ∼= On × On .
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Table 2.

No. 1 2 3 4 5 6 7 8 9
A R C H CC HC HH C C̃C C̃CC

Aut A
n On Un Spn U2

n U2n O4n O2
n O2n O2

2n

3.5. A = C⊗̃C

Besides the paracomplex structure s we have the complex structure i acting on
V = (C⊗̃C)n , and the two structures i , s anticommute. Thus i interchanges the
two s-eigenspaces, V+ = iV−. Any automorphism A on V commutes with both
structures, hence A+ is determined by A−, more precisely, A+(iv−) = i A−(v−)

for all v− ∈ V−. Vice versa, any orthogonal map A− on V− ∼= R
2n extends to an

automorphism A on V , using A(iv−) = i A(v−). Hence we obtain

Aut (C̃C)n ∼= O2n .

3.6. A = C⊗̃(C ⊗ C)

Now we have two commuting complex structures i, î which both anti-commute
with the paracomplex structure s. Then S = i î commutes with s, and V has
another splitting by the eigenspaces of S, called V ±, compatible with the previous
one. While i and î commute with S and anticommute with s, preserving V ± and
interchanging V±, the complex conjugation κ(z ⊗w) = z̄ ⊗w on C⊗C commutes
with s and anticommutes with S. Thus it preserves V+ and V− while interchanging
V + and V − and consequently, all four intersections V −− , V −+ , V +− , V ++ have equal
dimension 1

4 dn = 2n for d = dim C̃CC = 8. As before, an automorphism A
is determined by A−, its restriction to V−, because V+ = iV−. Moreover, since
A commutes with both s and S, it preserves the splitting V− = V −− ⊕ V +− . Thus
A− splits into orthogonal maps A−− and A+− on V −− and V +− , respectively, and vice
versa, any such pair defines an automorphism of V . Thus

Aut (C̃CC)n ∼= O2n × O2n .

We insert the results of this section into Table 2.

4. Grassmannians

A (pure) Grassmannian G p(A
n) for A is the space of free submodules of A

n with
rank p; these are R-linear subspaces which are mapped to the standard space A

p ⊂
A

n for p ≤ n/2 under some automorphims of A
n . Symbolically we write G p(A

n) =
{Ap ⊂ A

n}. We may also consider G p(A
n) as the space of decompositions iso-

morphic to the standard decomposition A
n = A

p ⊕ A
q with n = p + q. The

group Aut (An) acts transitively on this space, and the isotropy group of the stan-
dard decomposition is Aut (Ap)× Aut (Aq). Any such Grassmannian is a compact
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Table 3.

No. A AP
n−1

AP
2

AP
1

1 R RP
n−1

RP
2 S1

2 C CP
n−1

CP
2 S2

3 H HP
n−1

HP
2 S4

4 CC (CP
n−1)2 (CP

2)2 S2 × S2

5 HC G2(C2n) G2(C6) G2(C4)

6 HH G4(R4n) G4(R12) G4(R8)

7 C (RP
n−1)2

RP
2 × RP

2 S1 × S1

8 C̃C G2(R2n) G2(R6) G2(R4)

9 C̃CC G2(R2n)2 G2(R6)2 G2(R4)2

symmetric space where the symmetry at the standard decomposition is given by

the reflection
(

Ip
−Iq

)
at the subspace A

p.

The case p = 1 is of particular importance; the Grassmannian G1(A
n) is called

the (n−1)-dimensional projective space over A, denoted P(An) = AP
n−1. The ele-

ments of P(An) are free A-submodules of rank one; they are of the form [v] = Av

where v ∈ A
n has at least one invertible component. We list these spaces in Table 3.

It seems disturbing that the Grassmannians for A = C̃C and A = C̃CC are not
complex manifold. Its tangent vectors at A

p are A-linear maps f : A
p → A

q . But
observe that the map if is no longer A-linear since i f (sx) = is f (x) = −si f (x).

5. Grassmannians of subalgebras

The second type of Grassmannians is the set {Bn ⊂ A
n} or more precisely the set

of linear subspaces of A
n which are mapped onto B

n by some automorphism of
A

n . Here, B ⊂ A is one of the inclusions of Table 1. Clearly, any automorphism of
A

n which preserves the standard subspace B
n restricts to an automorphism of B

n ,
but also the converse is true: Since A

n = B
n + aoB

n , any automorphism B of B
n

has a unique extension to an automorphism A of A
n by putting A(aow) = ao B(w)

for each w ∈ B
n . Thus A commutes with all b ∈ B since bao = aob′ with b′ ∈ B.

Moreover, A commutes with ao and hence with all a = bao ∈ A:

A(baow) = A(aob′w) = ao B(b′w) = aob′ Bw = bao Bw = bA(aow).

This Grassmannian is also a symmetric space where the symmetry at the stan-
dard subspace B

n is given by the automorphism σ , and we have {Bn ⊂ A
n} =

Aut (An)/ Aut (Bn). We insert the results into Table 4.5

Last we insert these results into the classification scheme of Cartan and
Helgason [3] which shows that all classical symmetric spaces (up to coverings
and S1-factors) can be viewed as Grassmannians over A

n , some of them even in
several ways (Table 5).

5 It is not difficult to see that the inclusions of Aut (Bn) into Aut (An) as given in Table 2
are conjugate to the standard inclusions of these groups.
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Table 4.

No. A B {Bn ⊂ A
n} {BP

n−1 ⊂ AP
n−1}

1 C R Un/On {RP
n−1 ⊂ CP

n−1}
2 H C Spn/Un {CP

n−1 ⊂ HP
n−1}

3 CC C U2
n /Un = Un {CP

n−1 ⊂ (CP
n−1)2}

4 CC C (Un/On)2 {(RP
n−1)2 ⊂ (CP

n−1)2}
5 HC H U2n/Spn {HP

n−1 ⊂ G2(C2n)}
6 HC CC U2n/U2

n {(CP
n−1)2 ⊂ G2(C2n)}

7 HC C̃C U2n/O2n {G2(R2n) ⊂ G2(C2n)}
8 HH CH O4n/U2n {G2(C2n) ⊂ G4(R4n)}
9 HH C̃CC O4n/O2

2n {G2(R2n)2 ⊂ G4(R4n)}
10 C R O2

n/On = On {RP
n−1 ⊂ (RP

n−1)2}
11 C̃C C O2n/Un {CP

n−1 ⊂ G2(R2n)}
12 C̃C C O2n/O2

n {(RP
n−1)2 ⊂ G2(R2n)}

13 C̃CC CC (O2n/U2n)2 {(CP
n−1)2 ⊂ G2(R2n)2}

14 C̃CC C̃C O2
2n/O2n = O2n {G2(R2n) ⊂ G2(R2n)2}

Table 5.

Type Space Dim. Rank Linear algebra Symmetric spaces

A I Un/On
n(n + 1)

2 n {Rn ⊂ C
n} {RP

n−1 ⊂ CP
n−1}

U2n/O2n {C̃C
n ⊂ HC

n} {G2(R2n) ⊂ G2(C2n)}
A I I U2n/Spn 2n(n−1) n {Hn ⊂ HC

n} {HP
n−1 ⊂ G2(C2n)}

A I I I Up + q/(UpUq ) 2pq p {Cp ⊂ C
p + q } {CP

p−1 ⊂ CP
p + q−1}

U2n/(U2pU2n−2p) {HC
p ⊂ HC

n} {G2(C2p) ⊂ G2(C2n)}
U2n/(UnUn) 2n2 n {CC

n ⊂ HC
n} {(CP

n−1)2 ⊂ G2(C2n)}
B D I Op + q/Op Oq pq p {Rp ⊂ R

p + q } {RP
p−1 ⊂ RP

p + q−1}
O4n/O4p O4n−4p {HH

p ⊂ HH
n} {G4(R4p) ⊂ G4(R4n)}

O2n/On On n2 n4 {Cn ⊂ C̃C
n} {(RP

n−1)2 ⊂ G2(R2n)}
O4n/O2n O2n 4n2 2n {C̃CC

n ⊂ HH
n} {G2(R2n)2 ⊂ G4(R4n)}

D I I I O2n/Un n(n−1) [ n
2 ] {Cn ⊂ C̃C

n} {CP
n−1 ⊂ G2(R2n)}

O4n/O2n O2n 4n2 2n {C̃CC
n ⊂ HH

n} {G2(R2n)2 ⊂ G4(R4n)}
C I Spn/Un n(n−1) n {Cn ⊂ H

n} {CP
n−1 ⊂ HP

n−1}
C I I Spp + q/Spp Spq 4pq p {Hp ⊂ H

p + q } {HP
p−1 ⊂ HP

p + q−1}

6. Isotropic Grassmannians

Any orthogonal map A on R
n is determined by its graph W = {(x, Ax) : x ∈

R
n} ⊂ R

2n . Since |Ax |2 = |x |2, this is an isotropic subspace of R
2n = R

n ⊕ R
n

with the quadratic form 〈v, sv〉 for s =
(

In −In

)
, meaning 〈W, sW 〉 = 0 or more

precisely, sW = W ⊥. Such a space is called (maximal) isotropic. Hence On can
be considered as the isotropic Grassmannian I (R2n), consisting of all isotropic n-
dimensional subspaces of R

2n . Likewise, the (orthogonal) automorphism group of
A

n (where A is as in Table 2) can be viewed as I (A2n), containing the submodules
W ∼= A

n such that W = (sW )⊥ for some symmetric involution s ∈ Aut A
n with

eigenspaces of equal dimension (paracomplex structure) which commutes with the
scalars in A.
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We may pose this structure into the framework of the previous section by intro-
ducing the algebra CA = C ⊗ A with the usual tensor multiplication, i.e. s ∈ C
commutes with the scalars of A. Then V = A

2n = (CA)n is a free CA-module
which splits into the eigenspaces of s as V = V+ ⊕ V−. Any automorphism of
(CA)n preserves these eigenspaces which are both isomorphic to A

n , thus

Aut (CA)n ∼= (Aut A
n)2. (6.1)

Moreover, A
n is canonically embedded into (CA)n as the fixed set of a balanced

automorphims: the paracomplex conjugation on CA and (CA)n ,

κ̃(a + sb) = a − sb, (6.2)

which anticommutes with s and thus interchanges V±. Since (CA)n = A
n + sA

n ,
any automorphism of A

n extends uniquely to an automorphism of (CA)n , and the
inclusion of the (orthogonal) automorphims groups Aut A

n ⊂ Aut (CA)n is the
diagonal embedding Aut (An) ⊂ (Aut A

n)2.

Now we have for the isotropic Grassmannians:

I (A2n) = {An ⊂ (CA)n} (6.3)

= {AP
n−1 ⊂ (AP

n−1)2}
= (Aut A

n)2/ Aut A
n

= Aut A
n

Clearly, CR = C. Moreover, CC ∼= CC where we identify s with S = i î and î
with −si . Therefore Un and On did already appear in Table 4, No. 3 and 10 while
Spn = {Hn ⊂ (CH)n} is new.

7. Exceptional spaces

Table 6 contains the exceptional spaces. It is partially taken from Huang and Leu-
ng [4,5] who include the exceptional spaces in their tables. We are also using D.
Leung’s lists of self-reflective subspaces, [6], p. 173-175, together with the list
of polars by Chen and Nagano, [2], p. 294. By G#

n/2(R
n) we denote the mani-

fold of oriented balanced splittings. A balanced splitting of R
n is a set {W, W ⊥}

where W ⊂ R
n is an n/2-dimensional subspace (n even). An orientation of W

induces an orientation of W ⊥. Any balanced splitting {W, W ⊥} can carry two pos-
sible orientations, thus G#

n/2(R
n) is a two-fold covering of the space Ḡn/2(R

n) of

all splittings {W, W ⊥}. The usual unoriented Grassmannian Gn/2(R
n) is another

two-fold covering of Ḡn/2(R
n) which is not diffeomorphic to G#

n/2(R
n).

8. Concluding remarks

Table 6 has given a strong motivation for this paper. The four exceptional spaces
with dimensions 16, 32, 64, 128 can be considered in a certain sense as “projec-
tive planes” (Rosenfeld planes) over A = O, OC, OH, OO where O denotes the
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Table 6.

Type Space Dim. Rank “Linear algebra” Symmetric spaces

E I E6/Sp4 42 6 “{ĈH
3 ⊂ OC

3}” {G2(H4)/Z2 ⊂ OCP
2}

E I I E6/SU6Sp1 40 4 “{HC
3 ⊂ OC

3}” {G2(C6) ⊂ OCP
2}

E I I I E6/Spin10U1 32 2 “{OC
1 ⊂ OC

3}” OCP
2

“{OC
2 ⊂ OC

3}” {Gor
2 (R10) ⊂ OCP

2}
E I V E6/F4 26 2 “{O3 ⊂ OC

3}” {OP
2 ⊂ OCP

2}
E V E7/SU8 70 7 “{ĈHC

3 ⊂ OH
3}” {G4(C8)/Z2 ⊂ OHP

2}
E VI E7/Spin12 Sp1 64 4 “{OH

1 ⊂ OH
3}” OHP

2

“{OH
2 ⊂ OH

3}” {Gor
4 (R12) ⊂ OHP

2}
“{HH

3 ⊂ OH
3}” {Gor

4 (R12) ⊂ OHP
2}

E VI I E7/E6U1 54 3 “{OC
3 ⊂ OH

3}” {OCP
2 ⊂ OHP

2}
E VI I I E8/Spin16 128 8 “{OO

1 ⊂ OO
3}” OOP

2

“{OO
2 ⊂ OO

3}” {G#
8(R16) ⊂ OOP

2}
“{ĈHH

3 ⊂ OO
3}” {G#

8(R16) ⊂ OOP
2}

E I X E8/E7Sp1 112 4 “{OH
3 ⊂ OO

3}” {OHP
2 ⊂ OOP

2}
F I F4/Sp3Sp1 28 4 “{H3 ⊂ O

3}” {HP
2 ⊂ OP

2}
F I I F4/Spin9 16 1 “{O1 ⊂ O

3}” OP
2

“{O2 ⊂ O
3}” {S8 = OP

1 ⊂ OP
2}

G I G2/SO4 8 2 {H ⊂ O}

octonian algebra. However, A
3 is not a module over A, by lack of associativity.

Therefore there are no submodules in A
3, and the inclusion sets in quotation marks

do not really exist. But the last column of the table does make sense: All excep-
tional symmetric spaces (but the last one) are spaces of reflective submanifolds in
Rosenfeld planes. In order to see the analogy we have represented the classical
spaces in the same fashion.

However, the relation between the last two columns is not as strict as we would
wish. E.g. in the E VI case, the inclusion set “{HH

3 ⊂ OH
3}” should be the

same as {HHP
2 ⊂ OHP

2}. But we have HHP
2 = G4(R

12) (cf. Table 3) while
the reflective submanifold of OHP

2 is Gor
4 (R12), according to Leung and Chen-

Nagano [2,6]. Further, by analogy, one would think that the projective line over
A = KL is Gor

k (Rk+l). This is true for A = KR where AP
1 = Sk and it holds

also for A = CC, CH; note that Gor
2 (R4) = S2 × S2 and Gor

2 (R6) = G2(C
4). But

HHP
1 = G4(R

8) is different: it is the unoriented Grassmannian (cf. Table 3). On the
other hand, the oriented Grassmannian Gor

4 (R8) is a reflective submanifold of OHP
2

(cf. Table 6). Further, the reflective submanifolds corresponding to “{OL
2 ⊂ OL

3}”
for L = C, H, O are Gor

2 (R10), Gor
4 (R12) and G#

8(R
16), respectively. Again, the

H-case is different. For the submanifolds corresponding to ĈH
3, ĈHC

3, ĈHH
3

we have no geometric interpretation yet. We expect that Vinberg’s formula ([1,
p. 192]) which holds for A = KL with K, L ∈ {R, C, H, O} can be extended to
the non-associative algebras A = ĈH ⊂ OC, ĈHC ⊂ OH, ĈHH ⊂ OO.
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