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In this paper, a notion of generalized gradient on Riemannian manifolds is considered and
a subdifferential calculus related to this subdifferential is presented. A characterization
of the tangent cone to a nonempty subset S of a Riemannian manifold M at a point x is
obtained. Then, these results are applied to characterize epi-Lipschitz subsets of complete
Riemannian manifolds.
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1. Introduction

Nondifferentiability appears naturally in several areas of mathematics and arises explicitly in the description of various
modern technological systems. Nonsmooth analysis studies the local behavior of nondifferentiable functions and sets lacking
smooth boundaries.

Nondifferentiable functions are often considered on finite dimensional or infinite dimensional Banach spaces, where
the linear structure plays a central role. However, in various aspects of mathematics such as control theory and matrix
analysis, nonsmooth functions arise naturally on smooth manifolds; see [1,2]. Unlike a Banach space, a manifold in general
does not have a linear structure and therefore new techniques are needed for dealing with nonsmooth functions defined on
manifolds. In the past few years, a number of results have been obtained on numerous aspects of nonsmooth analysis and
their applications on Riemannian manifolds; see, e.g. [3–7].

Generalized gradients or subdifferentials refer to several set-valued replacements for the usual derivative. These concepts
are used in developing differential calculus for nonsmooth functions. The concept of the generalized gradient of a locally
Lipschitz function was introduced by Clarke in 1975. This concept reduces to the classical gradient for smooth functions and
the subdifferential in the sense of convex analysis for convex functions and is accompanied by a useful calculus.

Attempts have been made to replace the class of locally Lipschitz functions by classes of noncontinuous functions and
develop a subdifferential calculus; see, e.g. [6,8,9] and the references therein. For lower semicontinuous functions smooth
local approximations from below led to the concept of viscosity and proximal subdifferentials.

In [3] the theory of viscosity solutions of Hamilton–Jacobi equations and the corresponding calculus were extended to
the setting of Riemannian manifolds (possibly of infinite dimensional). In [4,10] a notion of proximal subdifferential for
functions defined on Riemannian manifolds was introduced, a calculus for nonsmooth functions on these manifolds was
established and its applications were discussed. By a different approach in [2] a nonsmooth calculus on finite dimensional
Riemannian manifolds was developed and its applications to Hamilton–Jacobi equations were studied.

This paper is devoted to the study of the Clarke generalized gradient for locally Lipschitz functions defined on Riemannian
manifolds (either finite or infinite dimensional). This notion was introduced in [3,11,12]. We develop a basic calculus result
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for this subdifferential. Moreover, a class of subsets of Riemannian manifolds named epi-Lipschitz, is introduced and a
characterization of this class of sets, is obtained. Works dealing with this class of subsets of Euclidean spaces include those
by Rockafeller [13], Cornet and Czarnecki [14,15], Czarnecki and Rifford [16]. It is worthwhile to mention that extensions of
concepts concerning epi-Lipschitz subsets of Euclidean spaces to Riemannian manifolds have not been studied yet, in spite
of particular importance of this class of sets which includes closed convex sets with a nonempty interior. In a sequel to the
present paper we will elaborate on the applications of this class of subsets of Riemannian manifolds, providing sufficient
conditions for the existence of equilibria for a class of set-valuedmapping F defined on a compact epi-Lipschitz subset S of a
complete parallelizable Riemannian manifoldM with values in the tangent bundle. The results regarding these class of sets
which will be proved are not of local type, and cannot be obtained by local techniques.

The rest of the paper is organized as follows. In Section 2, we present the definition of the generalized directional
derivative on Riemannian manifolds. Then, the generalized gradient is introduced and its properties as a set-valued map
are investigated. Moreover, a subdifferential calculus for locally Lipschitz functions is presented. In particular, a chain rule
and Lebourg’s mean value theorem are proved. Section 3 is concerned with the properties of the tangent and normal cones
to closed subsets of Riemannian manifolds. Finally, Section 4 is devoted to a characterization of epi-Lipschitz subsets of
Riemannian manifolds.

2. The Clarke generalized gradient

In this paper, we use the standard notations and known results of Riemannianmanifolds, see, e.g. [17–19]. Let usmention
some of them often used in what follows. Throughout this paper, M is a C∞ connected manifold modeled on a Hilbert
space H , either finite dimensional or infinite dimensional, endowed with a Riemannian metric ⟨., .⟩x on the tangent space
TxM ∼= H . Recall that the set S in a Riemannian manifold M is called convex if every two points p1, p2 ∈ S can be joined by
a unique geodesic whose image belongs to S. As usual, for a point x ∈ M, TxM will denote the tangent space of M at x, and
expx : Ux → M will stand for the exponential function at x, where Ux is an open subset of TxM . We should also recall that
expx maps straight lines of the tangent space TxM passing through 0x ∈ TxM into geodesics ofM passing through x.

We will also use the parallel transport of vectors along geodesics. Recall that for a given curve γ : I → M , number t0 ∈ I ,
and a vector V0 ∈ Tγ (t0)M , there exists a unique parallel vector field V (t) along γ (t) such that V (t0) = V0. Moreover, the
mapping defined by V0 → V (t1) is a linear isometry between the tangent spaces Tγ (t0)M and Tγ (t1)M , for each t1 ∈ I . In the
case when γ is a minimizing geodesic and γ (t0) = x, γ (t1) = y, we will denote this mapping by Lxy, and we will call it the
parallel transport from TxM to TyM along the curve γ . Note that Lxy is well defined when the minimizing geodesic which
connects x to y, is unique. For example, the parallel transport Lxy is well defined when x and y are contained in a convex
neighborhood. In what follows, Lxy will be used wherever it is well defined.

The parallel transport allows us to measure the length of the ‘‘difference’’ between vectors which are in different tangent
spaces. Indeed, let γ be a minimizing geodesic connecting two points x, y ∈ M , say γ (t0) = x, γ (t1) = y. Take vectors
v ∈ TxM, w ∈ TyM . Then we can define the distance between v andw as the number

‖v − Lyx(w)‖ = ‖w − Lxy(v)‖.

The isometry Lyx induces another linear isometry L∗
yx between TxM∗ and TyM∗, such that for every σ ∈ TxM∗ and v ∈ TyM ,

we have ⟨L∗
yx(σ ), v⟩ = ⟨σ , Lyx(v)⟩. We will still denote this isometry by Lxy : TxM∗

→ TyM∗.
Recall that a real-valued function f defined on a Riemannian manifoldM is said to satisfy a Lipschitz condition of rank K

on a given subset S ofM if |f (x)− f (y)| ≤ Kd(x, y) for every x, y ∈ S, where d is the Riemannian distance onM . A function f
is said to be Lipschitz near x ∈ M , if it satisfies the Lipschitz condition of some rank on an open neighborhood of x. A function
f is said to be locally Lipschitz onM , if f is Lipschitz near x, for every x ∈ M .

Let us start with the definition of the Clarke generalized directional derivative for locally Lipschitz functions on
Riemannian manifolds; see [11].

Definition 2.1. Suppose f : M → R is a locally Lipschitz function on a Riemannian manifold M . Then, the generalized
directional derivative of f at x ∈ M in the direction v ∈ TxM , denoted by f ◦(x; v), is defined as

f ◦(x; v) := lim sup
y→x,t↓0

f ◦ ϕ−1(ϕ(y)+ tdϕ(x)(v))− f ◦ ϕ−1(ϕ(y))
t

, (2.1)

where (ϕ,U) is a chart at x.

Indeed, f ◦(x; v) := (f ◦ ϕ−1)◦(ϕ(x); dϕ(x)(v)). Note that this definition does not depend on charts (see [11]).
Considering 0x ∈ TxM , we have

f ◦(x; v) = (f ◦ expx)
◦(0x, v). (2.2)

Let us introduce another equivalent definition of the generalized directional derivative for locally Lipschitz functions on
Riemannian manifolds (see [3]).
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Let φx : Ux → TxM be an exponential chart at x. Given another point y ∈ Ux, consider σy,v(t) := φ−1
y (tw), a geodesic

passing through y with derivative w, where (φy, y) is an exponential chart around y and d(φxoφ−1
y )(0y)(w) = v. Then,

f ◦(x, v) is defined by

f ◦(x, v) = lim sup
y→x,t↓0

f (σy,v(t))− f (y)
t

.

Let us present two important examples of locally Lipschitz functions that arise naturally on Riemannian manifolds; see
also [20].

Example 2.2. Let M be a Riemannian manifold and let f : M → (−∞,+∞] be a lower semicontinuous function that is
bounded from below. For λ > 0, we define the function

fλ(x) := inf
y∈M

{f (y)+ λd2(x, y)}

for every x ∈ M . Then along the same lines as [8, Theorem 1.5.1] one can prove that fλ is locally Lipschitz onM .

Example 2.3. Let S(n,R) be the linear space of symmetric n×n realmatrices endowedwith the Frobeniusmetric defined by
⟨U, V ⟩ = tr(UV ). For any A ∈ S(n,R), letλ1, . . . , λn denote the n (including repeated) real eigenvalues of A in nondecreasing
order. Then for any k ∈ {1, . . . , n}, λk : S(n,R) → R is a locally Lipschitz function; see [6, p. 304]. Moreover, let Sposn
be the set of all symmetric positive definite n × n matrices with determinant 1 which is a closed submanifold of S(n,R).
Then Sposn is a Cartan–Hadamard manifold, i.e., a simply connected Riemannian manifold of nonpositive curvature (see
[19, p. 334]) and for any k ∈ {1, . . . , n}, λk : Sposn → R is a locally Lipschitz function.

The following result is of local type and can be deduced from [8, Proposition 2.1.1].

Theorem 2.4. Let M be a Riemannian manifold and x ∈ M. Suppose that the function f : M → R is Lipschitz of rank K on an
open neighborhood U of x. Then,

(a) for each y ∈ U the function v → f ◦(y; v) is finite, positive homogeneous, and sub-additive on TyM, and satisfies

|f ◦(y; v)| ≤ K‖v‖.

(b) f ◦(y; v) is upper semicontinuous on TM|U and, as a function of v alone, is Lipschitz of rank K on TyM, for each y ∈ U.
(c) f ◦(y; −v) = (−f )◦(y; v) for each y ∈ U and v ∈ TyM.

The generalized gradient or the Clarke subdifferential of a locally Lipschitz function f at x ∈ M , denoted by ∂ f (x), is the
subset of TxM∗ whose support function is f ◦(x; .). Thus ξ ∈ ∂ f (x) if and only if f ◦(x; v) ≥ ⟨ξ, v⟩ for all v in TxM . As a
consequence of the definition of the generalized directional derivative, we conclude the following proposition; see [11].

Proposition 2.5. Let M be a Riemannian manifold and x ∈ M. Suppose that f : M −→ R is Lipschitz near x and (ϕ,U) is a
chart at x. Then

∂ f (x) = dϕ(x)∗[∂(f ◦ ϕ−1)(ϕ(x))], (2.3)

where ∗ denotes the adjoint.

Therefore, we have ∂ f (x) = ∂(f ◦ expx)(0x).

Example 2.6. Let M be a finite dimensional manifold and f1, . . . , fk : M → R be C1 functions. Then f : M → R defined
by f (x) := max1≤i≤l minj∈Mi fj(x), where for every 1 ≤ i ≤ l, Mi ⊆ {1, . . . , k}, is a locally Lipschitz function. Also, for
every v ∈ TxM, f ◦(x, v) = maxi∈Ĩ(f (x))minj∈J̃i(f (x))

⟨dfj(x), v⟩, where J̃i(v) = {j ∈ Mi : minp∈Mi vp = vj} and Ĩ(v) =

{i ∈ {1, . . . , k} : J̃i(v) ≠ ∅,minp∈J̃i(v)
vp = max1≤i≤l minj∈Mi vj}. Moreover, ∂ f (x) = co{dfj(x) : j ∈ Ī(x)}, where Ī(x) =

{i : x ∈ int{x : f (x) = fi(x)}}.

We proceed now to derive some of the basic properties of the generalized gradient. A set-valued function F : X ⇒ Y , where
X, Y are topological spaces, is said to be upper semicontinuous at x, if for every open neighborhood U of F(x) there exists an
open neighborhood V of x such that

y ∈ V H⇒ F(y) ⊆ U .

A set-valued function F : X ⇒ Y , where X is a topological space and Y is a Hilbert space, is said to be upper hemicontinuous
at x0 if for every y∗

∈ Y ∗, the function x → σ(F(x), y∗) is upper semicontinuous at x0, where σ(F(x), y∗) is support function
of the set F(x).
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Lemma 2.7. Let M be an n-dimensional manifold. Consider the set-valued function G : M ⇒ TM∗ such that G(x) ⊆ TxM∗ for
every x ∈ M. Suppose in a chart (ψ,W ) at x ∈ M,G is represented by

G(y) =


n−

i=1

gi(y)dxi|y : {dxi|y} is a local basis of TyM∗ in the chart (ψ,W )


.

Then, G is an upper semicontinuous function at x if and only if g : W ⇒ Rn defined by g(y) := {(g1(y), g2(y), . . . , gn(y))} is
upper semicontinuous at x.

Proof. Let G : M ⇒ TM∗ be upper semicontinuous at x and (ψ, W ) be the chart of TM∗ such that W = π−1(W ) andψ : π−1(W ) −→ ψ(W )× Rnψ(X∗

y ) := (ψ(y), a1(y), . . . , an(y)),

where X∗
y =

∑n
i=1 ai(y)dxi|y. Suppose N ⊆ Rn is an open neighborhood of g(x). Then, ψ−1(ψ(W ) × N) ⊆ TM∗ is open

and G(x) ⊆ ψ−1(ψ(W ) × N). Hence there exists an open neighborhood V (x) ⊆ M such that for every y ∈ V (x), we have
G(y) ⊆ ψ−1(ψ(W )× N). Thus, for y ∈ V (x)we have that g(y) ⊆ N .

Conversely, let U be an open subset of TM∗ and G(x) ⊆ U ⊆ TM∗. Since G(x) ⊆ TxM∗ and TxM∗
⊆ π−1(W ), it

follows that U ∩ π−1(W ) is nonempty and open. Thus π2(ψ(U ∩ π−1(W ))) ⊆ Rn is open, where π2 is the projection
function on the second coordinate. Therefore, there exists an open neighborhood V (x) ⊆ M , such that if y ∈ V (x) then
g(y) ⊆ π2(ψ(U ∩ π−1(W ))). Hence, G(y) ⊆ U . �

Remark 2.8. LetM be a Riemannian manifold.

(a) An easy consequence of the definition of the parallel translation along a curve as a solution to an ordinary linear
differential equation, implies that the mapping

C : TM∗
→ Tx0M

∗, C(x, ξ) = Lxx0(ξ),

is continuous at (x0, ξ0), that is, if (xn, ξn) → (x0, ξ0) in TM∗ then Lxnx0(ξn) → Lx0x0(ξ0) = ξ0, for every (x0, ξ0) ∈ TM∗;
see [3, Remark 6.11].

(b) By the continuity properties of the parallel transport and the geodesic, see [4, Theorem 35], for fixed point z ∈ M and
for each ε > 0, there exists a number δ > 0 such that

‖LxyLzx − Lzy‖ ≤ ε provided that d(x, y) < δ.

(c) Utilizing the properties of the exponential map on Riemannian manifoldM , for fixed x ∈ M and for each ε > 0, we may
find number δx > 0 such that

‖d(exp−1
x )(y)− Lyx‖ ≤ ε provided that d(x, y) < δx.

Theorem 2.9. Let M be a Riemannian manifold, x ∈ M and f : M → R be a Lipschitz function of rank K near x. Then,

(a) ∂ f (x) is a nonempty, convex, weak∗-compact subset of TxM∗, and ‖ξ‖∗ ≤ K for every ξ ∈ ∂ f (x).
(b) For every v in TxM, we have

f ◦(x; v) = max{⟨ξ, v⟩ : ξ ∈ ∂ f (x)}.

(c) If {xi} and {ξi} are sequences in M and TM∗ such that ξi ∈ ∂ f (xi) for each i, and if {xi} converges to x and ξ is aweak∗-cluster
point of the sequence {Lxix(ξi)}, then we have ξ ∈ ∂ f (x).

(d) If M is finite dimensional, then ∂ f is upper semicontinuous at x.

Proof. Properties (a) and (b) are easily shown to be true. Let us prove (c). Fix v ∈ TxM . For each i, we have f ◦(xi; Lxxi(v)) ≥

⟨ξi, Lxxi(v)⟩. The sequence {⟨ξi, Lxxi(v)⟩} = {⟨Lxix(ξi), v⟩} is bounded in R, and contains terms that are arbitrarily near
⟨ξ, v⟩. Let us extract a subsequence of {Lxix(ξi)} (without relabeling) such that {⟨Lxix(ξi), v⟩} = {⟨ξi, Lxxi(v)⟩} → ⟨ξ, v⟩.
By Remark 2.8(a) we have that Lxxi(v) → v. Since f ◦ is upper semicontinuous in (x, v), it follows that passing to the limit in
the preceding inequality gives f ◦(x; v) ≥ ⟨ξ, v⟩. Since v is arbitrary, we conclude ξ ∈ ∂ f (x).

We turn now to (d). LetM be an n-dimensional manifold. For each z ∈ U , we define

T (z) := ∂(f ◦ ϕ−1)(ϕ(z)),

where (U, ϕ) is a chart at x. The function

F : ϕ(U) ⇒ Rn,

defined by F(y) := ∂(f ◦ ϕ−1)(y) is upper semicontinuous and T (z) = F ◦ ϕ(z). Thus, T is upper semicontinuous. On the
other hand,

∂ f (x) = dϕ(x)∗[∂(f ◦ ϕ−1)(ϕ(x))],
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and

dϕ(x)∗


n−
i=1

πi(∂(f ◦ ϕ−1)(ϕ(x)))ei


=

n−
i=1

πi(∂(f ◦ ϕ−1)(ϕ(x)))dϕ(x)∗(ei),

where {ei} is a basis of Rn and πi is the projection function on ith coordinate. Since {dϕ(y)∗(ei)} is a local basis of TyM∗ in
the chart (U, ϕ) and T is upper semicontinuous at x, it follows from Lemma 2.7 that ∂ f is upper semicontinuous at x. �

Theorem 2.10. Let M be a finite dimensional Riemannian manifold and x0 ∈ M. Suppose that f : M → R is a Lipschitz function
of rank K on a geodesic ball Br(x0). Then for each ε > 0, there exists δ > 0 such that for x ∈ Bδ(x0)

Lxx0(∂ f (x)) ⊆ ∂ f (x0)+ εBTx0M
∗ ,

where BTx0M
∗ is the unit ball of Tx0M

∗.

Proof. For ε > 0 the set ∂ f (x0) + εBTx0M
∗ is an open neighborhood of Lx0x0(∂ f (x0)) = ∂ f (x0). It follows from Remark 2.8

that there exists an open neighborhood V ⊂ TM∗ of ∂ f (x0) such that

C(V ) ⊆ ∂ f (x0)+ εBTx0M
∗ .

By the upper semicontinuity of ∂ f , there exists a neighborhood V ′ of x0 such that for each x ∈ V ′, we have ∂ f (x) ⊆ V . Now
let x ∈ V ′, then

Lxx0(∂ f (x)) ⊆ ∂ f (x0)+ εBTx0M
∗ ,

and the proof is complete. �

The previous theorem shows that for fixed point x0 ∈ M , the map x ⇒ Lxx0(∂ f (x)) is an upper semicontinuous set-valued
map at x0. Therefore, it is upper hemicontinuous at x0; see [21, section 9.2]. In the following theorem, we will prove that,
when M is a finite dimensional Riemannian manifold, for every y ∈ M and every geodesic ball Br(y) around y, the map
x ⇒ Lxy(∂ f (x)) is upper hemicontinuous on Br(y).

Theorem 2.11. Let M be a finite dimensional Riemannian manifold and let f : M → R be a locally Lipschitz function. Suppose
that (y, v) ∈ TM and Br(y) is a geodesic ball around y. Then the function x → σ(Lxy(∂ f (x)), v) is upper semicontinuous on
Br(y), where σ is the support function of the set Lxy(∂ f (x)).
Proof. Let x̄ ∈ Br(y). We prove that for each ε > 0 there exists δ > 0 such that for every x ∈ Br(y) satisfying d(x, x̄) < δ
we have

σ(Lxy(∂ f (x)), v) ≤ σ(Lx̄y(∂ f (x̄)), v)+ ε.

By Theorem 2.10, for each ε > 0 there exists δ1 > 0 such that if d(x, x̄) < δ1, then

Lxx̄(∂ f (x)) ⊆ ∂ f (x̄)+ εBTx̄M∗ ,

where BTx̄M∗ is the unit ball of the Tx̄M∗. Hence,

Lx̄y(Lxx̄(∂ f (x))) ⊆ Lx̄y(∂ f (x̄)+ εBTx̄M∗).

By Remark 2.8, we can find δ2 > 0 such that if d(x, x̄) < δ2, then

‖Lx̄yLxx̄ − Lxy‖ ≤ ε.

Therefore, for each x satisfying d(x, x̄) < min{δ1, δ2} and for each ξ ∈ ∂ f (x)we have that

|⟨v, Lxy(ξ)− Lx̄y(Lxx̄(ξ))⟩| ≤ ‖v‖ ‖ξ‖ ‖Lx̄yLxx̄ − Lxy‖ ≤ εK‖v‖,

where K is the Lipschitz constant of f near x̄. It follows that

sup
ξ∈∂ f (x)

⟨v, Lxy(ξ)⟩ ≤ sup
ξ∈∂ f (x)

⟨v, Lx̄y(Lxx̄(ξ))⟩ + ‖v‖εK

≤ sup
ξ∈∂ f (x̄)

⟨v, Lx̄y(ξ)⟩ + ε‖v‖ + ε‖v‖K .

Thus the proof is complete. �

Remark 2.12. Obviously, by the previous theorem for every γ ∈ R and (y, v) ∈ TM ,

{x ∈ Br(y) : γ < inf
ξ∈∂ f (x)

⟨Lyx(v), ξ⟩}, (2.4)

is an open subset ofM , where Br(y) is a geodesic ball around y.

Note that in Theorem 2.10, M is a finite dimensional Riemannian manifold. The following useful result is a weak version of
Theorem 2.10 on infinite dimensional Riemannian manifolds.
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Theorem 2.13. Let M be a Riemannian manifold, x0 ∈ M, f : M → R be Lipschitz on geodesic ball Br(x0) of rank K . Then for
every v ∈ Tx0M and ε > 0 there exists δv such that for each x ∈ Bδv (x0) andw ∈ ∂ f (x), there is aw0 ∈ ∂ f (x0) satisfying

|⟨Lxx0(w)− w0, v⟩| < ε.

Proof. We proceed by contradiction. There would be an element v ∈ Tx0M and a number ε > 0 and sequences {xn} ⊂

M, {ξn} ⊂ ∂ f (xn) such that xn → x0. We may assume that for each n, xn ∈ Br(x0). Hence, for eachw ∈ ∂ f (x0)we have that

|⟨Lxnx0(ξn)− w, v⟩| > ε. (2.5)

Since ‖ξn‖TxnM∗ ≤ K , it follows that ‖Lxnx0(ξn)‖Tx0M
∗ ≤ K . Therefore there is a subsequence Lxni x0(ξni) → ξ0 in weak∗

topology. Clearly, ξ0 ∈ ∂ f (x0) and if we replacew by ξ0 in (2.5), we get a contradiction. �

3. Subdifferential calculus

In this section, we present a subdifferential calculus for locally Lipschitz functions defined on Riemannian manifolds.
An easy consequence of the definition of the generalized gradient is the following proposition.

Proposition 3.1. Let M be a Riemannian manifold (possibly of infinite dimension). Then the following assertions hold:

(a) if f : M → R is Lipschitz near x, then for each scalar λ, we have that ∂(λf ) = λ∂ f (x).
(b) If fi : M → R (i = 1, 2, . . . , n) are Lipschitz near x and λi (i = 1, 2 . . . , n) are scalars. Then f :=

∑n
i=1 λifi is Lipschitz

near x, and we have

∂


n−

i=1

λifi


(x) ⊂

n−
i=1

λi∂ fi(x).

Theorem 3.2 (The Chain Rule). Let M be a Riemannian manifold (possibly of infinite dimensional) and N be a finite dimensional
Riemannianmanifold. Suppose that F : M −→ N is Lipschitz near x and g : N −→ R is Lipschitz near F(x). Then f (y) = g(F(y))
is Lipschitz near x, and we have

∂ f (x) ⊆ cow∗
{∂(⟨γ , exp−1

F(x) ◦F(.)⟩)(x) : γ ∈ ∂g(F(x))},

where cow∗ signifies theweak∗-closed convex hull.

Proof. Let expF(x) : U(0) ⊆ TF(x)N → V (F(x)) be a diffeomorphism. Since F is Lipschitz near x, there exists an open
neighborhood W (x) such that F(W (x)) ⊆ V (F(x)). Defineg : g ◦ expF(x) := U(0) ⊆ TF(x)N −→ R andF := exp−1

F(x) ◦F :

W (x) −→ U(0) ⊆ TF(x)N ≃ Rn. We claim that

∂ f (x) ⊆ cow∗
{∂⟨γ ,F(.)⟩(x) : γ ∈ ∂g(F(x))}.

To prove the claim, let (ϕ,U) be a chart ofM at x such that U ⊆ W . ThenF ◦ ϕ−1 is Lipschitz near ϕ(x) and

∂(f ◦ ϕ−1)(ϕ(x)) ⊆ cow∗
{∂⟨γ ,F ◦ ϕ−1(.)⟩(ϕ(x)) : γ ∈ ∂g(F ◦ ϕ−1(ϕ(x))) = ∂g(F(x))}.

Now, for ξ ∈ ∂ f (x) we have that ξ = dϕ(x)∗q where q ∈ ∂(f ◦ ϕ−1)(ϕ(x)). Thus q = limj
∑n

i=1 tj,iqj,i where
qj,i ∈ ⟨γi,F ◦ ϕ−1(.)⟩(ϕ(x)) and γi ∈ ∂g(F ◦ ϕ−1(ϕ(x))) = ∂g(F(x)). It follows that

dϕ(x)∗qj,i ∈ ∂⟨γi,F(.)⟩(x) = dϕ(x)∗(∂(⟨γi,F(.)⟩ ◦ ϕ−1)(ϕ(x)))

= dϕ(x)∗(∂(⟨γi,F) ◦ ϕ−1(.)⟩(ϕ(x))).

Therefore, ξ = dϕ(x)∗(limj
∑n

i=1 tj,iqj,i) = limj
∑n

i=1 tj,iξj,i where ξj,i ∈ ∂⟨γi,F(.)⟩(x) and γi ∈ ∂g(F(x)). Hence
ξ ∈ cow∗

{∂⟨γ ,F(.)⟩(x) : γ ∈ ∂g(F(x))},
and the proof is complete. �

Theorem 3.3 (Lebourg’sMean Value Theorem). Let M be a finite dimensional Riemannianmanifold, x, y ∈ M and γ : [0, 1] −→

M be a smooth path joining x and y. Let f be a Lipschitz function around γ [0, 1]. Then, there exist 0 < t0 < 1 and ξ ∈ ∂ f (γ (t0))
such that

f (y)− f (x) = ⟨ξ, γ ′(t0)⟩.
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Proof. Consider the function ϕ : [0, 1] −→ R defined by

ϕ(t) := f (γ (t))− G(t),

where

G(t) := tf (y)+ (1 − t)f (x).

The function ϕ is continuous and ϕ(0) = ϕ(1) = 0. The interval [0, 1] is compact and ϕ attains its maximum andminimum
in closed interval [0, 1]. If both maximum and minimum are boundary points, then ϕ ≡ 0. Hence, for each t ∈ (0, 1) we
have 0 ∈ ∂ϕ(t). If maximumorminimum is an interior point, then there exists t0 ∈ (0, 1) such that 0 ∈ ∂ϕ(t0). The function
G(t) is of class C2 and hence according to Proposition 3.1, we have that

0 ∈ ∂ϕ(t0) ⊆ ∂(f (γ (t0)))− ∂G(t0).

Thus

f (y)− f (x) = G′(t0) ∈ ∂(f (γ (t0))).

It follows from Theorem 3.2 that

f (y)− f (x) = G′(t0) ∈ cow∗
{∂⟨ξ, exp−1

γ (t0)
◦γ (.)⟩(t0) : ξ ∈ ∂ f (γ (t0))}

= cow∗


d
dt

⟨ξ, exp−1
γ (t0)

◦γ (.)⟩(t)|t=t0 : ξ ∈ ∂ f (γ (t0))


= {⟨ξ, γ ′(t0)⟩ : ξ ∈ ∂ f (γ (t0))}. �

We conclude this section with the following proposition which can be deduced from [8, Theorem 2.3.2].

Proposition 3.4. Let M and N be two Riemannian manifolds, F : M −→ N be continuously differentiable near x and
g : N −→ R be Lipschitz near F(x). Then f := g ◦ F is Lipschitz near x and we have

∂ f (x) ⊆ dF(x)∗∂g(F(x)).

If dF(x) : TxM −→ TF(x)N is onto, then the equality holds.

4. Tangents and normals

Let S be a nonempty closed subset of a Riemannian manifoldM . We define dS : M −→ R by

dS(x) := inf{d(x, s) : s ∈ S},

where d is the Riemannian distance onM . It is obvious that dS is Lipschitz of rank 1. If S is convex, then dS is convex too.

Definition 4.1. Let S be a nonempty closed subset of Riemannian manifold M, x ∈ S and (ϕ,U) be a chart of M at x. Then
the (Clarke) tangent cone to S at x, denoted by TS(x) is defined as follows:

TS(x) := dϕ(x)−1
[Tϕ(S∩U)(ϕ(x))],

where Tϕ(S∩U)(ϕ(x)) is tangent cone to ϕ(S ∩ U) as a subset of the Hilbert space H at ϕ(x).

Obviously, 0x ∈ TS(x) and TS(x) is closed and convex.

Remark 4.2. The definition of TS(x) does not depend on the choice of the chart ϕ at x; see [11, Lemma 3.4]. Hence, for any
normal neighborhood U of x, we have that

TS(x) = Texp−1
x (S∩U)(0x). (4.1)

It follows from [8, Proposition 2.5.2] that v ∈ TS(x) if and only if for every normal neighborhood U of x and every sequence
(zi) ⊂ exp−1

x (S ∩ U) converging to 0x and sequence ti in (0,∞) decreasing to 0, there exists a sequence (vi) ⊂ TxM
converging to v such that for all i, zi + tivi ∈ exp−1

x (S ∩ U).

In the case of submanifolds of Rn, the tangent space and the normal space are orthogonal to one another. In an analogous
manner, for a closed subset S of a Riemannianmanifold, the normal cone to S at x, denotedNS(x), is defined as the (negative)
polar of the tangent cone TS(x), i.e.

NS(x) := TS(x)◦ := {ξ ∈ TxM∗
: ⟨ξ, z⟩ ≤ 0 ∀z ∈ TS(x)}.

An easy consequence of this definition is the following proposition.

Proposition 4.3. (a) NS(x) is aweak∗-closed convex cone.
(b) NS(x) = dϕ(x)∗(Nϕ(S∩U)(ϕ(x))), where Nϕ(S∩U)(ϕ(x)) is normal cone to ϕ(S ∩ U) as a subset of the Hilbert space H at ϕ(x).
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The next theorem shows that, analogous to the case of Banach spaces, we have a characterization of the tangent cone on
manifolds. Let us invoke the concept of proximal subdifferential of lower semicontinuous functions defined on Riemannian
manifolds. See [4,10] for the details.

Definition 4.4. LetM be a Riemannian manifold, x ∈ M and f : M → (−∞,+∞] be a lower semicontinuous function. The
proximal subdifferential of f at x, denoted by ∂P f (x), is defined as ∂P(f ◦ expx)(0x).

As a consequence of the definition of ∂P(f ◦ expx)(0x) one has ξ ∈ ∂P f (x) if and only if there is σ > 0 such that

f (y) ≥ f (x)+ ⟨ξ, exp−1
x (y)⟩ − σd(x, y)2 (4.2)

for every y in a neighborhood of x.
Now, if S is a closed subset of Riemannian manifold M, x ∈ S. We define the proximal normal cone to S at x, denoted by

NP
S (x), as N

P
exp−1

x (U∩S)
(0x), where U is any normal neighborhood of x.

The following lemma is an easy consequence of the definition of NP
S (x).

Lemma 4.5. Let S be a closed subset of Riemannian manifold M, x ∈ S. Then ξ ∈ NP
S (x) if and only if there is σ > 0 such that

⟨ξ, exp−1
x (y)⟩ ≤ σd(y, x)2,

for every y in a neighborhood of x. Moreover, ∂PdS(x) ⊂ NP
S (x).

Remark 4.6. It is easy to verify that NP
S (x) = ∂PδS(x); here δS is the indicator function of S defined by δS(x) = 0 if x ∈ S and

δS(x) = ∞ if x ∉ S.

Note that as we mentioned earlier throughout this paper all manifolds are assumed to be connected.

Lemma 4.7. Let S be a nonempty closed subset of a complete finite dimensional Riemannian manifold M (or else, an infinite
dimensional manifold M with the property that every two points of M are connected by a minimizing geodesic) and x ∈ M − S.
If ∂PdS(x) ≠ ∅, then dS is differentiable at x. Moreover, there is an s0 ∈ S such that

(a) every minimizing sequence of dS(x) converges to s0;
(b) dS(x) = d(x, s0) and d(x, s) > dS(x) for every s ∈ S, s ≠ s0;
(c) there is a unique minimizing geodesic joining x and s0;
(d) Lxs0(∂PdS(x)) ⊂ NP

S (s0).

Proof. The differentiability of dS at x and the existence of s0 ∈ S satisfying assertions (a)–(c) are proved in [10, Theorem
3.5]. To prove (d), let ξ ∈ ∂PdS(x). Then using (4.2) one has 2dS(x)ξ ∈ ∂Pd2S(x). On the other hand by [10, Theorem 3.3],
d2S is differentiable at x and its differential at x is 2dS(x) ∂d∂x (x, x̂) where x̂ is on the unique minimizing geodesic connecting
x and s0 and close enough to x. Hence, ξ =

∂d
∂x (x, x̂). Since the function g(s) = (d(s, ŷ) + d(ŷ, x))2, where ŷ is on the

unique minimizing geodesic connecting x and s0 and close enough to s0, attains a minimum at s0 on S, it follows that
0 ∈ 2d(x, s0) ∂d∂y (ŷ, s0)+ ∂PδS(s0). Therefore by Remark 4.6 and [10, Theorem 3.3], Lxs0(ξ) ∈ NP

S (s0). �

Now, we can deduce the key results that can help us arrive at our goal. The proof of the following lemma is straightforward.

Lemma 4.8. Let M be a Riemannian manifold.

(a) If f is Lipschitz near x, then

∂ f (x) = co{w − limi→∞ ξi : ξi ∈ ∂P f (xi), xi → x}.

(b) If S is a closed subset of M containing x, then

NS(x) = co{w − limi→∞ ξi : ξi ∈ NP
S (xi), xi → x},

wherew − lim signifies weak limit.

Lemma 4.9. Let S be a nonempty closed subset of a complete finite dimensional Riemannian manifold M (or else, an infinite
dimensional manifold with the property that every two points of M are connected by a minimizing geodesic) and x ∈ S. Then
NS(x) = {


λ≥0 λ∂dS(x)}.
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Proof. We just consider the infinite dimensional case. Suppose ξ ∈ NP
S (x). By using exact penalization on Riemannian

manifolds, for any ε > 0 we have ξ/(‖ξ‖ + ε) ∈ ∂PdS(x). Then we can deduce that

B := {w − lim
i→∞

ξi : ξi ∈ NP
S (xi), xi → x} ⊆


λ≥0

λ{w − lim
i→∞

ξi : ξi ∈ ∂PdS(xi), xi → x}.

Lemma 4.8 implies NS(x) ⊆ {

λ≥0 λ∂dS(x)}.

To prove the reverse inclusion, we claim that the set A := {w− limi→∞ ξi : ξi ∈ ∂PdS(xi), xi → x} is contained in the set
B := {w − limi→∞ ξi : ξi ∈ NP

S (xi), xi → x}. Then the assertion follows from Lemma 4.8.
Let ξ = w − limi→∞ ξi such that ξi ∈ ∂PdS(xi) and {xi} converges to x. If {xi} has a subsequence in S, we extract this

subsequence without relabeling. It follows from Lemma 4.5 that ξi ∈ NP
S (xi). Otherwise, {xi} has a subsequence in M − S

and we extract this subsequence without relabeling. By Lemma 4.7(b) and (d) there exists a sequence {si} ⊂ S such that
for every s ∈ S, d(si, xi) ≤ d(s, xi) and Lxisi(ξi) ∈ NP

S (si). Clearly, si converges to x. Thus ξ ∈ B, which ends the proof of the
claim. �

Theorem 4.10. Let S be a closed subset of a Riemannian manifold M, x ∈ S and v ∈ TxM. The following assertions hold.

(i) If d◦

S(x, v) = 0, then v ∈ TS(x).
(ii) Conversely, if in addition M is complete finite dimensional (or else, an infinite dimensional manifold with the property that

every two points of M are connected by a minimizing geodesic) and v ∈ TS(x), then d◦

S(x, v) = 0.

Proof. To prove assertion (i), letU be a normal neighborhood of x and suppose that the sequences (zi) ⊂ exp−1
x (S∩U), zi →

0x and ti ↓ 0 are given. By a well-known property of the exponential map there exists a δ > 0 such that expx is bi-Lipschitz
C∞ diffeomorphism on B(0x, δ). We may assume that the geodesic ball Ũ := B(x, δ) is contained in U . Since zi + tiv → 0x,
it follows that for all i large enough zi + tiv ∈ B(0x, δ). On the other hand dS(expx(zi)) = 0 and by hypothesis d◦

S(x, v) = 0,
hence

lim
i→0

(dS ◦ expx)(zi + tiv)
ti

= 0. (4.3)

For each i, we choose si ∈ S such that

d(si, expx(zi + tiv)) ≤ dS(expx(zi + tiv))+
ti
i
. (4.4)

Therefore, si → x and for all i large enough si ∈ Ũ . Since the map exp−1
x is Lipschitz on Ũ , there exists a number C > 0 such

that for all i large enough

1
C

‖ exp−1
x (si)− zi − tiv‖ ≤ d(si, expx(zi + tiv)).

It follows from (4.4) that

‖ exp−1
x (si)− zi − tiv‖ ≤ CdS(expx(zi + tiv))+ C

ti
i
. (4.5)

If we set vi :=
exp−1

x (si)−zi
ti

, then by (4.3) and (4.5), vi → v. Moreover, for all i large enough expx(tivi + zi) = si ∈ S ∩ U .
To prove (ii), let v ∈ TS(x) and ξ be an arbitrary element of ∂dS(x). Then Lemma 4.9 implies ξ ∈ NS(x) and by polarity

we get ⟨ξ, v⟩ ≤ 0. Thus d◦

S(x, v) ≤ 0, as required. �

The following theorem and its corollary will be fundamental to the next section of this paper.

Theorem 4.11. Let M be a complete finite dimensional Riemannian manifold (or else, an infinite dimensional manifold with the
property that every two points of M are connected by a minimizing geodesic), x ∈ M, f : M → R be Lipschitz on geodesic ball
Br(x) and 0 ∉ ∂ f (x). If S is defined as S := {y ∈ M : f (y) ≤ f (x)}. Then one has

{v ∈ TxM : f ◦(x, v) ≤ 0} ⊂ TS(x).

Proof. The claim can be reached combining the results contained in Remark 4.2 and [22, Theorem 2.4.7]. Along the same
lines as [22, Theorem 2.4.7], it suffices to prove that any v ∈ TxM for which f ◦(x, v) < 0 belongs to TS(x). Let v ∈ TxM such
that f ◦(x, v) < 0 and (zi) ⊂ exp−1

x (S ∩Br(x)) be any sequence converging to 0x and ti ∈ (0,∞) be any sequence decreasing
to 0, then there is a number δ > 0 such that for all i large enough,

f (expx(zi + tiv)) ≤ f (expx(zi))− δti ≤ f (x)− δti.

So for all i large enough, zi + tiv ∈ exp−1
x (S ∩ Br(x))which means v ∈ TS(x), as required. �

The following corollary is a direct consequence of the previous theorem.
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Corollary 4.12. Let M be a complete finite dimensional Riemannian manifold (or else, an infinite dimensional manifold with the
property that every two points of M are connected by a minimizing geodesic), x ∈ M, f : M → R be Lipschitz on geodesic ball
Br(x) and 0 ∉ ∂ f (x). If S is defined as S := {y ∈ M : f (y) ≤ f (x)}. Then

NS(x) ⊂


λ≥0

λ∂ f (x).

5. A characterization of epi-Lipschitz subsets of complete finite dimensional Riemannian manifolds

In this section, we characterize epi-Lipschitz subsets of complete finite dimensional Riemannian manifolds by using
the results of the previous sections. This class of sets is of particular importance since it includes closed convex sets
with nonempty interior and sets defined by finite smooth inequality constraints satisfying a nondegeneracy assumption.
Throughout this section manifolds under consideration are assumed to be finite dimensional.

Definition 5.1. LetM be a Riemannian manifold and S ⊂ M . The set S is said to be epi-Lipschitz if at every point x ∈ S,

NS(x) ∩ (−NS(x)) = {0}.

Note that the previous definition is equivalent to say that intTS(x) ≠ ∅.
Let us define a subset of TxM as follows:

HS(x) = {v ∈ TxM : ∃ε > 0, (z + tv′) ∈ exp−1
x (S ∩ U),∀(z, v′, t) ∈ (B(0x, ε) ∩ exp−1

x (S ∩ U))× B(v, ε)× [0, ε)},
where U is any normal neighborhood of x. Then the following theorem can be deduced from [13, Theorem 2].

Theorem 5.2. Let M be a complete Riemannian manifold and S be a closed subset of M. Then S is epi-Lipschitz at x ∈ ∂S if and
only if

∅ ≠ intTS(x) = HS(x).

Example 5.3. (a) Let f : M → R be a Lipschitz function defined on a complete Riemannian manifold M . Then epif :=

{(x, r) ∈ M × R : f (x) ≤ r} is an epi-Lipschitz subset of manifoldM × R. Indeed, if f (x) < r then (x, r) ∈ int epif which
implies intTepif (x, r) ≠ ∅, and if f (x) = r then (0x, 1) ∈ Hepif (x, f (x)).

(b) Every closed convex set S with nonempty interior in a complete Riemannian manifold M is epi-Lipschitz, since for
arbitrary x ∈ S, exp−1

x (x
′) ∈ HS(x), where x′

∈ intS.

Remark 5.4. It can be verified that if S is a closed subset of Rn which is epi-Lipschitz at a boundary point x, then

HS(x) = −HRn\intS(x).

Also, if S is a closed subset of Riemannian manifold M which is epi-Lipschitz at a boundary point x and expx : V → U is
diffeomorphism, then one has

HS(x) = Hexp−1
x (U∩S)(0x) = −HV\int exp−1

x (U∩S)(0x).

Moreover,

HV\int exp−1
x (U∩S)(0x) = Hexp−1

x (U∩(M\intS))(0x) = HM\intS(x),

so that HS(x) = −HM\intS(x).
It means that if M is a complete Riemannian manifold and S is a closed subset of M , and if S is epi-Lipschitz at x ∈ ∂S,

then

∅ ≠ intTS(x) = HS(x) = −HM\intS(x) = −intTM\intS(x).

Let us invoke another definition of generalized gradient of a locally Lipschitz function. The celebrated theorem of
Rademacher [3, Theorem 5.7] asserts that every locally Lipschitz real-valued function f , is almost everywhere differentiable,
so thatΩf (the set on which f is differentiable) is dense inM . The differential of f defined on a Riemannian manifoldM , can
be used to generate its generalized gradient, as depicted in the following formula.

Lemma 5.5. Let f : M → R be locally Lipschitz on a Riemannian manifold M, then

∂ f (x) = co{ lim
q→∞

df (xq) : {xq} ⊆ Ωf , xq → x}.

It is worthwhile tomention that limq→∞ df (xq) in the previous lemma is obtained as follows. Let ξi ∈ TxiM
∗, i = 1, 2, . . . be

a sequence of cotangent vectors ofM and let ξ ∈ TxM∗. We say ξi converges to ξ , denoted by lim ξi = ξ , provided that xi → x
and, for any C∞ vector field X, ⟨ξi, X(xi)⟩ → ⟨ξ, X(x)⟩. Let (U, ϕ)be a local chart neighborhood with x ∈ U . Since xi → x,
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we may assume without loss of generality that xi ∈ U for all i. Then lim ξi = ξ if and only if ⟨ξi,

∂
∂xn

xi
⟩ → ⟨ξ,


∂
∂xn

x⟩ for

n ≤ dim(M). The latter is clearly equivalent to (dϕ−1)∗ϕ(xi)ξi → (dϕ−1)∗ϕ(x)ξ .

Theorem 5.6. Let M be a complete Riemannian manifold and S be a closed subset of M. Then the following assertions are
equivalent.

(a) S is epi-Lipschitz.
(b) There is a locally Lipschitz function f : M → R such that

(i) S = {x ∈ M : f (x) ≤ 0},
(ii) If f (x) = 0, then 0 ∉ ∂ f (x),
(iii) ∂S = ∂(intS) = {x ∈ M : f (x) = 0}.

Proof. Let us prove the implication (b)⇒ (a). Suppose that f (x) < 0. Then ∂dS(x) = {0} and Lemma4.9 impliesNS(x) = {0},
which means that S is epi-Lipschitz at x. Now let f (x) = 0. We conclude from Corollary 4.12 that

NS(x) ⊂


λ≥0

λ∂ f (x).

Since 0 ∉ ∂ f (x), we have NS(x) ∩ (−NS(x)) = {0}.
Now we are going to prove the converse implication. Note that if there is a locally Lipschitz function f : M → R such

that

(i) S = {x ∈ M : f (x) ≤ 0},
(ii) If f (x) = 0, then 0 ∉ ∂ f (x). Then, we can prove the third condition. Indeed it suffices to prove for every x0 ∈ M with

f (x0) = 0, x0 ∈ intS \ intS. By separation theorem, there exist v0 ∈ Tx0M with ‖v0‖ = 1 and a > 0 such that for all
x∗

∈ ∂ f (x0),

⟨x∗, v0⟩ > a.

By Theorem 2.10, for a > 0, there exists δ > 0 with δ ≤ r where Br(x0) is a geodesic ball around x0, such that if d(x, x0) < δ,
then for x∗

∈ ∂ f (x), we have

⟨Lxx0(x
∗), v0⟩ > a.

Now, we define the Lipschitz function ψ : (−δ, δ) → R by ψ(t) = f ◦ expx0(tv0). By Proposition 3.4,

∂ψ(t) ⊆ {⟨ξ, d expx0(tv0)(v0)⟩ : ξ ∈ ∂ f (expx0(tv0))}.

On the other hand, from Remark 2.8, for all t small enough

‖Lx0 expx0 (tv0)
− d expx0(tv0)‖ ≤

a
2k
,

where k is the Lipschitz constant of f on Br(x0). Hence ∂ψ(t) > a/2, by Lebourg’s Mean Value Theorem, for all t ∈ (0, δ),

ψ(t) ≥ ta/2.

It means f ◦ expx0(tv0) ≥ ta/2 > 0. Thus expx0(tv0) ∉ S which implies x0 ∉ intS. Moreover, if t ∈ (−δ, 0], then ψ(t) ≤ 0
and x0 ∈ intS.

Now, we prove the existence of the locally Lipschitz function f satisfying (i) and (ii). Define the locally Lipschitz function
∆S : M → R by∆S(x) = dS(x)− dM\S(x). Obviously,

S = {x ∈ M : ∆S(x) ≤ 0}.

We are going to prove that 0 ∉ ∂∆S(x̄) for every x̄ such that ∆S(x̄) = 0. We claim that ⟨ξ, v̄⟩ < 0 for all ξ ∈ ∂∆S(x̄)
and for all 0 ≠ v̄ ∈ intTS(x̄). To prove the claim, it is sufficient to prove for all 0 ≠ v̄ ∈ HS(x̄), there is ε > 0 such
that ⟨d∆S(x), d expx̄(exp

−1
x̄ (x))(v̄)⟩ ≤ −ε for all x ∈ B(x̄, ε) provided that ∆S is differentiable at x. Then, Theorem 5.2 and

Lemma 5.5 imply the claim. Suppose 0 ≠ v̄ ∈ intTS(x̄), one can prove that there exists ε > 0 such that for all z ∈ B(0x̄, ε)
and v ∈ B(v̄, ε) and t ∈ [0, ε),

dS(expx̄(z + tv)) ≤ dS(expx̄(z)). (5.1)

By polarity there exists δ > 0 such that ⟨ξ, v̄⟩ ≤ −δ‖ξ‖ for all ξ ∈ NS(x̄). If (5.1) fails to hold, there exist sequences
{zi} ⊂ Tx̄M, {vi} ⊂ Tx̄M and {ti} ⊂ R converging to 0x̄, v̄, 0 such that

dS(expx̄(zi + tivi)) > dS(expx̄(zi)).

Applying [10, Theorem 3.11], there exist t0i , yi and ξi ∈ ∂PdS(yi)with d(yi, expx̄(zi + t0ivi)) < 1/i such that

0 < ⟨ξi, Lexpx̄(zi+t0i vi)yi
(d expx̄(zi + t0ivi)(vi))⟩ + 1/i.
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Take a subsequence if necessary to have Lyi x̄(ξi/‖ξi‖) converges to a limit ξ which by Lemma 4.8 is in NS(x̄). So Remark 2.8
implies

0 ≤ ⟨ξ, v̄⟩ ≤ −δ‖ξ‖ = −δ,

which is a contradiction. Thus, there exists ε > 0 such that for all z ∈ B(0x̄, ε) and v ∈ B(v̄, ε) and t ∈ [0, ε), (5.1) holds.
On the other hand, there is ϵ ∈ (0, 1) such that for all (z, v, t) ∈ (B(0x̄, ϵ) ∩ exp−1

x̄ (U ∩ S))× B(v̄, ϵ)× [0, ϵ),

(z + tv) ∈ exp−1
x̄ (S ∩ U),

where U is any normal neighborhood of x. Let ε′
= min{ϵ, ε, r} where Br(x̄) is a geodesic ball around x̄, and let ϵ′

=

(ε′
− ε′2)/2 and x ∈ B(x̄, ϵ′) such that ∆M is differentiable at x which is in M \ intS (the proof is similar when x ∈ S̄). It is

easy to see that (5.1) implies for t small enough, dS(expx̄(exp
−1
x̄ (x)− t v̄)) ≥ dS(x)+ ε′t . So that

ε′t ≤ ∆S(expx̄(exp
−1
x̄ (x)− t v̄))−∆S(x) = ⟨d∆S(x), d expx̄(exp

−1
x̄ (x))(−t v̄)⟩ + o(t),

and we get

⟨d∆S(x), d expx̄(exp
−1
x̄ (x))(v̄)⟩ ≤ −ε′,

as required. �

Example 5.7. Let M be a complete Riemannian manifold, f1, . . . , fk : M → R be C1 functions and assume that for all
x ∈ M the set {dfi(x) ∈ TxM∗, i ∈ I(x)} is independent in TxM∗, where I(x) = {i ∈ {1, . . . , k} : fi(x) = 0}. Then
S := {x ∈ M : fi(x) ≤ 0, i = 1, . . . , k} is an epi-Lipschitz subset of M . Indeed, if we define f : M → R by
f (x) = maxi∈{1,...,k} fi(x), then ∂ f (x) = co{dfi(x) : i ∈ I(x)}. Hence f satisfies the conditions of part (b) of Theorem 5.6.
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