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ABSTRACT3

A deep learning (DL) model learns a function relating a set of input variables with a set of4
target variables. While the representation of this function in form of the DL model often lacks5
interpretability, several interpretation methods exist that provide descriptions of the function (e.g.6
measures of feature importance). On the one hand, these descriptions may build trust in the7
model or reveal its limitations. On the other hand, they may lead to new scientific understanding.8
In any case, a description is only useful if one is able to identify if parts of it reflect spurious instead9
of causal relations (e.g. random associations in the training data instead of associations due to a10
physical process). However, this can be challenging even for experts because, in scientific tasks,11
causal relations between input and target variables are often unknown or extremely complex.12
Commonly, this challenge is addressed by training separate instances of the considered model on13
random samples of the training set and identifying differences between the obtained descriptions.14
Here, we demonstrate that this may not be sufficient and propose to additionally consider more15
general modifications of the prediction task. We refer to the proposed approach as variant16
approach and demonstrate its usefulness and its superiority over pure sampling approaches with17
two illustrative prediction tasks from hydrometeorology. While being conceptually simple, to our18
knowledge the approach has not been formalized and systematically evaluated before.19

Keywords: Interpretable deep learning, statistical model, machine learning, spurious correlation, causality, hydrometeorology,20
geoscience21

1 INTRODUCTION

A deep learning (DL) model learns a function relating a set of input variables with a set of target variables.22
While DL models excel in terms of predictive performance, the representation of the learned function in23
form of the DL model (e.g. in form of a neural network) often lacks interpretability. To address this lack24
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of interpretability, several interpretation methods have been developed (see e.g. (Zhang and Zhu, 2018;25
Montavon et al., 2018; Molnar, 2019; Gilpin et al., 2018); (Samek et al., 2021)) providing descriptions of26
the learned function (e.g. measures of feature importance, FI). On the one hand, such descriptions can27
build trust in a model (Ribeiro et al., 2016) or reveal a model’s limitations. Lapuschkin et al. (2019), for28
example, analyzed FI scores and found that their image classifier relied on a copyright tag on horse images.29
Similarly, Schramowski et al. (2020) analyzed FI scores and found (and corrected) that their DL model30
classified sugar beet leaves as healthy or diseased while incorrectly focusing on areas outside of the leaves.31

On the other hand, descriptions of the learned function can lead to new scientific understanding. Ham32
et al. (2019), for example, analyzed FI scores and identified a previously unreported precursor of the33
Central-Pacific El Niño type; Gagne II et al. (2019) analyzed FI scores to gain a better understanding of the34
relations between environmental features and severe hail; McGovern et al. (2019) analyzed FI scores to35
gain a better understanding of the formation of tornadoes; and Toms et al. (2020) analyzed FI scores and36
identified regions related to the El Niño-Southern Oscillation (ENSO) and regions providing predictive37
capabilities for land surface temperatures at seasonal scales. Roscher et al. (2020) provide a general review38
of explainable machine learning for scientific insights in the natural sciences.39

Whether descriptions of the function that a DL model learns are computed to build trust in the model,40
study the model’s limitations, or gain new scientific understanding, it is important to identify if parts of41
a description reflect spurious instead of causal relations (e.g. random associations in the training data42
instead of associations due to a physical process). Examples for spurious relations are the above-mentioned43
copyright tag on horse images and the area outside of the classified sugar beet leaves. However, especially44
in prediction tasks involving physical, biological or chemical systems with several non-linearly interacting45
components, identifying spurious relations is challenging even for experts. Note that this does not only46
apply to the identification of spurious relations in descriptions of functions that DL models learn, but in47
general to the identification of spurious relations in descriptions of functions that any statistical model48
learns.49

Commonly, this challenge is addressed by training separate instances of the considered model on random50
samples of the training set and aggregating or comparing the obtained descriptions. De Bin et al. (2015),51
for instance, compared subsampling and bootstrapping for the identification of relevant input variables52
in multivariable regression tasks. They applied a feature selection strategy repeatedly to samples of the53
original training set obtained by subsampling or bootstrapping, respectively, and identified relevant features54
by analyzing feature selection frequencies. As another example, Gagne II et al. (2019) trained 30 instances55
of different statistical models on sampled training and test sets to take into account that the models’ skills56
and the relations between input and target variables that the models learn might depend on the specific57
training and test set composition. Here, we propose to not only consider sampling, but also more general58
modifications of the original prediction task. We refer to this more general approach as variant approach.59
In the approach, separate instances of the considered statistical model (referred to as variant models)60
are trained on modified prediction tasks (referred to as variant tasks) for which it is assumed that causal61
relations between input and target variables either remain stable or vary in specific ways. Subsequently,62
the descriptions of the functions that original and variant models learn are compared and it is evaluated63
whether they reflect the assumed stability or specific variation, respectively, of causal relations. If this is64
not the case for some parts of the descriptions, these parts likely reflect spurious relations. The approach65
constitutes a generalization of sampling approaches in that sampling is one of many ways for modifying66
the original prediction task in order to obtain a variant task.67
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A similar concept to ours has, to the best of our knowledge, only been pursued systematically in a strict68
causality framework (for details on this framework see e.g. (Pearl, 2009) or for a more methodological69
focus (Guo et al., 2020)). Peters et al. (2016), for example, consider modifications of an original prediction70
task for which they require the conditional distribution p(y|~xS) of the target variable y given the complete71
set ~xS of variables that directly cause y to remain stable. Exploiting this requirement, they aim to identify72
the subset S of (direct) causal predictors within all observed features. While this approach is conceptually73
related to the proposed variant approach, the latter does not require the strict causality framework but is74
applicable to any machine learning prediction task. Note that in our work the terms causal and spurious do75
not refer to an underlying causal graph or other concepts from the strict causality framework but should be76
interpreted with common sense: a pixel in an image, for instance, is causally related to the label “dog” if77
and only if it belongs to a dog in the image, and the value of a meteorological variable at a specific location78
and time is causally related to the value of a meteorological variable at another location and time if and79
only if one value influences the other via some physical process.80

Other approaches in machine learning that consider modifications of an original prediction task81
predominantly aim to improve the predictive performance of a statistical model rather than to analyze the82
relations between input and target variables. Transfer learning (Pan and Yang, 2010), for instance, aims to83
extract knowledge from one or more source tasks to apply it to a target task, e.g. training a neural network84
first on a similar task before fine-tuning the weights on the target task. Adversarial training, as another85
example, optimizes the loss over a set of perturbations of the input (Goodfellow et al., 2015; Sinha et al.,86
2018) to become less susceptible to adversarial attacks (Szegedy et al., 2014), imperceptible changes to87
the input that can change the model’s prediction. Traditional importance weighting (Shimodaira, 2000) or88
more recent methods (Lakkaraju et al., 2020), as further examples, shift the input distribution in order to89
perform better on a known or unknown test distribution.90

In this work, we demonstrate the proposed variant approach with two illustrative prediction tasks from91
hydrometeorology. First, we predict the occurrence of rain at a target location, given geopotential fields92
at different pressure levels in a surrounding region. Second, we predict the water level at a location in a93
river, given the water level upstream and downstream 48 hours earlier. As statistical models, we consider94
linear models and neural networks. After training a model on one of these tasks, we apply an interpretation95
method to obtain a description of the learned function. This description indicates the average importance of96
the different input locations for the predictions of the model. To identify if this importance reflects spurious97
instead of causal relations between input and target variables, we apply the proposed variant approach.98

The article is structured as follows: in Section Materials and Methods, we formalize the variant approach99
and define the two prediction tasks and variants thereof that illustrate the approach. Further, we introduce100
the statistical models and interpretation methods used in this work. Subsequently, we present and discuss101
the results obtained when training the statistical models on the considered prediction tasks and applying102
the variant approach. In Section Conclusions, we summarize our main findings and discuss perspectives for103
future research and applications of the variant approach.104

2 MATERIALS AND METHODS

2.1 Variant approach105

During the training phase, a statistical model learns a function f : Rn → Rk relating an input space106
X ⊆ Rn with a target space Y ⊆ Rk given a training set T = {(~xi, ~yi)}Ni=1 with ~xi ∈ X , ~yi ∈ Y . As107
the representation of f in form of the statistical model (e.g. in form of a neural network) often lacks108
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interpretability, several interpretation methods have been developed (see e.g. (Zhang and Zhu, 2018;109
Montavon et al., 2018; Molnar, 2019; Gilpin et al., 2018);(Samek et al., 2021)). Most of these methods110
yield vector-valued descriptions ~d ∈ Rd of f (e.g. measures of feature importance). These descriptions can111
be global or local, in the latter case not only depending on f but on a subset Xd ⊂ X as well. An example112
of a global description are the weights of a linear regression model. An example of a local description ~d(~x)113
is the gradient of a neural network evaluated at a location ~x ∈ X .114

A description ~d reflects the relations between input and target variables that the statistical model learned.115
Whether the user aims to use ~d to build trust in the model, reveal the model’s limitations, or gain new116
scientific understanding, it is important to identify if parts of the vector ~d reflect spurious instead of causal117
relations. In many cases, this is challenging even for experts. Therefore, we propose a variant approach.118
The approach consists of three steps. First, the original prediction task is modified in such a way that119
causal relations reflected in specific parts of ~d are assumed to either remain stable or vary in a specific120
way. We refer to the modified prediction task as variant task. Second, a separate instance of the considered121
statistical model (referred to as variant model) is trained on the variant task and a corresponding description122
~dv (referred to as variant description) of the function fv that the variant model learns is computed. Third,123
original and variant descriptions are compared and it is evaluated whether the previously specified parts of124
original and variant descriptions reflect the assumed stability or specific variation, respectively, of causal125
relations. If this is not the case, the respective parts of the vector ~d or of the vector ~dv reflect spurious126
relations.127

Formalizing the approach, we define a variant task by an input spaceXv ⊆ Rn
v
, a target space Y v ⊆ Rk

v
,128

a training set T v = {( ~xvi , ~yvi )}Nv

i=1 with ~xvi ∈ Xv, ~yvi ∈ Y v, an interpretation method (in most cases the129

same as for the original task) that provides a description ~dv ∈ Rd
v

of the learned function fv : Rn
v → Rk

v
,130

two sets of m boolean vectors ~Ij ∈ {0, 1}d and ~Ivj ∈ {0, 1}d
v
, j = 1, . . . ,m, and m corresponding smooth131

(not necessarily symmetric) distance functions distj : Rd × Rd
v → R≥0, j = 1, . . . ,m. We denote by132

~d(~Ij) (and analogously by ~dv( ~Ivj )) the restriction of ~d to the dimensions specified by the boolean vector ~Ij133

and refer to ~d(~Ij) as a part of ~d. The distance function distj incorporates the user’s assumption about how134

the part ~d(~Ij) of ~d changes for the variant task if it reflects causal relations, and quantifies the deviation of135

this stability or specific variation, respectively. In other words, distj computes a value distj(~d, ~dv) which is136

0 if ~d(~Ij) and ~dv( ~Ivj ) exhibit the assumed stability or systematic variation, respectively, of causal relations.137
In turn, the more they deviate from this assumed stability or specific variation, respectively, the larger the138
value distj(~d, ~dv) should be.139

Let us consider some examples of variant tasks. As already mentioned in the introduction, one way to140
modify the original prediction task in order to obtain a variant task is to consider a sampled training set,141
e.g. obtained by randomly sampling the original training set in the context of subsampling or bootstrapping142
(De Bin et al., 2015). In this case, we assume that all causal relations remain stable. Hence, we may choose143
to evaluate the dimensionwise distance between an original description ~d ∈ Rd and the corresponding144
variant description ~dv ∈ Rd of the function fv that a separate instance of the original model learns when145
trained on the sampled training set. Using the above formalism, this corresponds to defining the boolean146
vectors (~Ij)i = ( ~Ivj )i = δji ∈ Rd (vectors with 0 components in all dimensions except from dimension j147

where the component is 1) and the distance functions distj(~d, ~dv) = |~dj− ~dvj | for j = 1, . . . ,m = d. Now,148

distj(~d, ~dv)� 0 for some j ∈ {1, . . . , d} indicates that the part ~d(~Ij) = ~dj of the original description, or149

the part ~dv( ~Ivj ) = ~dvj of the variant description, reflects spurious relations. Note that we can repeat the150
sampling procedure several times, leading to multiple variant tasks of the same type.151
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A second example for the definition of a variant task is to consider a modification of the input space.152
Later, for instance, we consider the task to predict a rain event at a target location given input variables153
in the 60 × 60 pixels neighborhood (see Fig. 1A). As a variant task, we consider the input variables in154
the 80 × 80 pixels neighborhood instead. As original description ~d ∈ R60×60, we consider a measure155
of the average importance of each pixel in the 60 × 60 pixels neighborhood for the predictions of the156
original model, and as variant description ~dv ∈ R80×80, we analogously measure the average importance157
of each pixel in the 80× 80 pixels neighborhood for the predictions of the variant model. In this case, we158
assume that causal relations between pixels in the 60× 60 pixels neighborhood and rain events at the target159
location remain stable when enlarging the considered neighborhood by 10 pixels on each side. Hence, we160
choose to evaluate the dimensionwise distance between the original description ~d and the central 60× 60161
pixels of the variant description ~dv. Using the above formalism, this corresponds to defining the boolean162
matrices (~Ij1j2)i1i2 = δj1j2,i1i2 ∈ R60×60 (matrices with 0 components in all dimensions except from163

dimension j1j2 where the component is 1), the boolean matrices ( ~Ivj1j2)i1i2 = δj1+10j2+10,i1i2 ∈ R80×80164
(10 corresponds to the offset between the neighborhoods for original and variant task, i.e. input index165
(j1 + 10, j2 + 10) in the variant task corresponds to the same location as input index (j1, j2) in the original166
task) and the distance functions distj1j2(~d, ~dv) = |~dj1j2 − ~dvj1+10,j2+10| for j1, j2 = 1, . . . , 60. Now,167

distj1j2(~d, ~dv)� 0 for some j1, j2 ∈ {1, . . . , 60}2 indicates that the part ~d(~Ij1j2) = ~dj1j2 of the original168

description, or the part ~dv( ~Ivj1j2) = ~dvj1+10,j2+10 of the variant description, reflects spurious relations.169
Note that for some statistical models, this type of variant task might require slight changes to the model170
architecture.171

A third example for the definition of a variant task is to consider a modification of the target variable.172
Later, for instance, we predict the water level at a location in a river given the water level in some specified173
segment of the river (see Fig. 1B). As a variant task, we consider the same segment of the river but shift the174
target location by τ pixels along the river (see Fig. 2B). As original and variant descriptions ~d, ~dv ∈ Rd, we175
consider a measure of the average importance of each pixel in the specified river segment for the predictions176
of the original model and the variant model, respectively. In this case, we assume that causal relations are177
shifted along the river by the same distance as the target location is (i.e. by τ pixels). Hence, we choose178
to compute the dimensionwise distance between the original description ~d and the variant description ~dv179
shifted by τ dimensions (i.e. we consider the distance |~dj − ~dvj+τ | for all j for that j + τ ∈ {1, . . . , d}).180

Using the above formalism, this corresponds to defining the boolean vectors (~Ij)i = ( ~Ivj )i+τ = δji and181

the distance functions distj(~d, ~dv) = |~dj − ~dvj+τ | for all j = 1, . . . , d for that j + τ ∈ {1, . . . , d}. Now,182

distj(~d, ~dv)� 0 indicates that the part ~d(~Ij) = ~dj of the original description, or the part ~dv( ~Ivj ) = ~dvj+τ183
of the variant description, reflects spurious relations.184

In this example, it might be more realistic to assume that causal relations are not shifted along the river by185
exactly τ pixels, but that the shift distance depends on the flow velocity and potentially further influences.186
The proposed formalism allows to take this into account by varying the definition of ~Ij , ~Ivj and distj .187
Suppose, for instance, that the flow velocity around the original target location is twice as high as around188
the shifted target location. In this case, we might assume that the sum of importance of the two pixels189
upstream of the original target location should be identical to the importance of the single pixel upstream190
of the shifted target location. Hence, we might decide to consider (~Ij)i = δji + δj−1,i, ( ~Ivj )i+τ = δji (as191

above), and distj(~d, ~dv) = |(~dj + ~dj−1) − ~dvj+τ |, where the index j corresponds to the original target192

location. In this case, distj(~d, ~dv)� 0 indicates that the part ~d(~Ij) (corresponding to ~dj and ~dj−1) of the193

original description, or the part ~dv( ~Ivj ) = ~dvj+τ of the variant description, reflects spurious relations.194

Frontiers 5



Tesch et al. Variant approach for identifying spurious relations

In general, however, it is difficult to take variations of flow velocity and further influences into account195
when defining ~Ij , ~Ivj and distj . This is for example due to unavailable data on flow velocity and nonlinear196
behavior (e.g. that the sum of importance of the two pixels upstream of the original target location should197
be identical to the importance of the single pixel upstream of the shifted target location if the flow velocity198
in the respective river segment is twice as high, likely represents a too strong assumption on linearity). We199
will come back to this in the discussion of the results.200

Let us return to the formal definition of the variant approach. The first step was to define a variant task.201
The second step consists of training a separate instance of the original model (a variant model) on this202
task and computing a variant description. The third step of the approach consists of comparing original203
and variant description and evaluating distj(~d, ~dv)� 0 for all j = 1, . . . ,m. If distj(~d, ~dv)� 0 for some204

j ∈ {1, . . . ,m}, the user infers that ~d(~Ij) or ~dv( ~Ivj ) reflects spurious relations. Note that the converse is205

not possible, i.e. if distj(~d, ~dv) ≈ 0, the user cannot infer that ~d(~Ij) reflects causal relations (as it might be206

that both ~d(~Ij) and ~dv( ~Ivj ) reflect spurious relations). Note further that the specification of the condition207

distj(~d, ~dv)� 0 should in general take into account the specific original and variant task, the choice of208
the distance function distj , and the certainty of the assumed stability or systematic variation, respectively,209

of causal relations. Moreover, in case the user does not need a binary identification of parts of ~d that reflect210
spurious relations, it might be better not to consider the binary condition distj(~d, ~dv)� 0, but to consider211

raw values distj(~d, ~dv), where higher distances indicate a higher probability that ~d(~Ij) or ~dv( ~Ivj ) reflects212
spurious relations.213

For all variant tasks defined in this work, the expression distj(~d, ~dv) corresponds to the relative distance214

between a single component ~dj1 of an original description and a single component ~dvj2 of a corresponding215
variant description, i.e. it takes the form216

distj(~d, ~dv) =
|~dj1 − ~dvj2 |

|~dj1 |+ | ~dvj2 |+ ε
, (1)

with some regularization parameter ε ≥ 0. By considering relative distances rather than absolute distances,217
we define, for instance, that ~dj1 = 100, ~dvj2 = 101 agree better than ~dj1 = 1, ~dvj2 = 2, or, in other words,218

in the latter case it is more likely that the value ~dj1 or the value ~dvj2 reflects spurious relations. Further, an219
advantage of considering relative distances is that all distances lie between zero and one (when neglecting220
ε) which allows to apply a threshold t ∈ (0, 1) to specify the condition distj(~d, ~dv)� 0 and to mark all221

parts ~d(Ij) of the original description as spurious for which distj(~d, ~dv) > t. In this study, we use t = 0.5222
as threshold and ε = 1e− 3 as regularization parameter. Choosing a smaller threshold, more values are223
marked as spurious (with all values marked as spurious for t = 0), and choosing a larger threshold, fewer224
values are marked as spurious (with no values marked as spurious for t = 1) by definition. For the examples225
considered below, t = 0.5 seems to be a good choice.226

2.2 Illustrative tasks227

In this section, we define two prediction tasks and corresponding variant tasks that illustrate the proposed228
variant approach. We chose simplified tasks and global descriptions of the learned functions to be able229
to decide whether parts of the descriptions that the variant approach marks as spurious do indeed reflect230
spurious relations. The data underlying both tasks is 3-hourly data at 412× 424 pixels over Europe. The231
data was obtained from a long-term (January 1996 - August 2018), high-resolution (≈ 12.5 km) simulation232
(Furusho-Percot et al., 2019) performed with the Terrestrial Systems Modeling Platform (TSMP), a fully233
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Figure 1. Set up of the two original prediction tasks. (A) Predict whether the precipitation averaged over
the red 2× 2 pixels target patch in the center of the 60× 60 pixels input region exceeds 1 mm in the next 3
hours. (B) Predict the water level at the red pixel given the water level 48 hours earlier at the red pixel and
the pixels upstream and downstream marked dark blue in the inset. Light blue indicates pixels with ponded
water at the land surface during the entire simulation period (rivers, lakes, . . . ).

integrated groundwater-soil-vegetation-atmosphere modeling system (Shrestha et al., 2014; Gasper et al.,234
2014). Note that the statistical models and interpretation methods applied in this work are described in235
Section Statistical Models and Descriptions.236

2.2.1 Task 1 – Rain prediction237

In the first example, we predict the occurrence of rain at a 2× 2 pixels target patch, given the geopotential238
fields at 500, 850 and 1000 hPa in the 60 × 60 pixels neighborhood (see Fig. 1A). We model this as a239
classification task and define that rain occurred, if the precipitation averaged over the target patch exceeds240
1 mm in the following 3 hours. Previous works (Larraondo et al., 2019; Pan et al., 2019) have used CNNs to241
predict precipitation given geopotential fields to improve the parameterization of precipitation in numerical242
weather prediction models. Thus, apart from the simplifications of only one target location and a binary243
target, this is a realistic prediction task.244

As statistical models, we consider a logistic regression model and two convolutional neural networks245
(CNNs) of different depth and complexity. As description of the function that the logistic regression246
model learns, we consider the absolute values of the model weights averaged over the pressure level247
axis. As descriptions of the functions that the CNNs learn, we consider saliency maps averaged over the248
pressure level axis and over all training samples. These descriptions can be seen as measures of the average249
importance of each pixel in the 60× 60 pixels input region for the predictions of the models (for details see250
the respective sections below).251

To identify whether parts of the descriptions reflect spurious relations that the models learned, we compute252
descriptions for variant models trained on three types of variant tasks. The first type (later referred to as253
sampling type) considers the same task, but a modified training set obtained by randomly sampling 70 %254
of the original training set without replacement. In this case, we assume that all causal relations remain255
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stable. Hence, we compute the pixelwise distance between original and variant descriptions. We repeat the256
sampling procedure 10 times obtaining 10 variant tasks of this type. The second type of variant tasks (later257
referred to as size type) considers the same task but the input variables in the 80× 80 pixels neighborhood258
of the target patch. In this case, we assume that causal relations between pixels in the 60 × 60 pixels259
neighborhood and rain events at the target patch remain stable when enlarging the considered neighborhood260
by 10 pixels on each side. Hence, we compute the pixelwise distance between the original descriptions and261
the central 60 × 60 pixels of the variant descriptions. The third type of variant task (later referred to as262
location type) considers the same task but for eight different target patches obtained by moving the original263
target patch by five pixels to the left or right, and up or down. The input regions are shifted accordingly (see264
Fig. 2A). In this case, we assume again that all causal relations remain stable. Hence, we again compute265
the pixelwise distance between original and variant descriptions.266

Note that to compute the variant descriptions for the functions that separate instances of the CNNs learn267
when trained for different target locations, we average the saliency maps over all training samples from268
the original task. This is because the distribution p(~x) of geopotential fields differs at different locations.269
Thus, if we averaged the saliency maps for a variant CNN over all training samples from a variant task, the270
obtained variant description would differ from the original description even if original and variant models271
learned the exact same function relating geopotential fields and rain events.272

Figure 2. Location variant tasks. (A) Original target patch (center) with its input region and eight additional
target patches and their (overlapping) input regions. (B) Original target location (center) and two additional
target locations closely upstream and downstream.

We obtained the geopotential fields and precipitation data from the aforementioned simulation. We273
selected the geopotential fields in the considered input regions and created the binary rain event time series274
for the corresponding target patches. Next, we split the time series using the first 56,000 time steps as275
training candidates and the last 10,183 time steps as validation candidates. Finally, training and validation276
sets were obtained by selecting all time steps followed by a rain event at the considered target patch and an277
equal amount of randomly chosen additional time steps for non-rain events from the training and validation278
candidates, respectively. This resulted in balanced training and validation sets of a total of approximately279
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10,000 time steps for each target patch. Handling strongly unbalanced data sets as it would be necessary280
without such a selection of time steps is out of scope for this work.281

2.2.2 Task 2 – Water level prediction282

As a second example, we predict the water level at a location in a river, given the water level in a specific283
segment of the river 48 hours earlier (see Fig. 1B).284

As statistical models, we consider a linear regression model and a multilayer perceptron (MLP). As285
description of the function that the linear regression model learns, we consider as in Task 1 the absolute286
values of the model weights. For the MLP, we consider again the saliency maps averaged over all training287
samples. Analogously to Task 1, these descriptions can be seen as measures of the average importance of288
each pixel in the considered river segment for the predictions of the models (for details see the respective289
sections below).290

To identify whether parts of the descriptions reflect spurious relations that the models learned, we compute291
descriptions for variant models trained on two types of variant tasks. The first type (later referred to as292
sampling type) considers the same task, but a modified training set obtained by randomly sampling 70 %293
of the original training set without replacement. In this case, we assume that all causal relations remain294
stable. Hence, we compute the pixelwise distance between original and variant descriptions. We repeat the295
sampling procedure 10 times obtaining 10 variant tasks of this type. The second type of variant tasks (later296
referred to as location type) considers the same river segment as input, but target locations closely upstream297
and downstream of the original target location (see Fig. 2B). In this case, we assume that causal relations298
are shifted along the river by the same distance as the target location is. Hence, we compute the pixelwise299
distance between the original description ~d and the variant description ~dv shifted by τ pixels, where τ is300
the number of pixels that the target location was shifted (i.e. we consider the distance |~dj − ~dvj+τ | for all j301
for that j + τ ∈ {1, . . . , d}).302

We obtained the water level data from the aforementioned simulation. In contrast to Task 1, this task is303
not a classification but a regression task; discarding time steps to obtain a balanced data set is not necessary.304
Hence, we use water level data for all 64,240 3-hourly time steps between January 1996 and December305
2017. We randomly selected the years 1997, 2004, 2008 and 2015 as test data, covering the whole period306
of time, and use the remaining years to train the models.307

2.3 Statistical models and descriptions308

In this section, we present the statistical models used in this study. Further, we describe saliency maps,309
the interpretation method applied to obtain descriptions of the functions that the neural networks (MLP310
and CNNs) learn. Note that for the considered examples, layerwise relevance propagation (LRP) and311
Grad-CAM give very similar results to saliency maps. The section is ordered with respect to the complexity312
of the described methods from simple to complex.313

2.3.1 Linear Regression314

Given training samples (~xi, yi)
n
i=1 with ~xi ∈ RN , yi ∈ R, a linear regression model learns a function315

f : RN → R of the form316

f(~x) = β0 + ~xT · ~̄β, (2)
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where ~β = (β0,
~̄β) = (β0, β1, . . . , βN ) ∈ RN+1 are the weights of the model. Those weights are obtained317

by minimizing the squared error on the training set318

n∑
i=1

(f(~xi)− yi)2. (3)

Optionally, a regularization term can be added to the objective. We calculate the minimizing weights ~β319
using the implementation of scikit-learn (Pedregosa et al., 2011). In our case, the inputs ~xi are elements320
of R30 representing the water level at the 30 pixels in the considered river segment (see Fig. 1B) and the321
targets yi ∈ R represent the water level at the target pixel 48 hours later.322

As description of the function that a linear regression model learned, we consider the absolute values of323

the weights ~̄β. This can be seen as a measure of the average importance of each pixel in the river segment324
for the predictions of the model (Molnar, 2019).325

2.3.2 Logistic Regression326

Given the task to predict a binary target y ∈ {0, 1} from an input ~x ∈ RN , a logistic regression model327
yields328

P (y = 1|~x, ~β) =
1

1 + exp(−(β0 + ~xT · ~̄β))
, (4)

where ~β = (β0,
~̄β) = (β0, β1, . . . , βN ) ∈ RN+1 are the weights of the model. These weights are obtained329

by minimizing the function330

−
n∏
i=1

P (yi = 1|~xi, ~β)yi · (1− P (yi = 1|~xi, ~β))1−yi + λR(~β) (5)

with respect to ~β. Here, (~xi, yi)
n
i=1 are training samples with ~xi ∈ RN , yi ∈ {0, 1}, and λR(~β) is a331

regularization term. The product represents the probability with that – according to the logistic regression332
model with weights ~β – the targets yi are observed given the input samples ~xi. Thus, minimizing the333
negative product with respect to ~β corresponds to finding the ~β for that the highest probability is assigned334
to observing the targets yi given the inputs ~xi from the training set. We use scikit-learn (Pedregosa et al.,335
2011) (solver ’liblinear’) to approximate the minimizing weights ~β. In our case, the inputs ~xi are the336
geopotential fields at 500, 850 and 1000 hPa flattened to vectors in R3·60·60 and the targets yi ∈ {0, 1}337
represent whether a rain event took place or not.338

As description of the function that a logistic regression model learned, we consider the weights ~̄β. We339

reshape the vector ~̄β to the shape of the original input, 3× 60× 60, take the absolute value and build an340
average over the first (pressure level) axis. This can be seen as a measure of the average importance of each341
pixel in the 60× 60 pixels input region for the predictions of the model (Molnar, 2019).342

2.3.3 Multilayer Perceptron343

Multilayer Perceptrons (MLPs), also referred to as fully-connected neural networks, are feedforward344
artificial neural networks. They are composed of one or more hidden layers and an output layer. Each345
layer comprises several neurons. Each neuron in the first hidden layer builds a weighted sum of all346
input variables, while each neuron in the subsequent layers builds a weighted sum of the outputs of the347

This is a provisional file, not the final typeset article 10



Tesch et al. Variant approach for identifying spurious relations

neurons in the respective previous layer. In case of a neuron in a hidden layer, the sum is passed through a348
nonlinear activation function and forms the input to the next layer. In case of a neuron in the output layer,349
the sum is optionally passed through a nonlinear activation function and forms the output of the neural350
network. The weights of the MLP are learned by minimizing a loss function on training samples (~xi, ~yi)

n
i=1,351

~xi ∈ RN , ~yi ∈ RK , using backpropagation (LeCun et al., 2012).352

In our case, the inputs to the MLP are elements ~x of R30 representing the water level at the 30 pixels353
in the considered river segment (see Fig. 1b). The targets yi ∈ R represent the water level at the target354
pixel 48 hours later. Section Saliency maps describes how we obtained a description of the function that355
the MLP learned. The network and training of the MLP were implemented using the deep learning library356
Pytorch (Paszke et al., 2019). A detailed description of the used architecture and training procedure can be357
found in the Supplementary Information.358

2.3.4 Convolutional Neural Networks359

Convolutional Neural Networks (CNNs) are frequently employed DL models designed to process stacks360
of multiple arrays containing spatially structured data. This can, for example, be a stack of 2-dimensional361
arrays for an RGB image (~xi ∈ R3×height×width) or, as in our case, a stack of 2-dimensional geopotential362
fields at different pressure levels in the atmosphere (~xi ∈ R3×60×60). Typically, a CNN consists of three363
types of layers: convolutional layers, pooling layers and fully-connected layers. In the following short364
review of the typical CNN layers, we consider the case of one or multiple 2-dimensional input arrays. A365
generalization of the concepts to N-dimensional input arrays is straightforward.366

The input to a convolutional layer is a stack of cin 2-dimensional arrays and its output is a stack of cout367
2-dimensional arrays. The convolutional layer is characterized by cout kernels, which are 3-dimensional368
tensors of shape cin × k × k, where the kernel size k is usually between 1 and 7. The output of the layer369
are the cout 2-dimensional arrays obtained by convolving the input with each kernel along the last two370
dimensions. Usually, a convolutional layer is directly followed by a nonlinear activation function which371
is applied elementwise to the layer’s output. In contrast to a fully-connected layer, a convolutional layer372
preserves the spatial structure of the input: only neurons in a neighborhood defined by the kernel size373
influence the output of a specific neuron.374

As for convolutional layers, the input to a pooling layer is a stack of cin 2-dimensional arrays of shape375
n×m. Pooling layers reduce the dimensionality of the 2-dimensional arrays creating invariances to small376
shifts and distortions. A typical form of pooling is max-pooling with a kernel size of two. This reduces the377
resolution along both axes of each of the cin 2-dimensional arrays by a factor of two, picking always the378
maximum value of a 2× 2 patch of the original array. Thus, the output of this pooling layer is a stack of379
cout = cin 2-dimensional arrays of shape n

2 ×
m
2 .380

After several alternating convolutional and pooling layers which extract features of increasing complexity,381
the resulting c 2-dimensional arrays are flattened into a single vector and one or more fully-connected382
layers, as described for the MLP, follow. The weights for the kernels in the convolutional layers and383
the fully-connected layers are learned by minimizing a loss function on training samples (~xi, ~yi)

n
i=1,384

~xi ∈ RN , ~yi ∈ RK , using backpropagation (LeCun et al., 2012). To prevent CNNs from overfitting,385
dropout regularization (Srivastava et al., 2014) and batch normalization (Ioffe and Szegedy, 2015) are386
commonly employed techniques.387

In our case, the inputs ~xi are the geopotential fields at 500, 850 and 1000 hPa, ~xi ∈ R3×60×60. The targets388
yi ∈ {0, 1} represent whether a rain event took place or not. We consider two convolutional neural networks389
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of different depth and complexity. CNN1 is a shallow CNN with only two convolutional layers followed390
by a single fully-connected layer. CNN2 is a commonly employed, much deeper CNN architecture called391
resnet18 (He et al., 2016) for which the last fully-connected layer was adapted to have only two output392
neurons to fit our binary prediction task. Section Saliency maps describes how we obtained descriptions of393
the functions that the CNNs learned. The networks and training were implemented using the deep learning394
library Pytorch (Paszke et al., 2019). A detailed description of the used CNN architectures and training395
procedure can be found in the Supplementary Information.396

2.3.5 Saliency maps397

A common subgroup of interpretation methods providing descriptions of the functions that neural398
networks (NNs) learn, are methods that assign an importance to each dimension of individual input samples399
~x ∈ RN (local feature importance scores), see e.g. (Samek et al., 2021). Among the most employed and400
well-known methods for that purpose are saliency maps (Simonyan et al., 2013), layerwise relevance401
propagation (LRP) (Bach et al., 2015) and Grad-CAM (Selvaraju et al., 2017). In the examples presented402
in this work, all three methods yield similar results. Therefore and for the sake of brevity, we focus on403
saliency maps (although e.g. Montavon et al. (2018) argue that saliency maps provide a bad measure of404
feature importance because they indicate how the prediction of a model changes when the value of a feature405
is changed, rather than indicating what makes the model make a prediction).406

Note that in contrast to the weights of linear and logistic regression models, saliency maps are local407
descriptions of the learned functions, i.e. the importance assigned to an input dimension (in our case an408
input pixel) depends on the input sample ~x. To get a global description of the learned function and a409
measure of the average importance of each input pixel, we average the saliency maps over all training410
samples.411

In the rain prediction task, the NN defines an (almost everywhere) differentiable function f that maps412
geopotential fields ~x ∈ R3×60×60 to probabilities f(~x) = y ∈ (0, 1) that a rain event occurs. The partial413
derivative414

wcij(~x) =
∂f

∂xcij
(~x), c = 1, 2, 3, i, j = 1, . . . , 60 (6)

indicates how a small perturbation of the c-th geopotential field at pixel (i, j) affects the prediction of the415
NN. The saliency map416

Mij(~x) =
1

3

3∑
c=1

|wcij(~x)|, i, j = 1, . . . , 60 (7)

considers the absolute value of the partial derivatives averaged over the pressure level axis to obtain for417
each pixel in the 60 × 60 pixels input region a measure of its importance for the model’s prediction for418
sample ~x.419

In the water level prediction task, the neural network maps water levels ~x ∈ R30 to a water level prediction420
f(~x) = y ∈ R. The saliency map421

Mi(~x) = |wi(~x)| =
∣∣∣∣ ∂f∂xi (~x)

∣∣∣∣ , i = 1, . . . , 30 (8)

provides for each pixel in the considered river segment a measure of its importance for the model’s422
prediction for sample ~x.423
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3 RESULTS AND DISCUSSION

3.1 Task 1 – Rain prediction424

Figure 3A shows the description ~d of the function that CNN1 learned when it was trained on the original425
rain prediction task. Remember that the considered description is a measure of the average importance of426
each pixel in the 60 × 60 pixels input region for the predictions of the model. Our objective is to apply427
the variant approach to identify parts of the description that reflect spurious relations. To that purpose, we428
defined several variant tasks above. As a next step, we computed the corresponding variant descriptions, i.e.429
the descriptions of the functions that separate instances of CNN1 learned when trained on these variant430
tasks. For illustration, Figure 4 shows the original description (center, same as Fig. 3A) and the variant431
descriptions ~dvi , i = 1, . . . , 8, obtained for the eight location variant tasks (see Fig. 2A).432

For each of these variant descriptions ~dvi ∈ R60×60, i = 1, . . . , 8, we evaluated the pixelwise relative433
distance to the original description ~d ∈ R60×60 (see Equation 1), and masked all pixels of the original434
description ~d for which this distance exceeds the threshold of t = 0.5 for any ~dvi . The resulting masked435
version of ~d is shown in Fig. 3D. Note that in this case, there is no pixel for which the relative distance436
between original description and any of the variant descriptions exceeds 0.5, hence Fig. 3D is identical437
to Fig. 3A. Analogously to Fig. 3D, Fig. 3B shows the masked version of ~d obtained when masking all438
pixels for which the pixelwise relative distance between ~d and one of the variant descriptions ~dvi obtained439
for the sampling variant tasks exceeds 0.5. We observe that some pixels in the west of the inner area of440
importance are masked, indicating that the inner area of importance might actually extend further to the441
west. Figure 3C shows the masked version of ~d obtained when masking all pixels for which the pixelwise442
relative distance between ~d and the central 60× 60 pixels of the variant description ~dvi obtained for the size443
variant task exceeds 0.5. Notably, all the boundary pixels with high values in Fig. 3a are masked, indicating444
that these values likely reflect spurious relations.445

Figure 3. (A) Description ~d of the function that CNN1 learned when it was trained on the original rain
prediction task (see Fig. 1a). The description is a measure of the average importance of each pixel in the
60× 60 pixels input region for the predictions of the model. Yellow color indicates high and blue color low
importance. (B-D) As (A), but pixels for which the relative distance between the original description ~d and
one of the variant descriptions ~dvi obtained for the sampling, size and location variant tasks, respectively,
exceeds the threshold of t = 0.5, are masked.

Figure 5 shows the same as Fig. 3 but for CNN2. Only few pixels are masked for the sampling and446
location variant tasks. However, the mask obtained for the size variant task indicates that the checkerboard447
pattern in the original description ~d, which is shown in Fig. 5A, likely reflects spurious relations. Note that448
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Figure 4. Descriptions obtained when training separate instances of CNN1 for the nine different locations
depicted in Fig. 2A. Each description is a measure of the average importance of each pixel in the 60× 60
pixels input region for the predictions of the respective instance of CNN1. Yellow color indicates high and
blue color low importance. The central location is the original target location, hence the central description
identical to Fig. 3A.

this checkerboard pattern is indeed a known artifact of strided convolutions and max-pooling layers used in449
CNN2 (Odena et al., 2016).450

Figure 6 shows the same as Fig. 3 and 5 but for the logistic regression model. For the sampling variant451
tasks, large parts of the original description ~d are masked. This indicates that these parts likely reflect452
spurious relations. For the size variant task, on the other side, only few pixels are masked. Lastly, for the453
location variant tasks, nearly all pixels are masked. This indicates that the original description ~d shown in454
Fig. 6A likely reflects spurious relations only.455

For this task, we know that the physical importance of a pixel averaged over a long time period decreases456
with the pixel’s distance to the central target patch. Further, due to the predominantly westerly winds, the457
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Figure 5. Same as Fig. 3 but for CNN2.

Figure 6. Same as Fig. 3 but for the logistic regression model.

average physical importance of pixels is slightly shifted to the west. Given this knowledge, we can confirm458
that the variant approach successfully identified all pixels in Fig. 3A, 5A, and 6A which reflect spurious459
relations. Note that the sampling approach alone (see Fig. 3B, 5B, and 6B), which is the commonly applied460
method, is not sufficient to identify all pixels reflecting spurious relations.461

Note further that the examples emphasize once again the following: even if parts of a description are not462
indicated as spurious by any considered variant task, we cannot conclude that they reflect causal relations.463
Imagine, for instance, that we had only considered the size variant task. For this variant task and the464
logistic regression model, only a small number of pixels is masked although Fig. 6A seems to exclusively465
reflect spurious relations. Hence, variant tasks can only indicate parts of an original description as likely466
reflecting spurious relations and do not allow for any direct inference about other parts of the description.467
Nevertheless, this can be useful already.468

3.2 Task 2 – Water level prediction469

Figure 7a shows the description ~d of the function that the MLP learned when it was trained on the470
original water level prediction task. Remember that the considered description is a measure of the average471
importance of each pixel in the considered river segment for the predictions of the model. Our objective472
is to apply the variant approach to identify parts of the description that reflect spurious relations. To that473
purpose we computed the variant descriptions ~dvi for all sampling and location variant tasks, and masked474
all pixels of ~d for which the relative distance between the original description ~d and one of the (shifted)475
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variant descriptions exceeds the threshold of t = 0.5. The resulting masked versions of Fig. 7A are shown476
in Fig. 7B and C.477

For this task, we know that the development of the water level at the target location depends only on478
the water level closely upstream and downstream. Hence, Fig. 7A is (apart from the moderately high479
importance of pixel (11,17)) close to our understanding of the physical importance of the considered pixels.480
Nevertheless, especially in Fig. 7C, many of the pixels further upstream and downstream of the target481
location are masked, i.e. the variant approach indicates (mistakenly) that the low feature importance of482
these pixels likely reflects spurious relations. We suspect that this happened because we considered relative483
rather than absolute distances between original and variant descriptions (see Eq. 1), which can cause two484
small values to have a large distance which in turn causes the corresponding pixel to be mistakenly masked485
as spurious. Apart from pixels with low feature importance, also pixel (11,11) closely upstream of the486
original target location seems to be mistakenly masked as spurious in Fig. 7C. We suspect that this is due487
to our assumption that causal relations are shifted along the river by the exact same number of pixels as the488
target location is. While this assumption enables us to simply consider pixelwise relative distances between489
original description ~d and shifted variant descriptions ~dvi (see Sect. Methods), it might be overly simplified490
as for example the flow velocity at different locations in the river might differ, and the river might cross491
some pixels diagonally and others straight.492

Here, a visual assessment of the individual variant descriptions seems to be superior to the formal493
evaluation of distances performed for Fig. 7C because it allows a softer comparison between original and494
variant descriptions ~d and ~dvi . Indeed, upon visual assessment of the location variant descriptions depicted495
in Fig. 8, and with the assumption in mind that causal relations approximately reflect the shift of the target496
location, the only pixel in Fig. 7A that we would mark as potentially reflecting spurious relations, is pixel497
(11,17).498

Figure 7. (A) Description ~d of the function that the MLP learned when it was trained on the original water
level prediction task (see Fig. 1B). The description is a measure of the average importance of each pixel in
the considered river segment for the predictions of the model. Yellow color indicates high and blue color
low importance. (B-C) As (A), but pixels for which the relative distance between the original description ~d
and one of the sampling and (shifted) location variant descriptions ~dvi , respectively, exceeds the threshold
of t = 0.5, are masked. Gray marks pixels outside the considered river segment.
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Figure 8. Descriptions of the functions that separate instances of the MLP learned when trained for the
different target locations (from left to right the target location is at (10,10), (12,12), (12,15), see Fig. 2B).
Note that panel B shows the same as Fig. 7A. Gray marks pixels outside the considered river segment.

Figures 9 and 10 show the same as Figs. 7 and 8 but for the linear regression model. In this case, the499
formal evaluation of distances between original and location variant descriptions performed for Fig. 9C500
indicates that Fig. 9A reflects spurious relations at nearly all pixels except from the target location and the501
neighboring pixel upstream. In this case, the formal evaluation agrees well with the visual assessment of502
the location variant descriptions depicted in Fig. 10. Indeed, visual assessment of Fig. 10 also indicates that503
the neighboring pixel upstream of the target location and maybe the target location itself are the only two504
pixels for which the assigned importance approximately reflects the shift of the target location between505
Fig. 10A, B and C.506

Figure 9. Same as Fig. 7 but for the linear regression model.
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Figure 10. Same as Fig. 8 but for the linear regression model.

4 CONCLUSIONS

Given a description ~d ∈ Rd of the function that a statistical model learned during a training phase,507
we proposed a variant approach for the identification of parts of ~d that reflect spurious relations. We508
successfully demonstrated the approach and its superiority over pure sampling approaches with two509
illustrative hydrometeorological predictions tasks, various statistical models and illustrative descriptions.510
For the rain prediction task, where we assumed causal relations to remain stable between original and511
variant tasks, the formal evaluation of distances between original and variant descriptions enabled us to512
correctly identify all spurious relations that the statistical models learned. For the water level prediction513
task, where formally specifying the assumed variation of causal relations was more involved, we found514
the formal evaluation of distances to be of limited use. However, visual assessment enabled us again to515
correctly identify all spurious relations that the statistical models learned.516

In this work, we considered simplified tasks and global descriptions of the learned functions to be able to517
decide whether parts of the descriptions that the variant approach identifies as spurious do indeed reflect518
spurious relations. This was necessary to evaluate the variant approach. However, we expect the approach519
to be beneficial for a wide range of more complex prediction tasks. Naming two possible applications520
outside the geosciences, it might be used to identify spurious relations reflected in (local) descriptions521
of functions that DL models trained on electroencephalography (EEG) data (Sturm et al., 2016) learned522
by comparing them to variant descriptions obtained for variant models trained for different (groups of)523
patients; or to automatically detect spurious relations reflected in (local) descriptions of functions that a DL524
model trained on a common image data set learned (Lapuschkin et al., 2019) by automatically comparing525
them to variant descriptions for variant models trained on different image data sets. Applications of the526
variant approach to more complex prediction tasks in the geosciences and beyond, and to local descriptions527
of the learned functions, are planned in future.528

A challenge when applying the proposed variant approach may be to define variant tasks beyond random529
sampling of the training data. However, a data set is often composed of different sources constituting in530
themselves variants. Further, the modification of the rain prediction task, where we were able to identify531
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parts of the original description as spurious by merely changing the size of the input region, indicates that532
even small modifications of the original prediction task can be useful.533

Apart from the variant approach, which considers a fixed statistical model and modifications of an534
original prediction task, another approach for identifying spurious relations that a considered statistical535
model learned might be to compare the relations between input and target variables that different models536
learn when trained on the (fixed) prediction task. In such an approach, the degree of variation between537
models may differ from varying configurations in Monte-Carlo dropout, over random seeds for the weight538
initialization of otherwise identical models to completely different statistical models. Formalization and539
evaluation of this approach is out of scope of this work.540
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