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Introduction

In the area of acoustics or electromagnetics for instance, the simulation of physical phenom-
ena leads to the problem of solving elliptic partial differential equations. Usually, such
problems cannot be solved explicitly, so their solution needs to be determined numeri-
cally in finite dimensional spaces. Two common methods are the finite element method
(FEM) and the boundary element method (BEM). Both methods have different advan-
tages and disadvantages. In the three-dimensional case we have to discretize the volume
of the computational domain Ω in order to use the FEM whereas the BEM only needs
the discretization of the area ∂Ω. Obviously, the resulting degree of freedom N using
BEM is significantly smaller than by using FEM. A serious drawback of BEM are the
non-symmetric and fully populated system matrices in contrast to the sparse and sym-
metric system matrices of FEM. Thus the complexity for solving elliptic partial differential
equations via FEM or BEM needs O(N) and O(N2) operations respectively. With some
techniques like Panel-Clustering (cf. [4]) the BEM only needs O(N logN) operations. The
most important advantage of BEM arises if we want to solve the exterior boundary value
problem on unbounded domains. Since BEM leads to boundary integral equations we
do not need to discretize the unbounded domain Ω, only the small boundary ∂Ω. The
solution of such boundary integral equations automatically fulfills the radiation condition
u(x) → 0 for |x| → ∞. Using FEM it is not clear how to handle this condition. Because
of this reason BEM is the preferred method to solve exterior boundary value problems in
acoustics or field theory.

The principle of BEM consists of reformulating elliptic differential equations to bound-
ary integral equations. Solving these equations we obtain a solution on the boundary.
Green’s formula represents the solution at any point outside the boundary by boundary
integrals. Since the evaluation of these integrals via Gauss quadrature is neither efficient
nor stable near the boundary we will introduce a new method. In the first chapter of
this master’s thesis elliptic partial differential equations and the resulting boundary in-
tegral equations are considered in addition to the theoretical background of completing
the boundary data. Since kernel functions form the main part of Green’s representation
formula, they are discussed in detail in chapter two. Properties of kernel functions such
as asymptotic smoothness are considered as well as possibilities to approximate them by
degenerate kernels. These degenerate kernels can be computed by Taylor expansion or
adaptive cross approximation (ACA). For the latter a fast algorithm is presented. The
advantage of this algorithm is that neither derivatives must be computed nor the required
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rank needs to be known in advance. In chapter three we introduce a concept to partition
the boundary in an efficient way using so-called cluster-trees. Furthermore, the number
of needed clusters is estimated. The next both chapters deal with error and complexity
estimates of the introduced algorithm which are established in chapter six.
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Chapter 1

Problem

The aim of this master’s thesis is to find an efficient way to evaluate the solution of
boundary integral equations at several points. Hence, we solve the problem

L u = f in Ω (or Ωc),
γ0u = gD on ΓD,
γ1u = gN on ΓN

(1.1)

on bounded Lipschitz domains Ω ⊂ R
d or its complement Ωc := R

d \ Ω. The considered
operator L is a second order partial differential operator. L can be scalar or a system of
m operators

(L u)k = −
d∑

i,j=1

m∑

l=1

∂i(c
kl
ij∂j)ul + δklul, k = 1, . . . ,m, (1.2)

with coefficient functions cklij and δkl, i, j = 1, . . . , d, k, l = 1, . . . ,m. Furthermore f ,
the Dirichlet data gD and the Neumann data gN are given on parts ΓD and ΓN of the
boundary ∂Ω =: Γ = ΓD ∪ ΓN . In (1.1), we denote the Dirichlet trace by γ0. Let ν(x) be
the outer normal at the point x ∈ ΓN . Then the co-normal derivative is defined by

(γ1u)k :=

d∑

i,j=1

m∑

l=1

νi c
kl
ij ∂jul on ΓN .

.

1.1 Preliminaries

In the following chapters we assume that the differential operator L is uniform elliptic.
That means the operator L fulfills

d∑

i,j=1

m∑

k,l=1

cklij viwkvjwl ≥ λL ‖v‖2‖w‖2 for all v ∈ R
d, w ∈ R

m, (1.3)
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CHAPTER 1. PROBLEM

the so called Legendre-Hadamard condition. In (1.3), ‖·‖ denotes the Euclidean norm
and λL is a constant with λL > 0. In addition, we assume that cklij is bounded, thus

max
x∈Ω

|cklij (x)| ≤ ΛL , i, j = 1, . . . , d, k, l = 1, . . . ,m.

The solution of (1.1) and its components, respectively, is searched in Sobolev spaces

W k,p(Ω) := {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) for all |α| ≤ k}, k ∈ N0, p ∈ N,

where we denote by ∂α the weak derivative

∂α =

(
∂

∂x1

)α1
(
∂

∂x2

)α2

· · ·
(
∂

∂xd

)αd

with the multi-index α ∈ N0. For any multi-index α ∈ N0 we define |α| := α1+α2+. . .+αd,
xα := xα1

1 · xα2
2 · . . . · xαd

d and α! := α1! · α2! · . . . · αd!. With respect to the Sobolev space
W k,p we define the Sobolev norm

‖u‖W k,p(Ω) :=


∑

|α|≤k

‖∂αu‖pLp(Ω)




1
p

.

Let supp u := {x ∈ Ω : u(x) 6= 0} denote the support of u in Ω, then we can define the set

W k,p
0 (Ω) as the closure of the set

C∞
0 (Ω) := {u ∈ C∞(Ω) : supp u ⊂ Ω}

in Wk,p(Ω) with respect to the norm ‖ · ‖W k,p(Ω). For the case p = 2 the Sobolev spaces

are in addition Hilbert spaces, denoted by Hk(Ω) := W k,2(Ω) and Hk
0 (Ω) := W k,2

0 (Ω)
with the scalar product

(u, v)Hk(Ω) :=
∑

|α|≤k

∫

Ω
∂αu ∂αv dx.

The Sobolev space H−k(Ω) of negative order is defined as the dual space of Hk
0 (Ω).

On the boundary, we can define Sobolev spaces Hs(Γ), s ∈ R by using parameteriza-
tions of Γ. Therefore, we require that the boundary Γ is in Ck−1,1. For a part Γ0 ⊂ Γ of
the boundary Γ the Sobolev spaces Hs(Γ0) and H̃

s(Γ0), s ≥ 0 are defined by

Hs(Γ0) := {u|Γ0 : u ∈ Hs(Γ)}
H̃s(Γ0) := {u|Γ0 : u ∈ Hs(Γ), supp u ⊂ Γ0}

with the norm

‖u‖Hs(Γ0) := inf{‖ũ‖Hs(Γ) : ũ ∈ Hs(Γ), ũ|Γ0 = u}.
Negative Sobolev spaces on the part Γ0 of the boundary are defined again by duality

H−s(Γ0) := [H̃s(Γ0)]
′

H̃−s(Γ0) := [Hs(Γ0)]
′.

6



1.2. GREEN’S REPRESENTATION FORMULA

1.2 Green’s Representation Formula

Assume that gD ∈ H
1
2 (ΓD) and gN ∈ H− 1

2 (ΓN ). Then the solution u of (1.1) is uniquely
defined by conditions on the boundary Γ supposed that the Dirichlet part has positive
measure. If additional constraints are imposed, then also pure Neumann problems can be
treated. On these conditions, we can reformulate the boundary value problem (1.1) with
f = 0 as integral equations on the boundary Γ. For simplicity, we consider operators

(L u)k = −
d∑

i,j=1

m∑

l=1

∂i(c
kl
ij∂j)ul, k = 1, . . . ,m.

Thus we restrict ourselves to the leading part of the operator L .

Let δ denote Dirac’s δ. We assume that for L a singularity function S can be
found, i.e. an m×m matrix of functions satisfying

L S = δIm ∈ R
d.

At least for operators with constant coefficients the existence of S can be guaranteed. We
need to know S explicitly, since S will appear as part of the kernel function of the resulting
integral operators. To simplify matters we show how the boundary integral equations are
derived if L = −∆ is the Laplacian. For this operator, the co-normal derivative γ1
coincides with the normal derivative ∂ν .

Theorem 1.1. The solution u of (1.1) can be computed in Ω or its exterior Ωc with
Green’s representation formula

±u(x) = (Vt)(x)− (Ku)(x), x ∈ Ω (x ∈ Ωc), (1.4)

by the Dirichlet data u(x) and the Neumann data t(x) := ∂νu(x) for x ∈ Γ. For the
exterior boundary value problem, the assumption

u(x) → 0, for ‖x‖ → ∞,

is needed in addition.

In (1.4), V denotes the single-layer potential operator

(Vw)(x) :=
∫

Γ
S(y − x)w(y) dsy, x ∈ R

d, (1.5)

acting on w on the boundary Γ = ΓD ∪ ΓN . K is the double-layer potential operator

(Kw)(x) :=
∫

Γ
w(y)∂νyS(y − x) dsy, x ∈ R

d, (1.6)
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CHAPTER 1. PROBLEM

and

S(x) =





−1
2 |x|, d = 1

− 1
2π ln ‖x‖, d = 2
1

(d−1)ω′

d

‖x‖2−d, d ≥ 3

(1.7)

denotes the singularity function of the Laplacian, where ω′
d is the surface measure of the

unit sphere in R
d. Hence ±u(x) can be written as

±u(x) =
∫

Γ
S(y − x)∂νyu(y) dsy −

∫

Γ
u(y)∂νyS(y − x) dsy.

Proof. (cf. [5]). Without loss of generality we consider the interior boundary value prob-
lem. The above representation follows from Green’s first identity

∫

Ω
gradw · gradu dx =

∫

Γ
w ∂νu ds−

∫

Ω
w∆u dx,

and Green’s second identity

∫

Ω
(w∆u− u∆w) dx =

∫

Γ
(w ∂νu− u ∂νw) ds.

Using the second identity with w(y) = S(y − x), we obtain Green’s third identity

u(x) =

∫

Ω
S(y − x)∆yu(y)︸ ︷︷ ︸

0

−u(y)∆yS(y − x)︸ ︷︷ ︸
−δ(x)

dy

=

∫

Γ
S(y − x) ∂νyu(y)− u(y) ∂νyS(y − x) dsy.

1.3 Symmetric Boundary Integral Formulation

In order to evaluate the representation formula (1.4) we need to know u and ∂νu on the
whole boundary Γ. In this chapter we will describe how the Cauchy data [γ0u, γ1u] can
be completed, since u is only known on ΓD and ∂νu is only known on ΓN .

Let

(K′w)(y) :=
∫

Γ
w(x)∂νyS(x− y) dsx, y ∈ Γ

8



1.3. SYMMETRIC BOUNDARY INTEGRAL FORMULATION

denote the adjoint of K and D be the hypersingular operator obtained by applying the
negative Neumann trace γ1 to the double-layer potential operator (1.6). If we apply the
trace operators γ0 and γ1 to Green’s formula (1.4) together with the jump relations

∂ν(Vw)(y) → (K′w)(y0)±
1

2
w(y0),

(Kw)(y) → (Kw)(y0)∓
1

2
w(y0),

which map any y ∈ Ω (y ∈ Ωc) to a y0 ∈ Γ, we obtain

γ0u = γ0(V∂νu−Ku)

= Vγ1u−Kγ0u± 1

2
γ0u

and

γ1u = γ1(V∂νu−Ku)

= K′γ1u± 1

2
γ1u−Kγ1u

= K′γ1u± 1

2
γ1u+Dγ0u.

Hence we get the following system of boundary integral equations on Γ

[
γ0u
γ1u

]
=

[
±1

2I − K V
D ±1

2I +K′

] [
γ0u
γ1u

]
. (1.8)

Next, we will introduce some properties of the single-layer potential, double-layer po-
tential and hypersingular operator (cf. [5] or [7]). The single-layer potential operator

V : H̃− 1
2 (ΓD) → H

1
2 (ΓD) is continuous and H̃

− 1
2 (ΓD)-coercive, that means

〈Vw,w〉L2(ΓD) ≥ cV‖w‖2
H̃−

1
2 (ΓD)

for all w ∈ H̃− 1
2 (ΓD).

Moreover, the hypersingular operator D : H̃
1
2 (ΓN ) → H− 1

2 (ΓN ) is continuous and

H̃
1
2 (ΓN )-coercive, thus

〈Dw,w〉L2(ΓN ) ≥ cD‖w‖2
H̃

1
2 (ΓN )

for all w ∈ H̃
1
2 (ΓN ).

The double-layer potential operator K : H
1
2 (Γ) → H

1
2 (Γ) is continuous, i.e.

〈Kv, w〉L2(Γ) ≤ cK‖v‖
H

1
2 (Γ)

‖w‖
H

1
2 (Γ)

for all v, w ∈ H
1
2 (Γ).
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In order to complete the Cauchy data [γ0u, γ1u] let g̃D and g̃N denote the canonical
extensions of gD and gN to Γ. We set

ũ := u− g̃D,

t̃ := t− g̃N ,

where t(x) = ∂νu(x). With this definition we have to compute ũ ∈ H̃
1
2 (ΓN ) and t̃ ∈

H̃− 1
2 (ΓD). Obviously ũ = 0 on ΓD and t̃ = 0 on ΓN , thus we obtain from (1.8)

g̃D =
1

2
g̃D −K(ũ+ g̃D) + V(t̃+ g̃N ) on ΓD,

g̃N = D(ũ+ g̃D) +
1

2
g̃N +K′(t̃+ g̃N ) on ΓN

and hence

−V t̃+Kũ = V g̃N −
(
1

2
I +K

)
g̃D on ΓD,

K′t̃+Dũ =

(
1

2
I − K′

)
g̃N −Dg̃D on ΓN

(1.9)

for the inner boundary value problem. The previous system of integral equations (1.9) is
referred to as the symmetric boundary integral formulation of the mixed boundary
value problem (1.1). If the Dirichlet boundary ΓD does not vanish, this system of equations
is uniquely solvable.

1.4 Boundary Data using Galerkin’s Method

After having approximated the manifold Γ by triangles, each operator λI + A with
(Av)(y) :=

∫
Γ κ(x, y)v(x) dsx of the symmetric boundary integral formulation (1.9) is

discretized as λM +A, where M denotes the mass matrix and A the stiffness matrix. Let
the piecewise linears φj , j ∈ J , be a basis of the finite-dimensional ansatz space Vh ⊂ V ;
i.e. we search a solution uh of the form uh =

∑
j∈J ujφj . The finite-dimensional trial space

Wh ⊂ V ′ is spanned by the piecewise constants ψi, i ∈ I. We use the Galerkin method to
test (λI +A)uh = g in variational form

∫

Γ
λuhψi + (Auh)ψi ds =

∫

Γ
gψi ds, i ∈ I.

Thus, the mass matrix M takes the form

mij =

∫

Γ
φj(x)ψi(x) ds, i ∈ I, j ∈ J,

and the stiffness matrix A has the form

aij =

∫

Γ

∫

Γ
κ(x, y)ψi(y)φj(x) dsx dsy, i ∈ I, j ∈ J.

10



1.4. BOUNDARY DATA USING GALERKIN’S METHOD

The mass matrix M is sparse and does not cause any numerical problems. Since M
vanishes on admissible blocks t× s, i.e. blocks which satisfy

min{diamXt, diamXs} ≤ η dist(Xs, Xt),

we can add the entries of M to the non-admissible blocks of an approximant of A. In our
chosen way of discretization, we have I 6= J for the discretization A of operators A. Let
t ⊂ I and s ⊂ J , then we can define the following linear operators Λ1,t : L

2(Γ) → R
t and

Λ2,s : L
2(Γ) → R

s by

(Λ1,tf)i :=

∫

Γ
f(x)ψi(x) dsx, for i ∈ t,

(Λ2,sf)j :=

∫

Γ
f(x)φj(x) dsx, for j ∈ s.

We define the adjoint Λ∗
2,sR

s → L2(Γ) of Λ2,s : L
2(Γ) → R

s by

(Λ∗
2,sz, f)L2(Γ) = zT (Λ2,sf) for all z ∈ R

s, f ∈ L2(Γ).

Using this notation, we can write each block Ats of the stiffness matrix A ∈ R
I×J as

Ats = Λ1,t A Λ∗
2,s.

Next, we need to define the support of Λ : L2(Γ) → R
t. The support is given by

supp Λ = Γ \G,

where G is the largest open set such that Λφ = 0 for all φ with supp φ ⊂ G. With this
definition, we set

Yi = supp Λ1,i, i ∈ I,

Xj = supp Λ2,j , j ∈ J.

In order to compute the entries aij of the stiffness matrix A, we need to evaluate the
kernel function κ. The operators Λ1,i and Λ2,j guarantee that the kernel function κ is
evaluated on Xj × Yi. Hence, for any sub-block Ats of the matrix A we have to evaluate
κ on Xs :=

⋃
j∈sXj and Yt =

⋃
i∈t Yi.

Now we can turn to the discrete variational formulation of (1.9). The solution (uh, th)
is searched of the form

uh =
∑

j∈J
ujφj ,

th =
∑

i∈I
tiψi,

11
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and thus we obtain the following algebraic system of equations for the unknown coefficients
u ∈ R

|J | and t ∈ R
|I| of uh and th

[
−V K
KT D

] [
t
u

]
=

[
V −1

2M −K
−1

2M −KT −D

] [
g̃N
g̃D

]
=:

[
fN
fD

]
.

The discretization of the single-layer potential operator V , the double-layer potential op-
erator K and the hypersingular operator D are calculated by

Vkl = (Vψl, ψk)L2 ,

Kkj = (Kφj , ψk)L2 ,

Dij = (Dφj , φi)L2 ,

where k, l = 1, . . . , |I| and i, j = 1 . . . |J |.

To describe the convergence of the above discretization method, we need a generaliza-
tion of finite element analysis. Let (ũ, h̃) ∈ H2(ΓN ) × H1(ΓD), be the solution of (1.9).
Using Céa’s lemma, we can show that

‖ũ− uh‖2
H

1
2 (ΓN )

+ ‖t̃− th‖2
H−

1
2 (ΓD)

≤ ch3
(
‖ũ‖2H2(ΓN ) + ‖t̃‖2H1(ΓD)

)
.

From this estimate, we see that the discrete solution (uh, th) converges for decreasing mesh
size h→ 0 against the continuous solution (ũ, t̃) of (1.9); cf. [5].

12



Chapter 2

Kernel Functions

In this chapter we discuss the same theoretical background as in Chapters 3.2-3.4 of [2].

2.1 Properties of Kernel Functions

In this section we will introduce some properties of kernel functions of systems of partial
differential operators

(L u)k = −
d∑

i,j=1

m∑

l=1

∂i(c
kl
ij∂j)ul + δuk, k = 1, . . . ,m (2.1)

with constant coefficients cklij and δ satisfying the Legendre-Hadamard condition (1.3). We
will need these properties to prove that the kernel functions are asymptotically smooth.

Definition 2.1. A function κ : R
d × Ω → R satisfying κ(·, y) ∈ C∞(Rd \ {y}) for all

y ∈ Ω is called asymptotically smooth in Ω with respect to x if there are constants c
and γ such that for all y ∈ Ω and all α ∈ N

d
0

|∂αxκ(x, y)| ≤ cp!γp
|κ(x, y)|
‖x− y‖p for all x ∈ R

d \ {y}, (2.2)

where p = |α|.

Instead of (2.2) sometimes another condition is used for the definition of asymptotic
smoothness. Alternatively we can use the condition

|∂αxκ(x, y)| ≤ cp!γp‖x− y‖−s−p for all y 6= x, (2.3)

on the derivatives of κ with some s ∈ R. Conditions (2.2) and (2.3) are equivalent if κ has
an algebraic singularity for y = x.

13



CHAPTER 2. KERNEL FUNCTIONS

Definition 2.2. The Fourier transform F : L2(Ω) → L2(Ω) is defined by

(Fv)(x) =
1

(2π)d/2

∫

Rd

e−ix·yv(y) dy,

and normalized such that F∗ = F−1.

Lemma 2.3. For u ∈ [H1
0 (Ω)]

m satisfying the Legendre-Hadamard condition (1.3) it holds
that

λL ‖J(u)‖2L2 ≤
d∑

i,j=1

m∑

k,l=1

∫

Ω
cklij ∂iuk ∂jul dx.

Proof. Using F[∂αu](ξ) = ξα(2πi)|α|Fu(ξ), it follows that

−∂icklij ∂jul = −F∗F(∂ic
kl
ij ∂jul) = (2π)2F∗(cklij ξi ξj Ful).

Together with (1.3) and ‖Fu‖L2(Ω) = ‖u‖2L2(Ω) we obtain

d∑

i,j=1

m∑

k,l=1

∫

Ω
cklij ∂iuk ∂jul dx = (2π)2

d∑

i,j=1

m∑

k,l=1

∫

Ω
cklij ξi ξj Fuk Ful dx

≥ (2π)2λL

d∑

i,j=1

m∑

k,l=1

∫

Ω
|ξi Ful|2 dx

= λL

d∑

i,j=1

m∑

k,l=1

∫

Ω
|F(∂iul)|2 dx

= λL

d∑

i,j=1

m∑

k,l=1

‖∂iul‖2L2

= λL ‖J(u)‖2L2 ,

where J(u) ∈ R
m×d denotes the Jacobian of u.

Note that the previous estimate only holds for constant coefficients cklij .

Lemma 2.4. Let D ⊂ R
d be a domain having an intersection with Ω that has positive

measure. Assume that u ∈
[
H1(D)

]m
is a weak solution of L u = 0 in D ∩ Ω and u = 0

14



2.1. PROPERTIES OF KERNEL FUNCTIONS

in D \ Ω. Then for any compact set K ⊂ D it holds that

‖J(u)‖L2(K) ≤
cL
σ

‖u‖L2(D),

where

cL =

√
8d2m

ΛL

λL

(
1 + 2dm

ΛL

λL

)
+ 2

σ2

λL

|δ| and σ = dist(K, ∂D).

Proof. Let η ∈ C1(D) be a cut-off function with respect to (K,σ). Then η satisfies
0 ≤ η ≤ 1, η = 1 in K, η = 0 in a neighborhood of ∂D. We can choose η such that
|∂iη| ≤ 2

σ , i = 1, . . . , d in D. Since u ∈
[
H1(Ω)

]m
it follows that η2u ∈

[
H1

0 (D ∩ Ω)
]m

.
From

∂i(ηuk) ∂j(ηul) + uk ∂iη ∂j(ηul)

= ul ∂i(ηuk) ∂jη + uk η ∂iη ∂jul + η2 ∂iuk ∂jul + uk ul ∂iη ∂jη + uk η ∂iη ∂jul

= 2 uk η ∂iη ∂jul + η2 ∂iuk ∂jul + ul ∂i(ηuk) ∂jη + uk ul ∂iη ∂jη

= ∂i(η
2uk) ∂jul + ul ∂i(ηuk) ∂jη + uk ul ∂iη ∂jη

we obtain

∂i(ηuk) ∂j(ηul) = ∂i(η
2uk) ∂jul + ul ∂i(ηuk) ∂jη + uk ul ∂iη ∂jη − uk ∂iη ∂j(ηul). (2.4)

Using

∫

D
η2uk(L u)l dx = 0 we get

0 =
m∑

l=0

∫

D
η2uk(L u)l dx

=
m∑

l=0

∫

D
η2uk




d∑

i,j=1

m∑

k=1

−∂i(cklij∂j)uk + δul


 dx

(P.I.)
=

d∑

i,j=1

m∑

k,l=1

∫

D
∂i(η

2uk) c
kl
ij ∂juk + δη2ukul dx.

(2.5)

15
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Both together leads for any ε > 0 to

d∑

i,j=1

m∑

k,l=1

∫

D
cklij ∂i(ηuk) ∂j(ηul) + δη2ukul dx

(2.4)
=

d∑

i,j=1

m∑

k,l=1

∫

D
cklij
(
∂i(η

2uk) ∂jul + ul ∂i(ηuk) ∂jη + uk ul ∂iη ∂jη − uk ∂iη ∂j(ηul)
)

+ δη2ukul dx

(2.5)
=

d∑

i,j=1

m∑

k,l=1

∫

D
cklij (ul ∂i(ηuk) ∂jη + uk ul ∂iη ∂jη − uk ∂iη ∂j(ηul)) dx

≤ ΛL

d∑

i,j=1

m∑

k,l=1

∫

D
|uk| |ul| |∂iη| |∂jη|+ 2 |uk| |∂iη| |∂j(ηul)| dx

≤ 4ΛL

d

σ

d∑

i,j=1

m∑

k,l=1

∫

D

1

σ
|uk| |ul|+ |uk| |∂j(ηul)| dx

≤ 4ΛL

d

σ


md

σ
‖u‖L2(D) +

d∑

i,j=1

m∑

k,l=1

(∫

D
|uk|2 dx

)1/2(∫

D
|∂j(ηul)|2 dx

)1/2



(∗)
≤ 2ΛL

dm

σ


2

d

σ
‖u‖2L2(D) +

d

ε

m∑

k=1

∫

D
|uk|2 dx+ ε

d∑

j=1

m∑

l=1

∫

D
|∂j(ηul)|2 dx




= 2ΛL

d2m

σ2

(
2 +

σ

ε

)
‖u‖2L2(D) + 2ΛL

dm

σ
ε

∫

D
‖J(ηu)‖2F dx,

where we have used at (∗) that 2ab ≤ a2/ε + εb2 for all a, b ∈ R. From Lemma 2.3 we
obtain

λL

∫

D
‖J(ηu)‖2F dx ≤

(
2
d2m ΛL

σ2

(
2 +

σ

ε

)
+ |δ|

)
‖u‖2L2(D) + 2

dm ΛL

σ
ε

∫

D
‖J(ηu)‖2F dx.

In the end we get

‖J(u)‖2L2(K) ≤ ‖J(ηu)‖2L2(D)

≤ 1

σ2
2 d2m λL (2 + σ/ε) + σ2|δ|

λL − 2 dm ΛL ε/σ
‖u‖2L2(D),

and by choosing ε = λL σ
4dmλL

the result.

Remark 2.5. The previous proof shows that non-negative δ do not enter the constant cL .

Next, we want to derive pointwise estimates which we need to prove the asymptotic
smoothness of the singularity function. We can apply Lemma 2.4 iteratively on a sequence

16
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of balls Brl(x), l = 1, . . . , k to derive the following estimate for u satisfying L u = 0 in
Br(x) ⊂ R

d and k ∈ N

‖u‖Hk(Bρ(x)) ≤ c(k, ρ, r)‖u‖L2(Br(x)) for all 0 < ρ < r, (2.6)

where c depends on the coefficients of L . Because of the Sobolev embedding theorem,
(2.6) implies that L -harmonic functions are locally C∞. If we choose k = d+1, we obtain
from (2.6)

sup
Bρ(x)

|u| ≤ c‖u‖Hd+1(Bρ(x)) ≤ c′(ρ, r)‖u‖L 2(Br(x)).

Hence, we use a rescaling argument and obtain for x ∈ Ω and 0 ≤ r ≤ dist(x, ∂Ω)

sup
Bρ(x)

|u| ≤ cR r
− d

2 ‖u‖L2(Br(x)), 0 < ρ < r, (2.7)

with a constant cR > 0 independent of ρ and r.

Theorem 2.6. The entries of the singularity matrix S(x − y) of L are asymptotically
smooth in R

d with respect to x.

Proof. Choose a point y ∈ R
d which is fixed. For x ∈ R

d \ {y} let R = ‖x − y‖/2.
We assume that a function u is L -harmonic in Br(x), that means L u = 0 in Br(x),
0 < r < R. Choosing 0 < ρ < r and ρ′ := (r+ρ)/2, we obtain from (2.7) and the previous
Lemma 2.4 that

sup
z∈Bρ(x)

|∂ziu(z)|2
(2.7)

≤ c2R
ρ′d

∫

Bρ′ (x)
|∂ziu(z)|2 dz

2.4
≤ c2R c

2
L

ρ′d(r − ρ′)2

∫

Bρ′ (x)
|u(z)|2 dz

≤ c2R c
2
L

2d

(r + ρ)d
22

(r − ρ)2
ωd r

d sup
z∈Br(x)

|u(z)|2

= 2d+2 ωd r
d

(r + ρ)d
c2R c

2
L

(r − ρ)2
sup

z∈Br(x)
|u(z)|2,

(2.8)

where ωd denotes the volume of the unit ball in R
d.

Let α ∈ N
d
0 be a multi-index and p = |α|. We define a nested sequence of balls

Bk =

{
z ∈ R

d : ‖x− z‖ < Rk

p+ 1

}
, k = 1, . . . , p+ 1,

17
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centered at x. Then Bk ⊂ BR(x) ⊂ R
d \ {y} and dist(Bk, ∂Bk+1) =

R
p+1 . Using estimate

(2.8) with ρ = Rk
p+1 and r = R(k+1)

p+1 yields

sup
z∈Bk

|∂ziu(z)| ≤ 2
d
2
+1

(
k + 1

2k + 1

) d
2 cR cL

√
ωd

R
(p+ 1) sup

z∈Bk+1

|u(z)|

= c′L
p+ 1

R

(
2k + 2

2k + 1

) d
2

sup
z∈Bk+1

|u(z)|, k + 1, . . . , p,

where c′
L

:= 2 cR cL
√
ωd. Since each entry Sij(· − y) of the singularity matrix and each

of its derivatives ∂αxS(x − y) is L -harmonic in BR(x) ⊂ R
d for arbitrary α ∈ N

d
0, we

can apply the previous estimate successively to the p partial derivatives of the function
Sij(· − y) and obtain

sup
z∈B1

|∂αz Sij(z − y)| ≤ (p+ 1)
d
4

(
c′
L
(p+ 1)

R

)p

sup
z∈Bp+1

|Sij(z − y)|,

since
∏p

k=1
2k+2
2k+1 ≤ √

p+ 1. Using Stirling’s approximation

√
2π(p+ 1)

(
p+ 1

e

)p+1

< (p+ 1)!,

we end up with

|∂αxSij(x− y)| ≤ (p+ 1)
d
4
−1

(
c′
L

R

)p
(p+ 1)! ep+1

√
2π(p+ 1)

sup
z∈BR(x)

|Sij(z − y)|

=
e√
2π

(p+ 1)
d
4
− 1

2 p!

(
c′
L
e

R

)p

sup
z∈BR(x)

|Sij(z − y)|

≤ e√
2π

(2p+1)
d
4
− 1

2 p!

(
c′
L
e

R

)p

sup
z∈BR(x)

|Sij(z − y)|

=
e√
2π

2
d
4
− 1

2 p!

(
2

d
4
− 1

2
c′
L
e

R

)p

sup
z∈BR(x)

|Sij(z − y)|

≤ e cH√
2π

2
d
4
− 1

2 p!

(
2

d
4
− 1

2
c′
L
e

R

)p

|Sij(x− y)|

=
e cH√
2π

2
d
4
− 1

2

︸ ︷︷ ︸
=:c

p!
(
2

d
4
+ 1

2 c′L e
)p

︸ ︷︷ ︸
=:γp

|Sij(x− y)|
‖x− y‖p

due to p ≤ 2p and Harnack’s inequality supz∈BR(x) |Sij(z − y)| ≤ cHSij(x− y), which can
be used since Sij(· − y) is L -harmonic in BR(x).

The previous lemma shows that the singularity function S of any elliptic operator is
asymptotically smooth. Analogously, we can show that S is asymptotically smooth with
respect to y. Thus, the kernel function of the double-layer operator (1.6) of the Laplacian
in R

3 is asymptotically smooth on Γ with respect to x. Using this fact, we can prove in
Subsection 2.3 the convergence of the ACA algorithm.
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2.2 Degenerate Kernel Approximation by Taylor Expansion

As in [2], we want to show that the kernel functions of the single-layer operator V and the
double-layer operator K can be approximated by a small sum of functions with separated
variables, if some assumptions, such as asymptotic smoothness, are fulfilled.

Definition 2.7. Let DX , DY ⊂ R
d be two domains. A kernel function κ : DX ×DY → R

is called degenerate if k ∈ N and functions ul : DX → R and vl : DY → R, l = 1, . . . , k
exist such that

κ(x, y) =
k∑

l=1

ul(x) vl(y),

x ∈ DX , y ∈ DY . The number k is called degree of degeneracy.

Since the singularity function S of the Laplacian is asymptotically smooth with respect
to x, the kernel function κ(x, y) := S(y − x) of the single-layer operator and the kernel
function κ(x, y) := ∂νyS(y−x) of the double-layer operator are asymptotically smooth on Γ
with respect to x. Now we will use this property to show the existence of an exponentially
convergent approximation of asymptotically smooth kernels. To this end let DX be a cube
with sides of length a and center ξDX

and let DY be a convex set. κ has a Taylor expansion

κ(x, y) =
∑

|α|<p

1

α!
∂αxκ(ξDX

, y)(x− ξDX
)α +

∑

|α|≥p

1

α!
∂αxκ(ξDX

, y)(x− ξDX
)α

=: Tp[κ](x, y) +Rp(x, y),

where Tp[κ](x, y) is a kernel approximation and Rp(x, y) denotes the remainder of the
expansion.

Theorem 2.8. Assume that η dist(ξDX
, DY ) ≥ a holds with η > 0 satisfying γdη < 1. If

κ is asymptotically smooth on the cube DX with respect to x, then it holds that

|κ(x, y)− Tp[κ](x, y)| ≤ c
(γdη)p

1− γdη
|κ(ξDX

, y)| (2.9)

for all x ∈ DX and y ∈ DY .

Proof. Since ‖x− ξDX
‖ ≤

√
da and ‖ξDX

− y‖ ≥ dist(ξDX
, DY ), it follows that

|Rp(x− y)| ≤
∑

|α|≥p

1

α!
|∂αxκ(ξDX

, y)||(x− ξDX
)α|

≤ c |κ(ξDX
, y)|

∑

|α|≥p

γ|α||α|!
α!‖ξDX

− y‖|α| |(x− ξDX
)α|
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= c |κ(ξDX
, y)|

∞∑

l=p

(
γ

‖ξDX
− y‖

)l ∑

|α|=l

(
l

α

)
|(x− ξDX

)α|

≤ c |κ(ξDX
, y)|

∞∑

l=p

(
γ
√
d
‖x− ξDX

‖
‖ξDX

− y‖

)l

≤ c |κ(ξDX
, y)|

∞∑

l=p

(γdη)l

≤ c
(γdη)p

1− γdη
|κ(ξDX

, y)|.

In step 4 we have used that
∑

|α|=l

(
l
α

)
|ξα| =

(∑d
i=1 |ξi|

)l
≤

√
d‖ξ‖l for all ξ ∈ R

d.

The previous theorem shows that the Taylor expansion converges exponentially with
convergence rate γdη < 1 if the kernel is asymptotically smooth. To achieve a given
approximation accuracy ε > 0, it must hold p ∼ | log ε|. Since Tp[κ](·, y) is a d-variate
polynomial of order at most p−1, it follows that the degree of degeneracy k = dim(Πd

p−1) ≤
pd scales like

k ∼ | log ε|d. (2.10)

2.3 Degenerate Kernel Approximation by Adaptive Cross
Approximation

Since we need the computation of derivatives for the truncated Taylor expansion, this has
only theoretical meaning. Instead, we use the in [2] introduced adaptive cross approxima-
tion (ACA) to find an approximation of the kernel functions on domainsDX , DY satisfying
the assumptions of Theorem 2.8. ACA iteratively finds an interpolation of κ(x, y) by using
restrictions of it as approximation basis. First we consider the function

κ̃(x, y) :=
κ(x, y0) κ(x0, y)

κ(x0, y0)
,

where fixed x0 ∈ DX and y0 ∈ DY are close to x and y, respectively. Note that
κ(x0, y0) 6= 0 has to hold in order that κ̃ is well-defined. Due to the above definition,
the degree of degeneracy of κ̃ is one. In addition, it holds that

κ̃(x0, y) = κ(x0, y) for all y ∈ DY ,

κ̃(x, y0) = κ(x, y0) for all x ∈ DX .

20



2.3. DEGENERATE KERNEL APPROXIMATION BY ADAPTIVE CROSS APPROXIMATION

Thus, we see that κ̃ is an interpolation of κ on whole domains. The approximation error
can be estimated by

|κ(x, y)− κ̃(x, y)| =
∣∣∣∣κ(x, y)−

κ(x, y0)κ(x0, y)

κ(x0, y0)

∣∣∣∣

=

∣∣∣∣κ(x, y)− κ(x, y0)−
κ(x, y0)

κ(x0, y0)
(κ(x0, y)− κ(x0, y0))

∣∣∣∣

≤ |κ(x, y)− κ(x, y0)|+
|κ(x, y0)|
|κ(x0, y0)|

|κ(x0, y)− κ(x0, y0)|.

Assume we choose x0 such that |κ(x, y0)| ≤ |κ(x0, y0)| for all x ∈ DX , then

|κ(x, y)− κ̃(x, y)| ≤ 2 max
z∈DX

|κ(z, y)− κ(z, y0)|.

In order to find a better approximation of higher order, we will generate a sequence of
degenerate kernels which will be shown to converge exponentially to κ. For simplicity let

κ(x, [y]k) =



κ(x, yj1)

...
κ(x, yjk)


 ∈ R

k and κ([x]k, y) =



κ(xi1 , y)

...
κ(xik , y)


 ∈ R

k

with points xil ∈ DX and yjl ∈ DY , l = 1, . . . , k. With this notation, we can derive
degenerate approximations of the form

κ(x, y) = κ(x, [y]k)
TW−1

k κ([x]k, y) + rk(x, y), (2.11)

where the k × k matrix Wk is defined by

Wk =



κ(xi1 , yj1) . . . κ(xi1 , yjk)

...
...

κ(xik , yj1) . . . κ(xik , yjk)


 .

We need these results later on to construct an iterative algorithm for approximating ma-
trices by low-rank matrices without knowing the rank of approximation in advance.

First we consider the analytic problem of approximating a general asymptotically
smooth kernel by a degenerate kernel. We define sequences {sk}, {rk} for the
approximation of κ by the following rule

r0(x, y) = κ(x, y), s0(x, y) = 0,

and for k = 0, 1, . . .

rk+1(x, y) := rk(x, y)−
rk(x, yjk+1

) rk(xik+1
, y)

rk(xik+1
, yjk+1

)
,

sk+1(x, y) := sk(x, y) +
rk(x, yjk+1

) rk(xik+1
, y)

rk(xik+1
, yjk+1

)

(2.12)

with xik+1
∈ DX and yjk+1

∈ DY chosen such that rk(xik+1
, yjk+1

) 6= 0.
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Lemma 2.9. For 1 ≤ l ≤ k it holds that rk(x, yjl) = 0 for all x ∈ DX and rk(xil , y) = 0
for all y ∈ DY .

Proof. We prove the lemma by induction over k. We have seen that the lemma is true
for k = 1. Assume it holds for k − 1, so we have rk−1(x, yjl) = 0 for all x ∈ DX and all
1 ≤ l < k. Using (2.12), we obtain

rk(x, yjl) = rk−1(x, yjl)−
rk−1(x, yjk) rk−1(xik , yjl)

rk−1(xik , yjk)
= 0

for all 1 ≤ l < k. Obviously, the lemma holds true for l = k since

rk(x, yjk) = rk−1(x, yjk)−
rk−1(x, yjk) rk−1(xik , yjk)

rk−1(xik , yjk)
= 0.

Interchanging the roles of x and y, we also can show that rk(xil , y) = 0 for 1 ≤ l ≤ k and
all y ∈ DY .

The previous lemma shows that the functions rk accumulate zeros. Hence, sk succes-
sively interpolates κ and we can approximate

κ(x, y) ≈ sk(x, y)

=
k∑

l=1

rl−1(x, yjl)
rl−1(xil , y)

rl−1(xil , yjl)

=:
k∑

l=1

ul(x) vl(y)

by a sum of functions with separated variables.

Denote by W
(l)
k (x) ∈ R

k×k the matrix which results from replacing the lth row of Wk

by the vector κ(x, [y]k). The determinant of W
(l)
k (x) can be computed by the following

recursion formula.

Lemma 2.10. For 1 ≤ l < k it holds that

detW
(l)
k (x) = rk−1(xik , yjk) detW

(l)
k−1(x)− rk−1(x, yjk) detW

(l)
k−1(xik)

and

detW
(1)
1 (x) = r0(x, yj1),

detW
(k)
k (x) = rk−1(x, yjk) detWk−1, k > 1.

In particular, we have

detWk = r0(xi1 , yj1) · . . . · rk−1(xik , yjk).
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Proof. From (2.12) we can easily verify that there are coefficients α
(k−1)
ν , ν = 1, . . . , k− 1,

so that for all x ∈ DX

rk−1(x, yjk) = κ(x, yjk)−
k−1∑

ν=1

α(k−1)
ν κ(x, yjν ).

Thus, it is possible to replace each entry κ(·, yjk) in the last column of W
(l)
k (x) by

rk−1(·, yjk) and obtain W̃
(l)
k (x) without changing the determinant, because we have only

subtracted multiples of columns of W
(l)
k (x) from the last column of it. Since

rk−1(xil , yjl) = 0, 1 ≤ l < k by the previous lemma, only the lth and the kth entry

of the last column of W̃
(l)
k do not vanish. Using Laplace’s theorem yields the claim.

Since we choose ik, jk such that each rk−1(xik , yjk) 6= 0, the previous lemma guarantees
the non-singularity of Wk. Now, we can prove that the decomposition of κ into sk and rk
has the form (2.11).

Lemma 2.11. For the generated sequences sk and rk, k ≥ 0 it holds that

sk(x, y) + rk(x, y) = κ(x, y),

where for k ≥ 1

sk(x, y) = κ(x, [y]k)
TW−1

k κ([x]k, y).

Proof. We prove the lemma by induction over k. Obviously, the lemma holds for k = 1.
From the definition of rk and sk we can see that

sk(x, y) + rk(x, y) = sk−1(x, y) + rk−1(x, y)

= κ(x, y).

To simplify matters we set

ak =W−1
k−1κ([x]k−1, yjk),

bk =W−T
k−1κ(xik , [y]k−1) and

γk = (rk−1(xik , yjk))
−1.
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Due to the induction we have

sk(x, y) = sk−1(x, y) + γkrk−1(x, yjk)rk−1(xik , y)

= κ(x, [y]k−1)
TW−1

k−1κ([x]k−1, y) + γkrk−1(x, yjk)rk−1(xik , y)

= κ(x, [y]k−1)
TW−1

k−1κ([x]k−1, y)

+ γk(sk−1(x, yjk)− κ(x, yjk))(sk−1(xik , y)− κ(xik , y))

= κ(x, [y]k−1)
TW−1

k−1κ([x]k−1, y)

+ γk(κ(x, [y]k−1)ak − κ(x, yjk))(b
T
k κ([x]k−1, y)− κ(xik , y))

= κ(x, [y]k−1)
T (W−1

k−1 + γkakb
T
k )κ([x]k−1, y)− κ(x, [y]k−1)γkakκ(xik , y)

− κ(x, yjk)γkb
T
k κ([x]k−1, y) + κ(x, yjk)γkκ(xik , y)

=

[
κ(x, [y]k−1)
κ(x, yjk)

]T [
W−1

k−1 + γkakb
T
k −γkak

−γkbTk γk

] [
κ([x]k−1, y)
κ(xik , y)

]

and

Wk

[
W−1

k−1 + γkakb
T
k −γkak

−γkbTk γk

]

=

[
Wk−1 κ([x]k−1, yjk)

κ(xik , [y]k−1)
T κ(xik , yjk)

] [
W−1

k−1 + γkakb
T
k −γkak

−γkbTk γk

]

=

[
Ik−1 + (Wk−1ak − κ([x], yjk))γkb

T
k γk(κ([x]k−1, yjk)−Wk−1ak)

κ(xik
,[y]k−1)

TW−1
k−1+(sk−1(xik

,yjk )−κ(xik
,yjk ))γkb

T
k

γk(κ(xik , yjk)− κ(xik , [y]k−1)
Tak)

]

=

[
Ik−1 0

(1 + γk(sk−1(xik , yjk)− κ(xik , [y]k−1)
T ))bTk γkrk−1(xik , yjk)

]

=

[
Ik−1 0
0 1

]

= Ik.

From this we obtain the representation

sk(x, y) = κ(x, [y]k)
TW−1

k κ([x]k, y)

also for sk.

In contrast to the one-dimensional space R, the polynomial interpolation in multidi-
mensional space R

d, d ≥ 2 is not unique in general. If the interpolation points lie on
a hyperface of degree p, there is no unique interpolation polynomial in

∏d
p. Thus, the

uniqueness depends on the configuration of the points.
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Corollary 2.12. The function sk(x, y) is the uniquely defined interpolant of κ(x, y) at the
nodes yjl in the span of the functions κ(xil , y), l = 1, . . . , k.

Proof. Using Cramer’s rule we can determine W−1
k κ([x]k, y) by

(
W−1

k κ ([x]k, y)
)
l
=

detV
(l)
k (y)

detWk
, l = 1, . . . , k, (2.13)

where the matrix V
(l)
k (y) arises from Wk by replacing the lth column by κ([x]k, y). The

function

Ll(y) :=
detV

(l)
k (y)

detWk
∈ span{κ(xiν , y), ν = 1, . . . , k}

satisfies Lµ(yjν ) = δµν , 1 ≤ µ, ν ≤ k. Thus Ll(y) is the lth Lagrange function for the
interpolation system {κ(xiν , y), ν = 1, . . . , k}.

2.3.1 Error Analysis

Next, we will show that the remainder rk(x, y) can be estimated by the remainder of the
best approximation in any system Ξ = {ξ1, . . . , ξk} of functions. For instance, we consider
the approximation by polynomials. Assume that the matrix (ξµ(yjν ))µ,ν is non-singular
so that the interpolation in this system is unique.

Denote by

‖IΞ
k ‖ := max{‖IΞ

k ‖∞,DY
/‖f‖∞,DY

: f ∈ C(DY )}

the Lebesgue constant of the interpolation operator IΞ
k defined by

IΞ
k f :=

k∑

l=1

f(yjl) L
Ξ
l ,

with LΞ
l , l = 1, . . . , k being the Lagrange functions for ξl and yjl , l = 1, . . . , k. From

f − IΞ
k (f) = f − p+ IΞ

k (p− f) for all p ∈ spanΞ,

we obtain that, up to constants, the interpolation error EΞ
k (f) := f − IΞ

k f is bounded by
the error of the best approximation

‖EΞ
k (f)‖∞,DY

≤ (1 + ‖IΞ
k ‖) inf

p∈spanΞ
‖f − p‖∞,DY

. (2.14)
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Lemma 2.13. Assume in each step we choose the pivots xik of ACA such that

|rk−1(xik , yjk)| ≥ |rk−1(x, yjk)| for all x ∈ DX .

Then for 1 ≤ l ≤ k it holds that

sup
x∈DX

| detW (l)
k (x)|

| detWk|
≤ 2k−l.

Proof. From Lemma 2.10 we obtain for 1 ≤ l < k

detW
(l)
k (x)

detWk
=

detW
(l)
k−1(x)

detWk−1
− rk−1(x, yjk)

rk−1(xik , yjk)

detW
(l)
k−1(xik)

detWk−1

and for l = k

detW
(k)
k (x)

detWk
=

rk−1(x, yjk)

rk−1(xik , yjk)
.

Since we have
rk−1(x,yjk )

rk−1(xik
,yjk )

≤ 1 by assumption, we get for 1 ≤ l < k

sup
x∈DX

| detW (l)
k (x)|

detWk
≤ 2 sup

x∈DX

| detW (l)
k−1(x)|

detWk−1

from what the assertion follows.

Define κx : DY → R by κx(y) := κ(x, y) for y ∈ DY and fixed x ∈ DX , hence it is
enough to estimate rk by the error EΞ

k (κx) of the interpolation in Ξ if we want to estimate
rk by the best approximation error in Ξ.

Lemma 2.14. For x ∈ DX and y ∈ DY it holds that

rk(x, y) = EΞ
k (κx)(y)−

k∑

l=1

detW
(l)
k (x)

detWk
EΞ

k (κxil
)(y).

Proof. We denote the vector of the Lagrange functions LΞ
l , l = 1, . . . , k, to the points

yj1 , . . . , yjk by

LΞ(y) =



LΞ
1 (y)
...

LΞ
k (y)


 .
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Using Lemma 2.11 and (2.13) we obtain

rk(x, y)
2.11
= κ(x, y)− κ(x, [y]k)

TW−1
k κ([x]k, y)

= κ(x, y)− κ(x, [y]k)
TLΞ(y)− κ(x, [y]k)

TW−1
k

(
κ([x]k, y)−WkL

Ξ(y)
)

= EΞ
k (κx)(y)−

k∑

l=1

(
κ(x, [y]k)

TW−1
k

)
l
EΞ

k (κxil
)(y)

(2.13)
= EΞ

k (κx)(y)−
k∑

l=1

detW
(l)
k (x)

detWk
EΞ

k (κxil
)(y).

Combining both two previous lemmas we get

|rk(x, y)| ≤ 2k sup
z∈{x,xi1

,...,xik
}
|EΞ

k (κz)(y)| (2.15)

≤ 2k(1 + ‖IΞ
k ‖) sup

z∈{x,xi1
,...,xik

}
inf

p∈spanΞ
‖κ(z, ·)− p‖∞,DY

, (2.16)

due to (2.14). With this estimate, we have shown that, up to constants, the approximation
error rk is smaller than the approximation error associated with any system of functions
Ξ = {ξ1, . . . , ξk}. Hence ACA yields quasi-optimal results and both approximations lead
to the same degree of degeneracy. The exponentially growing factor 2k is a worst-case
estimate. The topic of current research is to prove this.

The next theorem is due to Sauer and Xu. It estimates the error of multivariate
polynomial interpolation. The notation will be the same as in [6].

Theorem 2.15. Let the Lagrange interpolation in the points x
0, . . . ,xn be unique. For

f ∈ Cn+1(Rd) and x ∈ R
d it holds that

|f(x)− Ln(f)(x)| ≤
∑

µ∈Λn

1

(n+ 1)!
|p[n]µn

(x)πµ(x
µ)| · ‖D

x−x
(n)
µn

Dn
xµf‖∞, (2.17)

where Ln(f) denotes the interpolation polynomial to f of degree n. It suffices to take the
supremum over the convex hull of {x0, . . . ,xn, x}.

Now we can use this expression for the error of Lagrange interpolation to estimate the
error of ACA as in [1].
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Theorem 2.16. Assume we choose xil , l = 1, . . . , k such that

|rl−1(xil , yjl)| ≥ |rl−1(x, yjl)| for all x ∈ DX ,

and let κ be an asymptotically smooth function with

|∂αy κ(x, y)| ≤ cp!γp‖x− y‖−s−p, for all x 6= y,

with p = |α|. Then the remainder of the approximation sk(x, y) ≈ κ(x, y) can be estimated
by

|rk(x, y)| ≤ cp dist
−s(DX , DY )η

p, (2.18)

where k = dimΠd
p−1 and cp does not depend on η but only on the points y1, . . . , yk.

Proof. To prove this theorem, we will apply the Sauer-Xu formula (2.17) to κx(y). Since
κ is asymptotically smooth with respect to y, it holds

|D
y−y

(p−1)
µp−1

Dp−1
yµ κx(y)| ≤ diamp(DY )d

pcp!γp dist−s−p(DX , DY )

≤ cp!(γdη)p dist−s(DX , DY ),

for x ∈ DX , y ∈ DY . Hence, we can estimate the error of Lagrange interpolation by

|Ek(κx)(y)| = |κx(y)− Lp−1(κx)(y)|
≤ c(γdη)p dist−s(DX , DY )

∑

µ∈Λn

|p[p−1]
µp−1

(y)πµ(y
µ)|.

Using (2.15) we obtain

|rk(x, y)| ≤ cp dist
−s(DX , DY )η

p,

where

cp = c(γd)p(1 + 2k) sup
y∈DY

∑

µ∈Λn

|p[p−1]
µp−1

(y)πµ(y
µ)|.

Note that the expression p
[p−1]
µp−1 (y)πµ(y

µ) does not depend on κx but on the points
y1, . . . , yk.

2.3.2 Algorithm

In this section we describe an algebraic version of the construction of the sequences (2.12).
This is analogous to approximate the matrix

A =




κ(x1, y1) κ(x1, y2) · · · κ(x1, ym)
κ(x2, y1) κ(x2, y2) · · · κ(x2, ym)

...
...

. . .
...

κ(xn, y1) κ(xn, y2) · · · κ(xn, ym)


 ∈ R

n×m,
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with xi ∈ DX , i = 1, . . . , n and yj ∈ DY , j = 1, . . . ,m. The algorithm works as follows.
We start with the matrix R0 = A. Then, in each step we search a nonzero pivot (ik, jk)
in Rk and subtract a scaled outer product of the ikth row and the jkth column. Thus, we
obtain the matrix Rk+1 by

Rk+1 = Rk −
(Rk)1:n,jk(Rk)ik,1:m

(Rk)ikjk
, (2.19)

where (Rk)i,1:m and (Rk)1:n,j denote the ith row and the jth column of Rk respectively.
Due to the assumption of Lemma 2.13, we choose ik the maximum element in modulus of
the jkth column; i.e.,

|(Rk−1)ikjk | = max
i=1,...,n

|(Rk−1)ijk |.

Example 2.17. We apply three steps of the algorithm to the following matrix R0. The
green entries are the chosen pivots.

R0 =




0.70711 0.68599 0.94281 0.68599 0.56569
0.68599 0.70711 0.89443 0.63246 0.55470
0.56569 0.55470 0.70711 0.55470 0.47140
0.68599 0.63246 0.89443 0.70711 0.55470
0.94281 0.89443 1.41420 0.89443 0.70711




R1 = R0 −
1

0.94281




0.70711
0.68599
0.56569
0.68599
0.94281







0.94281
0.89443
1.41420
0.89443
0.70711




T

=




0 0.01517 −0.11784 0.01517 0.03536
0 0.05632 −0.13454 −0.01833 0.04021
0 0.01804 −0.14142 0.01804 0.04713
0 −0.01833 −0.13454 0.05632 0.04021
0 0 0 0 0




R2 = R1 −
1

−0.14142




−0.11784
−0.13454
−0.14142
−0.13454

0







0
0.01804
−0.14142
0.01804
0.04713




T
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=




0 0.000134 0 0.000134 −0.003919
0 0.039160 0 −0.035490 −0.004635
0 0 0 0 0
0 −0.035490 0 0.039160 −0.004635
0 0 0 0 0




R3 = R2 −
1

−0.004635




−0.003919
−0.004635

0
−0.004635

0







0
−0.035490

0
0.039160
−0.004635




T

=




0 0.030143 0 −0.032978 0
0 0.074650 0 −0.074650 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




The algorithm has the advantage that we do not need to compute the whole matrix
Rk, since in the kth step only the entries of the ikth row and jkth column of Rk are used.
Making use of the fact, that only few of the original entries of A have to be computed,
leads to the following efficient reformulation of (2.19), where the vectors uk and ṽk coincide
with (Rk−1)1:n,jk and (Rk−1)

T
ik,1:m

, respectively.

Algorithm 1: Adaptive Cross Approximation (ACA)

Let k = 1; Z = ∅;
repeat

ik := argmaxj∈{1,...,n}\Z |(uk)j |
ṽk := aik,1:m
for l = 1, . . . , k − 1 do

ṽk := ṽk − (ul)ikvl
end for

Z := Z ∪ {ik}
if ṽk does not vanish then

jk := argmaxj∈{1,...,n} |(ṽk)j |
vk := (ṽk)

−1
jk
ṽk

uk := a1:n,jk
for l = 1, . . . , k − 1 do

uk := uk − (vl)jkul
end for

k := k + 1
end if

until stopping criterion (2.20) is fulfilled or Z = {1, . . . ,m}
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We memorize the vanishing rows by collecting them in the set Z. Since the ikth row
of Rk+1 will vanish, if we use the ikth row of Rk as vk, we add ik to Z. The matrix A will
be approximated by Sk :=

∑k
l=1 ulv

T
l and it holds A − Sk = Rk. Obviously, the rank of

Sk cannot be larger than k.
Let ε > 0 be given. As stopping criterion we can use the following condition on k

‖uk+1‖2‖vk+1‖2 ≤
ε(1− η)

1 + ε
‖Sk‖F . (2.20)

We assume that ‖Rk+1‖F can be bounded by η|Rk‖F with η = η from (4.1), then we can
estimate

‖Rk‖F ≤ ‖Rk+1‖F + ‖uk+1v
T
k+1‖F

≤ η‖Rk‖F + ‖uk+1‖2‖vk+1‖2,

and hence

‖Rk‖F ≤ 1

1− η
‖uk+1‖2‖vk+1‖2

(2.20)

≤ ε

1 + ε
‖Sk‖F

≤ ε

1 + ε
(‖A‖F + ‖Rk‖F ).

The previous estimate is equivalent to

‖Rk‖F ≤ ε‖A‖F ,

and thus condition (2.20) guarantees a relative approximation error ε. Using this condition,
the rank required to guarantee a prescribed accuracy ε can be found adaptively and needs
not to be known in advance.

Remark 2.18. There are configurations of domains where the choice of rows as in Algorithm
1 does not work. Other possibilities to choose them are described in [2].
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Chapter 3

Panel-Clustering

The boundary Γ is discretized with small triangles, so called panels. In order to find an
efficient way to evaluate Green’s representation formula (1.4) we need to partition the
boundary. Each part of the partition is a cluster of panels. Since it is too expensive to
search an optimal partition in the set of all partitions, we restrict ourselves to the set
arising by recursive subdivision of the boundary.

3.1 Cluster Trees

In this section we introduce the concept of clusters and cluster trees, which we will need
to find an appropriate partition Γ1, . . . ,Γn of the boundary,

Definition 3.1. A cluster τ is a subset such that ∅ 6= τ ⊂ I, for any set I ⊂ N.

Let Th := {π1, . . . , πm} be a triangulation of the boundary Γ, then we identify by a
cluster τ the nonempty union of panels

⋃
i∈τ πi. Now we will define a tree, whose vertices

consist of clusters τ .

Definition 3.2. A tree TI = (V,E) with vertices V and edges E is called cluster tree

for a set I = {1, . . . ,m} ⊂ N, if the following conditions are satisfied

1. I is the root of TI ,
2. τ =

⋃
σ∈S(τ)· σ for all τ ∈ V \ L (TI),

3. there exists a constant C such that the degree deg τ := |S(τ)| ≥ 2 of each vertex
τ ∈ V \ L (TI) is bounded from below by deg τ ≤ C.

Here, S(τ) := {σ ∈ V : (τ, σ) ∈ E} denotes the set of sons of τ and L (TI) := {τ ∈
V : S(τ) = ∅} the set of leaves of TI . The level of a cluster τ ∈ TI is defined as the
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distance to the root. The fact that τ is the disjoint union of its sons S(τ) implies that
τ ⊂ I for all τ ∈ TI and that each level

T
(l)
I := {τ ∈ Tl : level τ = l}

of TI contains a partition of I. By L(TI) := maxτ∈V (TI) level(τ) + 1 we denote the depth

of the cluster tree TI .

Next, we want to show that the complexity for storing a cluster tree is linear. To this
end we need the following lemma.

Lemma 3.3. Let q := minτ∈TI\L (TI) deg τ ≥ 2. Then for the number of vertices in TI it
holds that

|V (TI)| ≤
q|L (TI)| − 1

q − 1
≤ 2|L (TI)| − 1.

Proof. We reduce the tree T0 := TI by deleting in k steps one after another the nodes.
We start with the fathers of the leaves L (T0). Let Tl denote the tree after l steps and ql
the degree of the lth step. Obviously, it holds |V (Tl+1)| = |V (Tl)| − ql and |L (Tl+1)| =
|L (Tl)| − ql + 1. After k steps we have |V (Tk)| = 1 = |L (Tk)|, where

|V (Tk)| = |V (T0)| −
k−1∑

l=1

ql and |L (Tk)| = |L (T0)| −
k−1∑

l=1

(ql − 1).

Comparing both equations yields |V (T0)| = |L (T0)|+ (k − 1), and from qk ≥ k it follows
that

1 = |L (Tk)|

= |L (T0)| −
k−1∑

l=1

(ql − 1)

≤ |L (T0)| − (k − 1)(q − 1).

Hence we obtain

|V (T0)| ≤
q|L (T0)| − 1

q − 1
≤ 2|L (TI)| − 1,

since q ≥ 2 and |L (TI)| ≥ 1.

If we suppose that each cluster τ has a minimal size |τ | ≥ nmin > 1, then the number
of leaves |L (TI)| is bounded by |I|/nmin. Hence, the complexity for storing a cluster tree
is linear, namely O(2|L (TI)| − 1) = O(2|I|/nmin − 1) = O(|I|).
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In the following we will only consider T = TI with I = {1, . . . ,m}, so we omit the
index I. A sphere around z with radius r is denoted by

Kr(z) := {x ∈ R
d : ‖x− y‖2 < r}.

For each cluster τ ∈ V (T ), there exists a (unique) closed sphere K = K(τ) with minimum
radius containing τ . Hence, we denote by zτ the center and by ρτ the radius of the sphere
K(τ), i.e.

K(τ) = Kρτ (zτ ).

In the following we assume that the panels πi, i ∈ I = {1, . . . ,m}, are quasi-uniform,
i.e. there exists a constant cU > 0 such that

max
i∈I

µ(πi) ≤ cU min
i∈I

µ(πi), (3.1)

and shape regular, i.e. there is a constant cR > 0 such that

µ(πi) ≥ cR (ρπi
)d−1, i ∈ I. (3.2)

With µ(M) we denote the measure of a (d−1)-dimensional manifoldM ⊂ R
d, i.e. the area

of M . We assume that the computational domain Γm =
⋃m

i=1 πi is a (d− 1)-dimensional
manifold, i.e. for all z ∈ R

d it holds

µ(Γm ∩Kr(z)) ≤ cΓ r
d−1 for all r > 0, (3.3)

with a constant cΓ > 0 depending on the curvature of the hypersurface Γm ⊂ R
d.

Definition 3.4. A cluster tree is called geometrically balanced, if there are constants
cg, cG > 0 such that for each level l = 0, . . . , L(T )− 1

a) ρτ ≤ cg2
−l, (3.4)

b) µ(τ) ≥ 2−l/cG, (3.5)

for all τ ∈ V (T ).

3.2 Coverings of Γm by Acceptable Clusters

Analogously to spheres, we can define a bounding box around a cluster τ if we use the
l∞-norm instead of the l2-norm. An axis parallel bounding box around z with radius
r ∈ R

d is denoted by

Br(z) := {x ∈ R
d : |xi − zi| < ri}.
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If r = (r, . . . , r), then the previous definition is equivalent to

Br(z) = {x ∈ R
d : ‖x− z‖∞ < r}.

For each cluster τ ∈ V (T ), there exists a (unique) closed bounding box B = B(τ) with
minimum radius containing τ . Hence, we denote by zBτ the center and by ρBτ ∈ R

d the
radius of the bounding box B(τ), i.e.

B(τ) = BρBτ
(zBτ ).

Definition 3.5. Let 0 < η̃ < 1. A cluster τ ∈ V (TI) is acceptable with respect to a point
x ∈ R

d if

dist(x,B(τ)) ≥ η̃ dist(x, τ), (3.6)

where dist(x, τ), dist(x,B(τ)) denote the distances of x from τ and B(τ) respectively.

b x

(a) all clusters are acceptable

b x

(b) only right and left cluster are acceptable

Figure 3.1: Two different coverings w.r.t. x and η̃ = 0.5.

The parameter η̃ controls how much the bounding box will reduce the distance between
x and τ . Since error and rank of the approximation of kernel functions depends on the
distance between the point x and a cluster τ , this definition avoids that both error and
rank become larger as necessary.

Definition 3.6. We call C = {τ1, . . . , τn} ⊂ V (T ) an acceptable covering (of Γm) with
respect to x if

a) Γm =
n⋃

j=1

τj, and

b) either τj ∈ L (T ) or τj is acceptable with respect to x.

If x is near the boundary, it may happen that there is no covering of Γm consisting
only of acceptable clusters. Condition b) states that the only non-acceptable clusters can
be the leaves of T .
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(a) x = (0, 0, 1.9116)
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(b) x = (0, 0, 1.7027)

−1
−0.5

0
0.5

1 −1
−0.5

0
0.5

1
0

0.5

1

1.5

2

(c) x = (0, 0, 1)

Figure 3.2: Acceptable coverings C(x) with respect to different points x.

Lemma 3.7. For each x ∈ R
d there is a unique acceptable covering C = C(x) with respect

to x with minimum number n = n(x) := |C(x)|. This covering is called minimum

acceptable covering with respect to x.

Proof. There is at least one admissible covering with respect to x, because we may choose
n = m and C = L (T ). The uniqueness will be proved by contradiction. To this end
assume that C = {τ1, . . . , τn} and C′ = {τ ′1, . . . , τ ′n} are two different minimum acceptable
coverings with respect to x. As C 6= C′, there is a cluster τj ∈ C with τj /∈ C′. Further,
there is an index k such that τj ∩ τ ′k 6= ∅ contains inner points. Due to the construction
of T it must hold τj ⊂ τ ′k or τj ⊃ τ ′k. Assume τj ⊂ τ ′k. Set j1 := j and let j2, . . . , jl be
all other indices with τjν ⊂ τ ′k. Since τj 6= τ ′k, τ

′
k is the disjoint union of l ≥ 2 clusters,

i.e. τ ′k =
⋃·

1≤ν≤lτjν . Hence, the covering obtained from C by replacing {τj1 , . . . , τjl} ⊂ C
by τ ′k is also acceptable and contains only n + 1 − l < n clusters in contradiction to the
minimality of n = |C|.

Since the complexity of our procedure will depend on the number of clusters in a
covering, this number should be as small as possible and can be estimated with the same
construction as in [4].

Theorem 3.8. Assume that condition (3.3) holds and that there is a constant CP such
that for all z ∈ R

d and R ≥ r > 0 there is a subset C ⊂ V (T ) of clusters with

a) Γm ∩KR(z) ⊂
⋃

τ∈C

· τ, (3.7)

b) diam(τ)/2 ≤ r ∀τ ∈ C \ L (T ), (3.8)

c) |C| ≤ CP (R/r)
d−1, (3.9)
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then the number n of clusters in C(x) can be estimated by

n ≤ C log

(
1

(1− η̃) dist(x,Γm)

)(
1

1− η̃

)d−1

. (3.10)

In [4] it is shown (cf. Proposition B.4) that quasi-uniform panels and a geometrically
balanced cluster tree will satisfy conditions (3.7)-(3.9).

Proof. The size of Γm ⊂ V (T ) is ρ := ρΓm .

1. First we assume that
√
dρ ≤ (1 − η̃) dist(x,Γm). Let τ = Γm be the root of T .

Then τ is the cluster containing all panels. It holds
√
dρτ ≤ (1 − η̃) dist(x,Γm) =

(1− η̃) dist(x, τ). So we obtain

η̃ dist(x, τ) = dist(x, τ)− (1− η̃) dist(x, τ)

≤ dist(x, τ)−
√
dρτ

≤ dist(x,B(τ)),

i.e. τ is acceptable with respect to x. Hence, the acceptable covering of Γm contains
only the cluster τ .

2. Next we consider the case 0 < (1 − η̃) dist(x,Γm) <
√
dρ. For all l = 0, 1, . . . we

apply conditions (3.7)-(3.9) with z = x, R = Rl = 2−l(2 + 1
1−η̃ )ρ, r = rl = Rl

1−η̃

4
√
d
,

hence there are coverings Cl with

Γm ∩KRl
(x) ⊂

⋃

τ l∈Cl

· τ l,

|Cl| ≤ CP

(
Rl

rl

)d−1

= CP

(
4
√
d

1− η̃

)d−1

,

l = 0, 1, . . . Let

K l := KRl
(x) \KRl+1

(x),

then we define C′
l ⊂ Cl by

C′
l := {τ ∈ Cl : τ ∩K l 6= ∅}.

If τ ∈ C′
l is not a leaf of T , it fulfills ρτ ≤ rl = Rl

1−η̃

4
√
d
(3.8). Since ‖y − x‖2 ≥ Rl

2 for

38



3.2. COVERINGS OF ΓM BY ACCEPTABLE CLUSTERS

any y ∈ τ ∩K l 6= ∅, we can conclude

dist(x, τ) = inf
ξ∈τ

‖x− ξ‖2 ≥ inf
ξ∈τ

(‖x− y‖2 − ‖y − ξ‖2)

≥ Rl

2
− rl =

Rl

2
−Rl

1− η̃

4

>
Rl

2
− Rl

4
=
Rl

4
=

√
drl

1− η̃

≥
√
dρτ

1− η̃
. (3.11)

Thus we obtain

η̃ dist(x, τ) = dist(x, τ)− (1− η̃) dist(x, τ)

≤ dist(x, τ)−
√
dρτ

≤ dist(x,B(τ)),

i.e. τ is acceptable with respect to x. Hence, C′
l is an acceptable covering of K l with

respect to x and it fulfills

K l ∩ Γm ⊂
⋃

τ∈Cl

· τ, τ ∈ C′
l \ L (T ) acceptable with respect to x,

|C′
l| ≤ |Cl| ≤ CP

(
4
√
d

1− η̃

)d−1

.

Let L ≥ 0 be the first integer with

2−L

(
2 +

1

1− η̃

)
ρ = RL < dist(x,Γm).

Set C′ := C′
0 ∪ C′

1 ∪ . . . ∪ C′
L−1. Since the clusters of C′ are not disjoint, we restrict C′

to C := {τ ′ ∈ C′ : there is no τ ∈ C′ with τ ′ ⊂ τ}. C satisfies

Γm = Γm ∩
(
K(2+ 1

1−η̃
)ρ(x) \KRL

(x)
)
= Γm ∩

L−1⋃

l=0

· K l

⊂
L−1⋃

l=0


⋃

τ∈C′

l

· τ


 =

⋃

τ∈C′

τ =
⋃

τ∈C

· τ,

i.e. C is a covering of Γm. Note that C is acceptable. The number of clusters in C
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can be estimated by

|C| ≤ |C′| ≤
L−1∑

l=0

|C′
l| ≤

L−1∑

l=0

|Cl| ≤
L−1∑

l=0

Cp

(
4
√
d

1− η̃

)d−1

= L Cp

(
4
√
d

1− η̃

)d−1

≤
(
log2

((
2 +

1

1− η̃

)
ρ

dist(x,Γm)

)
+ 1

)
Cp

(
4
√
d

1− η̃

)d−1

≤ C log

(
1

(1− η̃) dist(x,Γm)

)(
1

1− η̃

)d−1

.

Remark 3.9. This estimate is only a worst-case estimate. Let our computational domain
be an axis parallel cuboid. If we consider the exterior boundary value problem we have
only one cluster, independent of dist(x,Γm). Let amin be the shortest side length of any
bounding box B(τ), τ ∈ V (T ). If once dist(x,Γm) < amin the number of clusters will not
increase. So the number of clusters is bounded by

|C| ≤ C log

(
2

(1− η̃)amin

)(
1

1− η̃

)d−1

.

The number n′ of non-acceptable clusters in C(x) can be estimated with the following
theorem.

Theorem 3.10. Assume that condition (3.3) holds. Let T be a geometrically balanced
cluster tree. Then the number n′ of non-acceptable clusters in C(x) can be estimated by

n′ ≤ C

(
1

1− η̃

)d−1

. (3.12)

Proof. The number n′ of non-acceptable clusters is maximal if we choose C(x) = L (T ) as

acceptable covering. Define ρmax := max{ρτ : τ ∈ L (T )} and set r = 2+
√
d

1−η̃ ρmax, then all
τ not completely contained in Kr(x) (⇒ r ≤ dist(x, τ) + 2ρτ ) are acceptable with respect
to x. This can be seen from

ρτ ≤ ρmax =
1− η̃

2 +
√
d
r

≤ 1− η̃

2 +
√
d
(dist(x, τ) + 2ρτ ),
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⇔
(
1− 2(1− η̃)

2 +
√
d

)
ρτ ≤ 1− η̃

2 +
√
d
dist(x, τ)

⇔ (
√
d+ 2η̃)ρτ ≤ (1− η̃) dist(x, τ)

⇒
√
dρτ ≤ (1− η̃) dist(x, τ)

⇒ η̃ dist(x, τ) = dist(x,B(τ)).

Therefore, n′ ≤ |C′| for C′ := {τ ∈ L (T ) : τ ⊂ Kr(x)}. Using (3.3) and the properties
(3.4), (3.5) of a geometrically balanced cluster tree we can estimate

n′
2−(L(T )−1)

cG
≤
∑

τ∈C′

µ(τ) = µ

(
⋃

τ∈C′

· τ

)

≤ (Kr(x) ∩ Γm) ≤ cΓ r
d−1,

and hence

n′ ≤ cG cΓ 2−(L(T )−1) rd−1

≤ cG cΓ 2−(L(T )−1)

(
(2 +

√
d)ρmax

1− η̃

)d−1

≤ cg cG cΓ 2d−1

(
1

1− η̃

)d−1

≤ C

(
1

1− η̃

)d−1

.

The previous Theorems 3.8 and 3.10 show that both the number of acceptable and
the number of non-acceptable clusters of a covering C(x) can be estimated by constants
independent of the number m of panels.
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Chapter 4

Complexity

4.1 Computation of an Acceptable Covering

In the first part of the implementation, we find a partition of the boundary Γ such that the
assumptions of Theorem 2.8 are satisfied. To this end we discretize the boundary Γ with
small triangles {π1, . . . , πm}, so-called panels. Depending on the distance to the evaluation
point x ∈ Ω, we divide the boundary Γ up into disjoint clusters Γi, i = 1, 2, . . . , n consisting
of pi panels respectively. For this purpose, we need to construct a geometrically balanced
cluster tree T = TI with I = {1, . . . ,m}. If the panels πi, i ∈ I, are quasi-uniform, this
can be done in O(m logm) operations (cf. Theorem 1.27 in [2]).

The minimum acceptable covering C(x) with respect to x will be computed by the
following recursive procedure.

Algorithm 2: Acceptable Covering

C := ∅
Divide(Γm, C)

procedure Divide(τ , C)
if τ is acceptable w.r.t. x then C := C ∪ {τ}
else if τ ∈ L (T ) then C := C ∪ {τ}
else

for all σ ∈ S(τ) do Divide(σ, C)
end for

end if

end procedure

First, the distance from x to the discretized boundary Γm has to be computed in O(m).
In order to check whether a cluster τ is acceptable or not, the bounding box B(τ) must
be determined. All bounding boxes in one level l of the cluster tree T can be computed
in O(m). Since the cluster tree has a depth of L(T ) = O(logm), the total effort for all
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bounding boxes is of order O(m logm). The distance from x to each of the O(m) bounding
boxes can be calculated in constant time. Thus we need O(m logm) operations to find an
acceptable covering of Γm with respect to x.

b

Ba(x)

B(Γ1)

B(Γ2)

B(Γ3)

B(Γ4)

B(Γ5)B(Γ6)
B(Γ7)

B(Γ8)

B(Γ9)

B(Γ10)

B(Γ11)

Figure 4.1: Bounding boxes around the clusters Γ1, . . . ,Γ11.

4.2 Approximation of the Kernel Functions

If we have found an η̃-acceptable covering of Γm, we choose the length
a = ηmini dist(x,B(Γi)) of the box Ba(x) with center x such that the assumption
η dist(x,B(Γi)) ≥ a of Theorem 2.8 is satisfied for all acceptable clusters Γi, i = 1, 2, . . . , n.
The larger we choose η̃ the larger dist(x,B(Γi)) will be and the larger we can choose a. If
the length a is larger, perhaps more evaluation points can be covered with one single box
Ba(x). Hence η̃ avoids that we do not choose a too small.

With this choice of a, we guarantee that any pair (Ba(x), B(Γi)) is admissible in the
usual sense, i.e.

min{diam(Ba(x)), diam(B(Γi))} ≤ η dist(Ba(x), B(Γi)), (4.1)

with η = 2
√
dη/(2−

√
dη). This can be seen from

diam(Ba(x)) =
√
da ≤

√
dη dist(x,B(Γi))

≤
√
dη(dist(Ba(x), B(Γi)) + 0.5 diam(Ba(x)))

⇔ (1− 0.5
√
dη) diam(Ba(x)) ≤

√
dη dist(Ba(x), B(Γi))

⇔ diam(Ba(x)) ≤ 2
√
dη

2−
√
dη

dist(Ba(x), B(Γi)).
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b

(a) first order

b
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b

(b) second order

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(c) third order

Figure 4.2: Hierarchical mesh of different orders.

In the next chapter we will see, that η controls the approximation error. The concept
of acceptable coverings has the advantage, that we can choose η small without influencing
the number of clusters in the covering C(x). Thus we can control both error and number of
clusters independently of each other. Since we choose a such that any pair (Ba(x), B(Γi))
is admissible, the required rank and the approximation error are independent of η̃.

In the next step, we place a hierarchical mesh in the boxes Ba(x), B(Γ1), B(Γ2), . . . ,
B(Γn). The mesh of order L consists of

L−1∑

l=0

(
2d
)l

=

(
2d
)L − 1

2d − 1

points.
In these sets of points, ACA searches its pivots xil and y

i
l , l = 1, . . . , ki for calculating

the approximation of κ(x, y) on each domain Ba(x) × B(Γi), i = 1, . . . , n. The degree
of degeneracy ki is chosen adaptively until a given accuracy is achieved for all pairs of
nodes in the boxes Ba(x) and B(Γi). Since we need the outer normal νy for calculating
the kernel function κ(x, y) of the double-layer potential operator

κ(x, y) = ∂νyS(y − x) = − νy · (y − x)

4π‖y − x‖3 ,

only the part

− 1

4π‖y − x‖3

is approximated by ACA. In particular we calculate the vectors uil and vil , l = 1, . . . , ki
using Algorithm 1. This can be done in O(k2i (nx+ny)) operations, where nx and ny denote
the number of points in the hierarchical mesh in the boxes Ba(x) and B(Γi) respectively.
It will turn out that we can choose nx and ny of order O(ki). Thus the vectors uil and
vil , l = 1, . . . , ki can be computed in O(k3i ) operations per cluster Γi. Next, we compute
the approximations κ̃S and κ̃D of

κ̃S ≈ κS(x, y) = S(y − x) and κ̃D ≈ κD(x, y) = − 1

4π‖y − x‖3
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at the quadrature points yi,j1 , . . . , yi,jq for each panel πj , j = 1, . . . , pi of the cluster Γi.

Actually we have to compute the vectors v(x) ∈ R
k and u(yi,jq ) ∈ R

k of

κ(x, yi,jq ) ≈
ki∑

l=0

vl(x)ul(y
i,j
q ).

These computations have a complexity of O(k2i ) per cluster and O(k2i ) per quadrature

point yi,jq respectively.

4.3 Evaluation for Several Points

In the last step, we put all information together to evaluate the solution u at the point
x ∈ Ω.

u(x) ≈
n∑

i=1

pi∑

j=1

q∑

l=1

(
ωl κ̃S(y

i,j
l − x) gN (yi,jl )− ωl gD(y

i,j
l )
(
νi,j · (yi,jl − x)

)
κ̃D(y

i,j
l − x)

)

+
n+n′∑

i=n+1

pi∑

j=1

q∑

l=1

(
ωl κS(y

i,j
l −x) gN (yi,jl )− ωl gD(y

i,j
l )
(
νi,j ·(yi,jl −x)

)
κD(y

i,j
l −x)

)

=
n∑

i=1

pi∑

j=1

q∑

l=1




k1i∑

m=1

ωl u
i
m(x) vim(yi,jl ) gN (yi,jl )

−
k2i∑

m=1

ωl gD(y
i,j
l )
(
νi,j · (yi,jl − x)

)
wi
m(x) zim(yi,jl )




+
n+n′∑

i=n+1

pi∑

j=1

q∑

l=1

(
ωl κS(y

i,j
l −x) gN (yi,jl )− ωl gD(y

i,j
l )
(
νi,j ·(yi,jl −x)

)
κD(y

i,j
l −x)

)

=
n∑

i=1




k1i∑

m=1

uim(x)

pi∑

j=1

q∑

l=1

ωl v
i
m(yi,jl ) gN (yi,jl )

−
k2i∑

m=1

wi
m(x)

pi∑

j=1

q∑

l=1

ωl gD(y
i,j
l )
(
νi,j · yi,jl

)
zim(yi,jl )

+

k1i∑

m=1

d∑

t=1

wi
m(x) xt

pi∑

j=1

q∑

l=1

ωl gD(y
i,j
l ) zim(yi,jl ) νi,jt




+
n+n′∑

i=n+1

pi∑

j=1

q∑

l=1

(
ωl κS(y

i,j
l −x) gN (yi,jl )− ωl gD(y

i,j
l )
(
νi,j ·(yi,jl −x)

)
κD(y

i,j
l −x)

)
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where ωl denotes the quadrature weight of the node yl and νij the outer normal of the
panel πj of the cluster Γi. Since

pi∑

j=1

q∑

l=1

ωl v
i
m(yi,jl ) gN (yi,jl ),

pi∑

j=1

q∑

l=1

ωl gD(y
i,j
l )(νij · yi,jl )zim(yi,jl ),

pi∑

j=1

q∑

l=1

ωl gD(y
i,j
l ) zim(yi,jl ) νi,jt

are independent of x, we can store the results of these sums to save computation time by
evaluating the solution at some other point x̃ ∈ DX . If we choose x̃ /∈ DX , we have to
calculate a new covering of Γ with clusters Γi and thus a new approximation of κ on each
of these clusters.

Let N be the number of evaluation points. For the evaluation of the single-layer opera-
tor on acceptable clusters we need to compute the sum Ci

S :=
∑pi

j=1

∑q
l=1 ωlv

i
m(yi,jl )gN (yi,jl )

once. This can be done in O(nm) operations. For each evaluation point x the sum

n∑

i=1

k1i∑

m=1

uim(x) Ci
S

will be computed in time proportional to O(nki). Due to (2.10), ki is of order | log ε|d.
On non-acceptable clusters the kernel function will not be approximated but evaluated
exactly since for a good approximation we had to choose a too small. If a cluster τ is
non-acceptable it must be a leaf of T . Since T is a geometrically balanced cluster tree,
the number of panels in τ is bounded. So we need O(n′) operations per evaluation point
for the exact evaluation on non-acceptable clusters.

Hence we obtain a total complexity of

O(m log(m) +m log(m) + k3n+ k2nN + k2m+mn+ knN + n′N)

= O(m log(m) + k3n+ k2nN + k2m+ nm+ n′N)

= O(m log(m) + | log ε|2dm+ nm+ | log ε|3dn+ | log ε|2dnN + n′N)

for the evaluation of the single-layer potential operator at N points. Note that the num-
ber n of clusters was independent of m and N , but dependent on the distance from the
evaluation points to the boundary Γm and the control parameter η̃. The number n′ of
non-acceptable clusters only depends on η̃.

Now we consider the evaluation of the double-layer potential operator. For the first
part we need to compute the sum Ci

D,1 :=
∑pi

j=1

∑q
l=1 ωl gD(y

i,j
l )(νij · yi,jl ) zim(yi,jl ). Again,

47



CHAPTER 4. COMPLEXITY

this can be done in time proportional to O(nm). For each evaluation point x the sum

−
n∑

i=1

k2i∑

m=1

wi
m(x) Ci

D,1

will be computed with O(nki) operations. For the second part the sum
Ci,t
D,2 :=

∑pi
j=1

∑q
l=1 ωl gD(y

i,j
l ) zim(yi,jl ) νi,jt will be computed in O(nm) time. After this,

the sum

n∑

i=1

k1i∑

m=1

d∑

t=1

wi
m(x) xt C

i,t
D,2

must be evaluated for each evaluation point. This can be done in O(dkin) operations.
Analogous to the one of the single-layer potential operator, the kernel function of the
double-layer potential operator will be evaluated exactly.

Hence we obtain a total complexity of

O(m log(m) +m log(m) + k3n+ k2nN + k2m+mn+ knN +mn+ dknN + n′N)

= O(m log(m) + k3n+ k2nN + k2m+ nm+ n′N)

= O(m log(m) + | log ε|2dm+ nm+ | log ε|3dn+ | log ε|2dnN + n′N)

for the evaluation of the double-layer potential operator at N points.

Assume that ε, η̃ and the minimal distance from any evaluation point to the boundary
Γm are fixed. If m and N are of the same order the complexity scales like N log(N). This
is an improvement of the complexity O(N2) by exact evaluation.
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Chapter 5

Error Estimates

In this chapter we want to estimate the error arising by evaluating any operator A of the
form

u(x) := (Av)(x) =
∫

Γ
κ(x, y) v(y) dsy.

Let ũ(x) denote the approximation of u(x) and ṽ(y) the approximation of v(y) obtained
by the in Section 1.4 described Galerkin method. Then we can estimate

|u(x)− ũ(x)| =
∣∣∣∣
∫

Γ
κ(x, y) v(y) dsy −Q [sk(x, ·) ṽ(·)]

∣∣∣∣

≤
∣∣∣∣
∫

Γ
κ(x, y) v(y) dsy −Q [κ(x, ·) v(·)]

∣∣∣∣
+ |Q [κ(x, ·) v(·)− sk(x, ·) ṽ(·)]| ,

=: εq + εa

where Q[f ] denotes a quadrature of f(y) by interpolation over Γm. The quadrature error
εq can be estimated by the following theorem.

Theorem 5.1. Let Th be a quasi-uniform triangulation of Γ. The interpolation by piece-
wise polynomials of degree t− 1 fulfills

‖u− Ihu‖m,h ≤ c ht−m|u|t,Γ for u ∈ Ht(Γ), 0 ≤ m ≤ t,

where c is a constant depending on Γ, cU and t.

Proof. cf. [3]
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Thus we will only consider the approximation error εa. The error fulfills

εa = |Q [κ(x, ·) v(·)− sk(x, ·) ṽ(·)]|

≤ |Γm| sup
y∈Γm

|κ(x, y) v(y)− sk(x, y) ṽ(y)|

≤ |Γm|
(

sup
y∈Γm

∣∣κ(x, y)
(
v(y)− ṽ(y)

)∣∣+ sup
y∈Γm

∣∣(κ(x, y)− sk(x, y)
)
v(y)

∣∣

+ sup
y∈Γm

∣∣(κ(x, y)− sk(x, y)
) (
v(y)− ṽ(y)

)∣∣
)
,

where we have used that ab− cd = a(b− d) + (a− c)b− (a− c)(b− d). We have

sup
y∈Γm

∣∣κ(x, y)
(
v(y)− ṽ(y)

)∣∣ ≤ cv sup
y∈Γm

|v(y)| |κ(x, y)|

≤ cv dist(x,Γm)−s sup
y∈Γm

|v(y)|.

Since we have partitioned the boundary such that any pair (Ba(x), B(Γi)) is admissible
and since κ is asymptotically smooth with respect to x we can use (2.18) to estimate the
second summand for all x ∈ DX ⊂ Ba(x) by

sup
y∈Γm

∣∣(κ(x, y)− sk(x, y)
)
v(y)

∣∣ = sup
y∈Γm

|rk(x, y)v(y)|

≤ cp η
p

(
min
i

dist(Ba(x), B(Γi))

)−s

sup
y∈Γm

|v(y)|.

Combining the estimates for the first and second summand, we obtain for the third sum-
mand

sup
y∈Γm

∣∣(κ(x, y)− sk(x, y)
) (
v(y)− ṽ(y)

)∣∣

≤ cv cp η
p

(
min
i

dist(Ba(x), B(Γi))

)−s

sup
y∈Γm

|v(y)|,

and hence

|Q [κ(x, ·)v(·)− sk(x, ·)ṽ(·)]|

≤ |Γm| cv dist(x,Γ)−s sup
y∈Γ

|v(y)|

+ |Γm| cp ηp
(
min
i

dist(Ba(x), B(Γi))

)−s

sup
y∈Γm

|v(y)|

+ |Γm| cv cp ηp
(
min
i

dist(Ba(x), B(Γi))

)−s

sup
y∈Γm

|v(y)|

≤ |Γm| (cv + cp η
p + cv cp η

p)

(
min
i

dist(Ba(x), B(Γi))

)−s

sup
y∈Γm

|v(y)|.
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Using the previous estimate for Green’s representation formula (1.4), we obtain the error
bound

|u(x)− ũ(x)|

=

∣∣∣∣
∫

Γ
S(y − x)t(y)− ∂yνS(y − x)u(y) dsy −

∫

Γ
s1k(x, y)t̃(y)− s2k(x, y)ũ(y) dsy

∣∣∣∣

≤
∣∣∣∣
∫

Γ
S(y − x)t(y)− s1k(x, y)t̃(y) dsy

∣∣∣∣+
∣∣∣∣
∫

Γ
∂yνS(y − x)u(y)− s2k(x, y)ũ(y) dsy

∣∣∣∣

≤ ε1q + |Γm| (ct + cp1 η
p1 + ct cp1 η

p1)

(
min
i

dist(Ba(x), B(Γi))

)−s1

sup
y∈Γm

|t(y)|

+ ε2q + |Γm| (cu + cp2 η
p2 + cu cp2 η

p2)

(
min
i

dist(Ba(x), B(Γi))

)−s2

sup
y∈Γm

|u(y)|.

If the Dirichlet data u and Neumann data t is given on the boundary Γm, the previous
estimate can be simplified to

|u(x)− ũ(x)|

=

∣∣∣∣
∫

Γ
S(y − x)t(y)− ∂yνS(y − x)u(y) dsy −

∫

Γ
s1k(x, y)t̃(y)− s2k(x, y)ũ(y) dsy

∣∣∣∣

≤ ε1q + |Γm| cp1 ηp1
(
min
i

dist(Ba(x), B(Γi))

)−s1

sup
y∈Γm

|t(y)|

+ ε2q + |Γm| cp2 ηp2
(
min
i

dist(Ba(x), B(Γi))

)−s2

sup
y∈Γm

|u(y)|.
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Chapter 6

Numerical Results

All of the following computations are made on an Intel Xeon processor with 2.53 GHz.

6.1 Influence of Control Parameters η and ε.

First, we want to analyze the dependency of the algorithm on the control parameter η.
For this we test the algorithm for the exterior boundary value problem on the surface of
a cube ([0, 8]3) with side length 8. The surface is discretized with 12288 panels and the
solution is evaluated at the point x = (4, 4, 12) for the exact boundary data

gD(y) =
1

4π ‖y − y0‖
, gN (y) = ∂νgD(y),

with y0 = (4, 4, 4) located at the center. Since we need for the convergence of ACA

0 < η =
2
√
dη

2−
√
dη

< 2 ⇔ 0 < η <
1√
d
≈ 0.577,

we have chosen η = 0.01, 0.02, . . . , 0.57. In Theorem 2.8 we have seen that k ∼
log(ε)/ log(η). Figure 6.1 shows that the algorithm has the same behavior.
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Figure 6.1: Required rank of ACA to achieve a relative error of ε = 10−9 (green) and
ε = 10−6 (blue) with meshes of order 5 (4681 points).
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In Figure 6.2 it is shown that the accuracy of the solution is of the same order as the
stopping criterion ε of ACA, independent of η.
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Figure 6.2: Accuracy of the solution with stopping criterion ε = 10−9 (green) and ε = 10−6

(blue) of ACA (4681 points).

Next we establish that the maximum rank k increases potentially in |log(ε)|, where
ε denotes the accuracy of ACA. For this we evaluate the solution at x = (6, 4, 4) with
η = 0.2 and η̃ = 0.5. The meshes in B(x) and B(Γi) are both of order five (4681 points).
The results can be found in Figure 6.3. In all cases the accuracy of the solution is of the
same order as ε.
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Figure 6.3: Maximum rank of single-layer potential operator (blue) and double-layer po-
tential operator (green).

6.2 Influence of dist(x,Γm)

In order to establish that the number of clusters scales like |C| ∼ log(1/ dist(x,Γm)), we
test the algorithm on the surface of a prism shown in Figure 6.4. The evaluation points
are located on the red line.
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Figure 6.4: Prism (8192 panels).

In Figure 6.5 the number of clusters are plotted against dist(x,Γm) for different pa-
rameters η̃ and different orders of refinement of the surface. The number of clusters grows
logarithmically with the distance of x to the boundary Γm until a barrier is reached. This
barrier depends on the discretization, it grows with a refinement of the discretization of
the boundary. Thus we can conclude that the number of clusters grows logarithmically
for the limit of refinements.
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(a) η̃ = 0.75
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(b) η̃ = 0.5

Figure 6.5: Number of clusters for different orders of refinement: 32768 panels (blue),
131072 panels (green), 524288 panels (yellow).

If we compare the number of clusters for different parameters η̃ we can see, that the
larger η̃ the larger this number (cf. Figure 6.6). Hence, we can establish the estimate
(3.10).
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(a) 32768 panels
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(b) 131072 panels

Figure 6.6: Number of clusters for η̃ = 0.25 (blue), η̃ = 0.5 (green), η̃ = 0.75 (yellow).

In our next test we analyze how the maximum rank changes if we reduce the distance
to the boundary. As computational domains we choose a sphere with radius 1 and a cube
with side length 2, both centered at the origin. The sphere is discretized with 5120 panels
with a minimum side length of 0.0691 and the cube is discretized with 12288 panels with
a minimum side length of 0.0625. In both cases we choose the exact boundary data

gD(y) =
1

4π ‖y‖ , gN (y) = ∂νgD(y),

ε = 10−9, η = 0.2, η̃ = 0.5 and meshes of order four and five in the bounding boxes around
the evaluation points x = (1+dist(x,Γm), 0, 0) and the clusters Γi, respectively. With this
choice of x the boundary Γm consists of only one cluster. In Figure 6.7 we can see that
for both computational domains the rank first increases and later decreases if we halve
dist(x,Γm). In the next section we will see that the point of change coincides with the
point where the accuracy begins to decrease.
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Figure 6.7: Maximum rank of single-layer potential operator (blue) and double-layer po-
tential operator (green).

If we choose instead the points x = (1− dist(x,Γm), 0, 0) in the interior of our compu-
tational domain Ω the number of clusters depends on the distance again. The maximum

56



6.3. COMPARISON WITH GAUSS QUADRATURE

rank increases (cf. Figure 6.8) as for the exterior boundary value problem. For points in
the interior as well as for points at the exterior, the maximum ranks are of the same order.
As we can see, the rank is also independent of the parameter η̃.
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Figure 6.8: Maximum rank of single-layer potential operator and double-layer potential
operator with η̃ = 0.75 (blue), η̃ = 0.5 (green) and η̃ = 0.25 (yellow).

6.3 Comparison with Gauss Quadrature

In the previous test (cf. Figure 6.7) we have compared in addition our accuracy to the
accuracy of Gauss quadrature with the same number of panels and quadrature points. In
the case of a non-curved surface all quadrature points lie on the surface and thus usual
quadrature provides good results (cf. Figure 6.9.b). With our method we can reach an
accuracy of the same order. If the surface is curved, Gauss quadrature with plane panels
does not work as well since the quadrature points are not located on the boundary. In
this case, a higher accuracy can be reached with our method (cf. Figure 6.9.a). If the
evaluation point x is far away from the boundary, the accuracy ε is constant. If a certain
distance is reached, the error increases potentially with smaller distance, independent of
the curvature of the surface. This is a typical phenomena of boundary element methods
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since the derivatives are large near the boundary. If we choose meshes of higher order in
the bounding boxes around x and Γi the point of change can be moved to the left. For
distances smaller than 2−8, our method and Gauss quadrature provide the same results.
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Figure 6.9: Accuracy of our method (green) and Gauss quadrature (red).

If we compare the errors for the points in the interior of Ω we can see a behavior
similar to them of the points in the exterior (cf. Figure 6.10). Again, Gauss quadrature
works better on the non-curved geometry. For evaluation points which are not very closed
to the boundary (dist(x,Γm) > 2−2), the accuracy is constant at the order of ε = 10−9,
independent of η̃.
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Figure 6.10: Accuracy of our method with η̃ = 0.75 (blue), η̃ = 0.5 (green), η̃ = 0.25
(yellow) and Gauss quadrature (red).

If we do not know the exact boundary data on the whole boundary Γ, we need to
complete it as described in Section 1.4. In this case, the relative error at the evaluation
point x cannot be smaller than the error made by approximating the boundary data. Thus
it suffices to choose the stopping criterion ε for ACA of the same order.
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In the previous chapter we have seen that the complexity for evaluating the solution
at N = m points is of order N logN whereas the direct evaluation by Gauss quadrature
needs O(N2) operations. Again we test the algorithm on the computational domain of a
cube with side length 8. We choose η = 0.2 and η̃ = 0.5. The mesh in the bounding box
around x = (3, 3, 7) is of order four and the meshes in the bounding boxes around the
clusters τ are of order five. ACA is stopped when an accuracy of ε = 10−9 is reached. The
resulting runtimes are plotted in Figure 6.11. We see that for large N the slope of the
line representing Gauss quadrature is twice the slope of the line representing our method.
Thus the complexity results of the previous section are verified.
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Figure 6.11: Runtime for our algorithm (blue) and Gauss quadrature (green).
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Chapter 7

Conclusion

As we have seen in the both previous chapters, the introduced method is an efficient
way to evaluate the representation formula for boundary element methods. Accuracy and
complexity of Gauss quadrature only are acceptable if we have a few evaluation points far
away from the boundary and non-curved geometries. In all other cases our method should
be the preferred one. Since the degenerate kernel approximation leads to a separation of
variables and large parts can be computed in advance so that the complexity scales like
N logN instead of N2, our algorithm works faster for more than about 103 evaluation
points. The numerical experiments performed prove that in addition it is more precise,
especially for curved computational domains. Due to large derivatives near the boundary
it is not possible to achieve a high accuracy at evaluation points very closed to the bound-
ary. However, this accuracy cannot either be reached by Gauss quadrature. In this case
the accuracy of our method and Gauss quadrature are of the same order.

In comparison to the usual panel-clustering method, which has a complexity similar
to our modified method, we do neither need to compute any derivatives nor to know
in advance the degree of the degenerate kernel approximation. The degree to achieve a
desired accuracy can be found adaptively. This is due to the fact that we use the adaptive
cross approximation instead of Taylor expansion. Thus the adaptive cross approximation
is a suitable alternative for approximating the arising kernels.

61



CHAPTER 7. CONCLUSION

62



References

[1] M. Bebendorf, Approximation of boundary element matrices, Numerische Mathematik
86 (2000), no. 4, 565–589.

[2] , Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value
Problems, Lecture Notes in Computational Science and Engineering (LNCSE), vol. 63,
Springer-Verlag, 2008, ISBN 978-3-540-77146-3.

[3] D. Braess, Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elas-
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