Multigrid on different grids

Gerhard W. Zumbusch

VAVAVAVA/
A \/\/\/N

Diffpacls

The Diffpack Report Series
November 22, 1996

SUNITTE?

This report is compatible with version 2.4 of the Diffpack software.

The development of Diffpack is a cooperation between

e SINTEF Applied Mathematics,
e University of Oslo, Department of Informatics.

e University of Oslo, Department of Mathematics

The project is supported by the Research Council of Norway through the technology
program: Numerical Computations in Applied Mathematics (110673/420).

For updated information on the Diffpack project, including current licensing conditions,
see the web page at

http://www.oslo.sintef .no/diffpack/.

Copyright © SINTEF, Oslo
November 22, 1996

Permission is granted to make and distribute verbatim copies of this report provided the
copyright notice and this permission notice is preserved on all copies.

Abstract

The report is a continuation of an introductory report on the multigrid iterative
solvers in Diffpack. We consider the solution of equation systems stemming from
the finite element discretization of partial differential equations on different grids. In
the introductory report only uniform partitions of the unit square and unit cube were
treated. Now we consider also multigrid for mapped elements, grids generated by the
meshing of super elements and unstructured (and non nested) grids. The first steps
are guided by a couple of examples and exercises.

Contents

1 Introduction

2 Mapped elements

3 Super element grids

4 Unstructured grids

5 Rough domain boundary
6 Conclusion

References

13

22

23

25

Multigrid on different grids

Gerhard W. Zumbusch *

November 22, 1996

1 Introduction

The solution of partial differential equations often leads to the solution of equation
systems. For large problem sizes this solution tends to dominate the overall com-
plexity of the whole simulation. Hence efficient equation solvers like the multigrid
method are needed. The idea is to construct an iterative solver based on several
discretizations on different scales. The multigrid method reaches optimal linear com-
plexity which is comparable to the assembly and input/output procedures in a finite
element computation.

Multigrid methods and domain decomposition methods are implemented in Diffpack
in a common framework applicable to iterative solvers, preconditioners and nonlinear
solvers. The user has to add approximative solvers on the different discretizations and
grid transfer operators projecting and interpolating residuals and corrections from
one discretization to another. These components are specified in the DDSolverUDC
interface in Diffpack.

The multigrid algorithm itself applies the approximate solvers on the different dis-
cretizations and uses coarse (= cheap) discretization to correct solutions on finer (=
expensive) discretization. The standard way to do this is called V-cycle.

Figure 1: Multigrid V-Cycle

The algorithm may be written recursively like this
et = S'(z,b)
v = 2+ R ;% 1(0, Ry (b— Ljal))
Bi(z,b) = S%*a?0b)

SINTEF Applied Mathematics. Email: Gerhard.Zumbusch@math.sintef.no.

where Sdenote the approximative solvers and R;_; ; and R;_; ; are the grid transfer
operators. The evaluation of the residual is denoted by b — Lz. The algorithm on
level one can be defined as

&y (z,0) = S(z,b)

A standard assumption is that the finite element spaces of different scales are nested
VicVYaCVsC...

and that the projection
Rjj-1:Vj—=Via

and prolongation

Rj—Lj : Vj_l — Vj

are cheap operations. This is of course true for structured grids on the unit square,
but the nesting might be violated for more complicated unstructured grids. The
efficiency of the transfer operators for unstructured grids also depends on the grids
and the additional geometrical knowledge given, for example properties of the grid
generation process.

Up to now we only have used a regular grid on a unit-square or unit-cube with
standard assembly procedures available in Diffpack. We now show how to extend
this to more general geometries. We assume familiarity with some of the basic con-
cepts of Diffpack [BL96, Lan94]. We will use and modify some examples presented
in in the multigrid introduction [Zum96]. For a more detailed presentation of the
multigrid method we refer to text books like [Hac85] and other references found in
[Zum96]. It may be helpful to have access to the Diffpack manual pages dpman
while reading this tutorial. The source codes and all the input files are available at
$DPR/src/app/pde/ddfem/src/.

The report is organized as follows: We discuss the extension of the multigrid sim-
ulator developed in the introductory report to mapped grids. Then we use grids
created by the super element preprocessor and in the following section unstructured
grids created with the Diffpack GeomPack interface. Finally we comment on some
problem related to small geometrical features compared to the coarse grid size.

2 Mapped elements

Mapped elements can be used to approximate curved domain boundaries. The fi-
nite element discretization is equivalent to discretization of a regular grid on regular
elements with varying coefficients. Hence a standard multigrid method suited for
varying coefficients is applicable. However the given implementation should be ex-
tended for this purpose:

The general set-up for the grid transfer by ProjInterpSparse relies on interpolation
using coordinate information. Computing the mapping and the inverse mapping for
mapped elements can be expensive. Since the result is just the grid transfer of a reg-
ular grid, we can improve the performance in this case substituting the interpolation

@ @
x x
¥ ¥
> >
o ! o !
0.5403 2 0.5403 1 2
X-Axis X-Axis
1.68: 1.68:
1 R 1
2 k)
x x
¥ ¥
> >
\
0 0 T
0.5403 2 0.5403 1 2
X-Axis X-Axis
Figure 2: A Hierarchy of grids with mapped elements, angle § = 1
procedure.

T B cos(z20)
(Tg) — (mla +(xl)b) (sin(z40))
We start with the MultiGrid2 example simulator described in [Zum96]. We want to
extend it to mapped finite elements using transfinite mappings. We use the approach

described in chapter 2.7 [Lan94] and chapter 4 in [LPS94]. Combining the transfinite
mapping with the standard multigrid simulator looks like this!. We also refer to the

documentation in [Lan94].

// prevent multiple inclusion of MGGeol.h
#ifndef MGGeol_h_IS_INCLUDED
#define MGGeol_h_IS_INCLUDED
#include <MultiGrid2.h>
#include <TransfMap.h>
class Box2Disk : public GridMapUDC
{

real theta_0, a, b; // tranformation parameters
public:

'you will find the code in MGGeol/

MGGeol.h

Box2Disk (real a = 1.0, real b = 2.0, real theta_0 = M_PI_4);
virtual void sideFunctions
(Ptv(real)% deformed, const Ptv(real)& refbox, int side, real t = DUMMY);
};

class MGGeol : public MultiGrid2 // grids by transfinite mapping
{

friend class DiskSolution;
protected:

// general data:

real a,b; // inner and outer radius

virtual real f(const Ptv(real)& x); // source term in the PDE
virtual real k(const Ptv(real)& x); // coefficient in the PDE

virtual void f£illEssBC (Spaceld space);// set boundary conditions

public:
MGGeol ();
“MGGeol () {}

virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan (MenuSystem& menu) ;
virtual void solveProblem (); // main driver routine

};

class DiskSolution : public FieldFunc
{
MGGeol& data;
public:
DiskSolution (MGGeol& simulator) : data(simulator) {}
“DiskSolution () {}
virtual real valuePt (const Ptv(real)& x, real t = DUMMY);
virtual real operator() (const Ptv(real)& x, real t = DUMMY) const;
};
#tendif

The simulator class MGGeol is derived from the MultiGrid2 class. The Box2Disk
class is used to move the nodes of the grids from their position on the unit square
to the annular sector. This is done in the scan procedure. The class DiskSolution
implements the analytical solution to compare with. It is allowed to read the param-
eters of the geometry via the friend statement in class MGGeol. The menu handling

procedures of MultiGrid?2 are extended for the new geometric parameters.

#include <MGGeol.h>

#include <PreproBox.h>

#include <ElmMatVec.h>

#include <FiniteElement.h>

#include <ErrorEstimator.h>

#include <Vec_real.h>

#include <DDIter.h>

#include <PrecDD.h>

#include <createElmDef.h> // for calling hierElmDef in MGGeol::define
#include <createMatrix_real.h> // creating stiffness matrices

#include <createDDSolver.h> // creating multigrid object
#include <createLinEqSolver.h> // creating smoothers
#include <createRenumUnknowns.h> // renumbering grids
#include <RenumUnknowns.h> // renumbering grids

Box2Disk:: Box2Disk (real a_, real b_, real theta_0_)
: aa_), b(b_), theta_0(theta_0_)

{
if (eq(theta_O0,M_PI_2) || eq(theta_0,3*M_PI_2))
fatalerrorFP ("Box2Disk constr.",
"theta=Y%g, illegal value (tan(%g) can give NAN",
theta_0,theta_0);
}

// transformation of a rectangle to a part of a disk a<r<b:
void Box2Disk:: sideFunctions
(Ptv(real)% deformed, const Ptv(real)& refbox, int side, real /*t*/)

{
if (side == 1)
{
deformed(1) = b*cos(refbox(2)*theta_0);
deformed(2) = b*sin(refbox(2)*theta_0);
}
else if (side == 2)
{
deformed(1) = (refbox(1)*(b-a)+a)*cos(theta_0);
deformed(2) = tan(theta_0)*deformed(1);
}
else if (side == 3)
{
deformed(1) = a*cos(refbox(2)*theta_0);
deformed(2) = a*sin(refbox(2)*theta_0);
}
else if (side == 4)
{
deformed(1) = refbox(1)*(b-a)+a;
deformed(2) = 0;
}
}
[

real DiskSolution:: valuePt (const Ptv(real)& x, real /*t*/)
{
// could check consistency of x.size as we did in analyticalSolution
const real r = sqrt (sqr(x(1)) + sqr(x(2)));
const real ua = log(r/data.a)/log(data.b/data.a);
return ua;

real DiskSolution:: operator() (const Ptv(real)& x, real t) const

{
return CAST_CONST_AWAY(DiskSolution)->valuePt (x, t);
}

MGGeol:: MGGeol () {}

void MGGeol::
{

MultiGrid2:: define (menu, level);

define (MenuSystem& menu, int level)

menu.addItem (level, "theta", "theta", "angle of grid disk", "0.3", "R1");

menu.addItem(level,
"inner radius",
"irad",
"inner radius",
Il1 . oll N
"I[0.05:101");
menu.addItem(level,
"outer radius",
"orad",
"outer radius",
no o s
"I[0.07:201");

void MGGeol::
{
MultiGrid2::

scan (MenuSystem& menu)

scan (menu);

initProj(); // init projections before moving the grids!

real theta_0 = menu.get("theta").getReal();

a=menu.get ("inner radius").getReal();
b=menu.get ("outer radius").getReal();
// apply mesh transformation:

Box2Disk mapping_formula (a, b, theta_0);

TransfMap mapping (mapping_formula);
for (int i=1; i<=no_of_grids; i++)
grid(i)->move (mapping);

void MGGeol::
{
dof (space) ->initEssBC ();

£il1EssBC (Spaceld space)

int nno = grid(space)->getNoNodes(); //

for (int i = 1; i <= nno; i++) {
if (grid(space)->BoNode (i,1))
dof (space)->fillEssBC (i, 1.0);
else if (grid(space)->BoNode (i,3))
dof (space)->fillEssBC (i, 0.0);
}
#ifdef DP_DEBUG
dof (space) ->printEssBC (s_o, 2);
#endif

}
void MGGeol:: solveProblem ()
{

initMatrices();

£illEssBC (no_of_grids);

init for assignment below
no of nodes

u=1 at r=b

u=0 at r=a

for checking the essential boundary cond.

// set essential boundary conditions

makeSystem (dof (no_of_grids) (), lineq()); // calculate linear system

system(no_of_grids)->attach(lineq->Al ());
ddsolver->attachLinRhs(lineq->bl (), no_of_grids, dpFALSE);
ddsolver->attachLinSol(lineq->x1 (), no_of_grids);

if (lineq->getSolver().description().contains("Domain Decomposition")) {
BasicItSolver& sol = CAST_REF(lineq->getSolver(), BasicItSolver);
DDIter& ddsol = CAST_REF(sol, DDIter);
ddsol.attach(*ddsolver);

}

Precond &prec =lineq->getPrec();

if (prec.description().contains(""Domain Decomposition')) {
PrecDD& sol = CAST_REF (prec, PrecDD);
sol.init (*ddsolver);

}

linsol.fill (0.0); // set all entries to 0 in start vector

dof (no_of_grids)->fillEssBC (linsol); // insert boundary values in start vector
lineqg->solve(); // solve linear system

int niterations; BoolLean c; // for iterative solver statistics
if (lineq->getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n **#* solverisconverged in %3d iterations ***\n\n",
c? "™ "™ : " not ",niterations);

// the solution is now in linsol, it must be copied to the u field:

dof (no_of_grids)->vec2field (linsol, u());

Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());

DiskSolution uanal (¥this);

ErrorEstimator::errorField (uanal, u(), DUMMY, error());
Store4Plotting: :dump (error());

ErrorEstimator::Lnorm (uanal, // supplied function (see above)

u(), // numerical solution

DUMMY, // point of time

Li_error, L2_error, Linf_error, // error norms
GAUSS_POINTS) ; // point type for numerical integ.

real MGGeol:: f (const Ptv(real)& /*xx*/)
{ return 0; }

real MGGeol:: k (const Ptv(real)& /*xx*/)
{ return 1; }

The example code only works for two dimensional problems. This is due to the two
dimensional transformation from the unit square onto an annular ring. However, the
extension to three dimensions with another transformation is straightforward.

As you see in figure 2, the grids do not seem to nested because the square shaped
elements are subdivided into triangles in different ways. However the computations
are done with bilinear square shaped elements, which means nested grids. The tri-
angulation is an artifact of the printing software (plotmtv).

Notice that we have moved the initialization of the projection operators initProj.
The interpolation is set up after the regular grids are created and before the grids
are mapped to the curvilinear domain. The result would have been the same, if
we did the interpolation for the mapped grids, but doing it on the unit square is
computationally cheaper.

-~

The following input file may be starting point for your experiments?.
Exercise 1 Mapped elements.

(table 1, test1.1)

menu item answer
theta {0.3& 1.0 & 1.57 & 3.14 }
inner radius 1.0
outer radius 2.0
no of grid levels 4
no of space dimensions 2
coarse partition [2,2]
refinement [2,2]
sweeps [2,2]
basic method DDlter
domain decomposition method Nested Multigrid

Table 1: Mapped elements, testl.1i

Interesting play parameters certainly are the parameters defining the geometry of the
domain. In table 1 a parameter study for the angle 6 is given. The ratio ro/r; may
also be of interest. An alternative view of the computations is the transformation back
onto the unit square, now with an anisotropic smooth variable coefficient operator.
Hence the numerical methods and results may be comparable to the results for such
kinds of operators on the unit square.

3 Super element grids

Following chapter 5 in [LPS94] we introduce super elements and generate finite ele-
ment grids with the super element preprocessor in Diffpack. The idea is to create a
macro grid of huge “super” elements. The final grid is generated by subdividing (or
meshing) each of the super elements. The advantage is that the specification of the
grid does not contain all elements, but just geometric objects of the size necessary
to describe the geometry. The meshing procedure itself can create structured grids,
which is simple and efficient and does not require further parameters or heuristics.

For the multigrid method based on super elements we start with a very coarse meshing
on the super element grid. Finer grids are obtained using finer meshing of the super
element grid. The grids are nested if the partition of each super element is nested.

We start with the Diffpack multigrid simulator MultiGrid2 of [Zum96].

MGGeo2.h

// prevent multiple inclusion of MGGeo2.h

*files are in MGGeol/Verify/

Y-AXxis
R e s AT SN

Y-AXxis
IR e s AT SN

10 17 10 17
X-Axis X-Axis

o
o

Y-Axis

O R N WA OO N
Y-Axis

O R, N WA OO N ©

X-Axis X-Axis

Figure 3: A Hierarchy of grids with super elements

#ifndef MGGeo2_h_IS_INCLUDED
#define MGGeo2_h_IS_INCLUDED

#include <MultiGrid2.h>

class MGGeo2 : public MultiGrid2 // grids by super elements

{

protected:
virtual real f(const Ptv(real)& x); // source term in the PDE
virtual real k(const Ptv(real)& x); // coefficient in the PDE

virtual void scanGrids(MenuSystem& menu);// construct hierarchy of grids
public:

MGGeo2 ();

“MGGeo2 () {}

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void solveProblem (); // main driver routine
virtual void resultReport (); // write solution

};

#tendif

The class MGGeo is derived from class MultiGrid2. The grid generation procedure
scanGrids is changed to use the super element preprocessor PreproSupElSet. The
menu handling is changed accordingly.

MGGeo2.C

#include <MGGeo2.h>

#include <PreproSupElSet.h>

#include <PartitionSupElSet.h>

#include <ElmMatVec.h>

#include <FiniteElement.h>

#include <ErrorEstimator.h>

#include <Vec_real.h>

#include <DDIter.h>

#include <PrecDD.h>

#include <createElmDef.h> // for calling hierElmDef in MGGeo2::define
#include <createMatrix_real.h> // creating stiffness matrices
#include <createDDSolver.h> // creating multigrid object
#include <createLinEqSolver.h> // creating smoothers
#include <createRenumUnknowns.h> // renumbering grids
#include <RenumUnknowns.h> // renumbering grids

MGGeo2:: MGGeo2 () {}

void MGGeo2:: define (MenuSystem& menu, int level)
{
menu.addItem (level, "geometry", '"geometry", '"superelement geometry file",
"FILE=geo/two_supels.geom", "S");

menu.addItem (level, "partition", "partition", "superelement coarse partition file",
"FILE=geo/two_supels.part", "S");

menu.addItem (level,
"no of grid levels", // menu command/name

"level", // command line option: +level
"no of uniform refinements",

g, // default answer (2D problem)
"I1"); // valid answer: 1 integer

menu.addItem (level,
"refinement", // menu command/name
"refinement", // command line options: +refinement
"string like [2,2,2] = bisect",

"[2,21", // default answer: isotropic bisection 2x2
"S'); // valid answer: string
menu.addItem (level,
"sweeps", // menu command/name
'sweeps", // command line options: +sweeps
"string like [2,2] = pre & post smoothing sweeps",
“[1,17", // default answer: V1,1 cycle
"S'); // valid answer: string
// submenus:
LinEgAdm: : defineStatic (menu, level+1l);// linear system parameters
prm(DDSolver):: defineStatic (menu, level+1);// multigrid parameters

menu.setCommandPrefix("smoother");
prm(LinEqgSolver) : :defineStatic (menu, level+1);// smoother parameters
menu.addItem (level,
"renumber unknowns', // menu item command/name
nn
"select a renumbering algorithm",
hierRenumUnknowns () [0], // default answer
validationString(hierRenumUnknowns())); // list all classnames
menu.unsetCommandPrefix();

menu.setCommandPrefix("coarse grid");
prm(LinEgSolver) : :defineStatic (menu, level+1);// coarse grid solver

10

menu.addItem (level,
"renumber unknowns", // menu item command/name
"
"select a renumbering algorithm",
*hierRenumUnknowns (), // default answer
validationString(hierRenumUnknowns())); // list all classnames

menu.unsetCommandPrefix () ;

FEM: : defineStatic (menu, level+1);// numerical integration rule
Store4Plotting:: defineStatic (menu, level+1);// dumping of fields and curves

void MGGeo2:: scanGrids (MenuSystem& menu) // construct hierarchy of grids

{

String geometry = menu.get ('geometry");
GeometrySupElSet geom;
geom.scan (geometry);

String partition = menu.get ("partition");
PartitionSupElSet part;

part.scan (partition);

int nsd = part.getNsd();

Ptv(int) ref(nsd);
Is rIs(menu.get ('"refinement"));
rIs->ignore (’[’);
for (int d=1; d<= nsd; d++) {
rIs->get (ref(d));
if (d < nsd)
rIs->ignore (’,’);

for (int i=1; i<=no_of_grids; i++) {
PreproSupElSet p(geom, part);
grid(i) .rebind (new GridFE()); // make an empty grid
p.generateMesh (grid(i)());

if (i==1)
menu.setCommandPrefix('coarse grid");
else
menu.setCommandPrefix("smoother");
String reduce = menu.get ("renumber unknowns');
RenumUnknowns* r = createRenumUnknowns (reduce);
r->renumberNodes (grid(i)());
delete r;
menu.unsetCommandPrefix() ;

int nose = part.getNose();
for (int e=1; e<= nose; e++) {
for (int d=1; d<= nsd; d++) // refine partition for next grid

part.setDiv(e, d, ref(d) * part.getDiv(e, d));

part.checkData(e);
part.calcPartition(e);
}
}

FEM::scan (menu); // load type and order of the numerical integration rule
Store4Plotting::scan (menu, grid(no_of_grids)->getNoSpaceDim());

11

}

s_o << "\n #x*x Finite element grids: ***x\n";
for (i=1; i<=no_of_grids; i++)
s_o << "\n Grid " << i << ":\tNo of nodes: " << grid(i)->getNolodes()
<< ",\tno of elements: " << grid(i)->getNoElms();
s_o << "\n\n";

void MGGeo2:: solveProblem () // main routine of class MGGeo2

{

initProj();
initMatrices();

f£fillEssBC (no_of_grids); // set essential boundary conditions
makeSystem (dof (no_of_grids) (), lineq()); // calculate linear system

system(no_of_grids)->attach(lineq->Al ());
ddsolver->attachLinRhs(lineq->bl (), no_of_grids, dpFALSE);
ddsolver->attachLinSol(lineq->x1 (), no_of_grids);

if (lineq->getSolver().description().contains("Domain Decomposition")) {
BasicItSolver& sol = CAST_REF(lineq->getSolver(), BasicItSolver);
DDIter& ddsol = CAST_REF(sol, DDIter);
ddsol.attach(*ddsolver);

}

Precond &prec =lineq->getPrec();

if (prec.description().contains("Domain Decomposition'")) {
PrecDD& sol = CAST_REF (prec, PrecDD);
sol.init (*ddsolver);

}

linsol.fill (0.0); // set all entries to 0 in start vector

dof (no_of_grids)->fillEssBC (linsol); // insert boundary values in start vector
lineg->solve(); // solve linear system

int niterations; BoolLean c; // for iterative solver statistics
if (lineq->getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n *** solverisconverged in %3d iterations ***\n\n",
c? "™ " : " not ",niterations);

// the solution is now in linsol, it must be copied to the u field:

dof (no_of_grids)->vec2field (linsol, u());

Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());

void MGGeo2:: resultReport ()

{

if (grid(no_of_grids)->getNoNodes() < 100)
u->values () .print ("FILE=u.dat","Nodal values of the solution field");

real MGGeo2:: f (const Ptv(real)& /*xx*/)

{

return 1; }

real MGGeo2:: k (const Ptv(real)& /*xx*/)

{

return 1; }

12

The projection and interpolation procedures are not changed at all. This means the
standard interpolation procedure ProjInterpSparse is used. Since it is known in
advance that the grids are nested and set up by bisection, a more efficient set up of
the transfer matrix could be implemented.

The following input files may be some guideline for your experiments®. The geom-
etry files are taken from $TIMR/doc/prepro/ex and are explained in [LPS94]. The
division in the partition files is set to [2,2] and [2,2, 2] respectively for the creation
of a coarse grid. The finer grids are created dividing the grid into more elements.

menu item answer
geometry FILE=two_supels.geom
partition FILE=two_supels.part
no of grid levels 4
refinement [2,2]
sweeps [2,2]
basic method DDlter
preconditioning type PrecNone
domain decomposition method Nested Multigrid
smoother basic method SOR

Table 2: Super elements, testl.1

We just give some input files for the code. Table 2, file test1.i runs multigrid on
the region depicted in figure 3. Some standard efficiency test concerning smoother
and number of refinement levels can be applied.

menu item answer
geometry FILE=test3D.geom
or FILE=test3Db.geom
partition FILE=test3D.part
or FILE=test3Db.part
refinement [2,2,2]
no of grid levels 3

Table 3: Super elements, 3D, test2.1, test3.1

Input files for the three dimensional case are in table 3, files test2.1i and test3.1i
runs multigrid on a three dimensional region, the second one depicted in figure 4.
Some standard efficiency test concerning smoother and number of refinement levels
may be applied. Compare the results to results the unit square.

3files are in MGGeo2/ Verify/

13

VWY

Z—-Axis
Z—-Axis

e

10 .
18 X—AXS

Z—-Axis

Figure 4: A Hierarchy of grids with super elements

4 Unstructured grids

Unstructured grids may be useful for geometrically complex domains. Multigrid can
be applied to problems on unstructured grids. However the main problem usually is
a (nested) hierarchy of grids. Starting with a grid resolving the given geometry it is
easy to construct finer grids refining each element. The other way round starting with
a unstructured fine grid is not possible in general. Coarsening usually will violate the
nested-ness of the grids. This topic will be covered in section on non-nested grids.

Suppose a hierarchy of unstructured grids is given: We can feed these into our multi-
grid code. A time consuming part of the computation will be the interpolation since
there is no connecting information available. The interpolation will do lots of local
searches to find the right parent-child relations of both grids.

Although the multigrid will run, it will be wiser to supply this refinement information
which we will do in the context of adaptive refinement and will be described elsewhere.

Using non-nested spaces sometimes may be necessary although usually ones tries to

14

avoid it. Technically this means that the coarser finite element space is not a subspace
of the finer finite element space any longer. Hence there are two problems:

The issue of convergence: The coarse space has to be near enough to the finer space
to have a convergent method. It may be necessary to improve the smoother (or use
something like W cycles).

The computational cost: The interpolation procedure will be more expensive than in
the nested case. There are more arithmetical operations necessary to compute the
projection.

Our multigrid implementation also covers non-nested spaces. However improvement
of the interpolation procedure may be necessary.

We start with the Diffpack multigrid simulator MultiGrid2 of [Zum96].

// prevent multiple inclusion of MGGeo3.h
#ifndef MGGeo3_h_IS_INCLUDED

#define MGGeo3_h_IS_INCLUDED

#include <MultiGrid2.h>

class MGGeo3 : public MultiGrid2 // grids by geompack

{
protected:

virtual real f(const Ptv(real)& x); // source term in the PDE

virtual real k(const Ptv(real)& x); // coefficient in the PDE

virtual void scanGrids(MenuSystem& menu);// construct hierarchy of grids
public:

MGGeo3 ();

“MGGeo3 () {}

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void solveProblem (); // main driver routine

virtual void resultReport (); // write error norms to the screen
};
#tendif

The class MGGeo3 is derived from MultiGrid2. The grid generation in procedure
scanGrids is changed to use the GeomPack interface in Diffpack. The menu handling
is changed accordingly.

#include <MGGeo3.h>
#include <PreproGeomPack.h>
#include <ElmMatVec.h>
#include <FiniteElement.h>
#include <ErrorEstimator.h>
#include <Vec_real.h>
#include <DDIter.h>

15

MGGeo3.h

MGGeo3.C

#include <PrecDD.h>

#include <createElmDef.h> // for calling hierElmDef in MGGeo3::define
#include <createMatrix_real.h> // creating stiffness matrices
#include <createDDSolver.h> // creating multigrid object

#include <createLinEqSolver.h> // creating smoothers

#include <createRenumUnknowns.h> // renumbering grids

#include <RenumUnknowns.h> // renumbering grids

MGGeo3:: MGGeo3 () {}

void MGGeo3:: define (MenuSystem& menu, int level)
{
menu.addItem (level, "geometry", 'geometry", 'geompack geometry file",
"FILE=geo/annulus.geom", "S");

menu.addItem (level, "partition", "partition", "geompack partition file",
"FILE=geo/annulus.part", "S");

menu.addItem (level,
"refinement factor", // menu command/name

"refinement", // command line option: +level
'"progression of no of elements",

"4.0", // default answer (2D problem)
"R1"); // valid answer: 1 real

menu.addItem (level,
"no of grid levels", // menu command/name

"level", // command line option: +level
"no of uniform refinements",

g, // default answer (2D problem)
"I1'); // valid answer: 1 integer

menu.addItem (level,

"sweeps", // menu command/name

'sweeps", // command line options: +sweeps

"string like [2,2] = pre & post smoothing sweeps",

"[1,17", // default answer: V1,1 cycle

"s'); // valid answer: string
// submenus:
LinEgAdm: : defineStatic (menu, level+l);// linear system parameters
prm(DDSolver):: defineStatic (menu, level+1);// multigrid parameters

//define_renumber
menu.setCommandPrefix("smoother");
prm(LinEqgSolver) : :defineStatic (menu, level+1);// smoother parameters
menu.addItem (level,
"renumber unknowns', // menu item command/name
"
"select a renumbering algorithm",
hierRenumUnknowns () [0], // default answer
validationString(hierRenumUnknowns())); // list all classnames
menu.unsetCommandPrefix();

menu.setCommandPrefix("coarse grid");
prm(LinEgSolver): :defineStatic (menu, level+1);// coarse grid solver
menu.addItem (level,

"renumber unknowns', // menu item command/name

16

}

"select a renumbering algorithm",
shierRenumUnknowns (), // default answer
validationString(hierRenumUnknowns())); // list all classnames

menu.unsetCommandPrefix () ;

FEM: : defineStatic (menu, level+1);// numerical integration rule
Store4Plotting:: defineStatic (menu, level+1);// dumping of fields and curves

void MGGeo3:: scanGrids (MenuSystem& menu) // construct hierarchy of grids

{

String geometry = menu.get ('geometry");
String partition = menu.get ("partition");
real refinement= menu.get ("refinement factor").getReal();

PreproGeomPack p;

p.geometryGeomPack() .scan (geometry);
p-partitionGeomPack() .scan (partition);

real no_elem = p.partitionGeomPack().getNTriD();

for (int i=1; i<=no_of_grids; i++) {
p-partitionGeomPack() .setNTriD((int)no_elem);
grid(i) .rebind (new GridFE()); // make an empty grid
p.generateMesh (grid(i)());

no_elem *= refinement; // refine next grid
if (i==1)

menu.setCommandPrefix('coarse grid");
else

menu.setCommandPrefix("smoother");
String reduce = menu.get ("renumber unknowns');
RenumUnknowns* r = createRenumUnknowns (reduce);
r->renumberNodes (grid(i)());
delete r;
menu.unsetCommandPrefix() ;

FEM::scan (menu); // load type and order of the numerical integration rule
Store4Plotting::scan (menu, grid(no_of_grids)->getNoSpaceDim());

s_o << "\n #x*x Finite element grids: ***x\n";
for (i=1; i<=no_of_grids; i++)
s_o << "\n Grid " << i << ":\tNo of nodes: " << grid(i)->getNolodes()
<< ",\tno of elements: " << grid(i)->getNoElms();
s_o << "\n\n";

void MGGeo3:: solveProblem () // main routine of class MGGeo3

{

initProj();
initMatrices();

£illEssBC (no_of_grids); // set essential boundary conditions
makeSystem (dof (no_of_grids) (), lineq()); // calculate linear system

system(no_of_grids)->attach(lineq->Al ());

ddsolver->attachLinRhs(lineq->bl (), no_of_grids, dpFALSE);
ddsolver->attachLinSol(lineq->x1 (), no_of_grids);

17

if (lineq->getSolver().description().contains("Domain Decomposition")) {
BasicItSolver& sol = CAST_REF(lineq->getSolver(), BasicItSolver);
DDIter& ddsol = CAST_REF(sol, DDIter);
ddsol.attach(*ddsolver);

}

Precond &prec =lineq->getPrec();

if (prec.description().contains(""Domain Decomposition')) {
PrecDD& sol = CAST_REF (prec, PrecDD);
sol.init (*ddsolver);

}

linsol.fill (0.0); // set all entries to 0 in start vector

dof (no_of_grids)->fillEssBC (linsol); // insert boundary values in start vector
lineqg->solve(); // solve linear system

int niterations; BoolLean c; // for iterative solver statistics
if (lineq->getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n **#* solverisconverged in %3d iterations ***\n\n",
c? "™ "™ : " not ",niterations);

// the solution is now in linsol, it must be copied to the u field:
dof (no_of_grids)->vec2field (linsol, u());

Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());
}
void MGGeo3:: resultReport ()
{
if (grid(no_of_grids)->getNoNodes() < 100)
u->values () .print ("FILE=u.dat","Nodal values of the solution field");
}

real MGGeo3:: f (const Ptv(real)& /*xx*/)
{ return 1; }

real MGGeo3:: k (const Ptv(real)& /*xx*/)
{ return 1; }

The geometry files are taken from $TIMR/doc/prepro/gptest and are explained in
[LPS94]. The requested number of triangles/ tetrahedra specified in the partition
files *.part is changed to a low number for the initial coarse grid. The finer grids
are created increasing this number by a refinement factor given in the input menu.

The following input files may be some guideline for your experiments*. The geom-
etry files are taken from $TIMR/doc/prepro/gptest/Data2D and Data3D and are
explained in [LPS94] in chapter 6.

Table 4 and file test1.1i contain the input parameters for the computation on the
annulus region in figure 5. A refinement factor of 4 is chosen to mimic some bisection
strategy in two dimensions. Standard multigrid parameters are used and may be
varied for some experiments with smoother parameters. The coarse grid solution is
done with a direct solver because of the large number of unknowns. A renumbering

*files are in MGGeo3/ Verify/

18

(%2} (%2}
2 2
5 5
> >
n
AN
‘é#iygi%ﬁ'ﬁ‘:
SRR
(%2} %) v \Vi o\
2 2
5 5
> >

Figure 5: A Hierarchy of unstructured grids “annulus”

scheme suitable for a sparse matrix Gaussian elimination is chosen to restrict the fill
in.

An example for a computation in three dimensions is given in table 5 and file test2.1.
The grid are depicted in figure 6 while a cross section of the solution is in figure 7. The
refinement factor for bisection in three dimension would be originally 8, but we have
chosen a slightly lower value. The exact number of elements cannot be controlled
and the given element number are just request for the GeomPack grid generator.

19

Y-Axis

Y-Axis

Figure

Figure 7: Solution on the 3D unstructured grid “teapot”

20

menu item

answer

geometry FILE=annulus.geom
partition FILE=annulus.part
no of grid levels 4
refinement factor 4.0
sweeps [2,2]
matrix type MatSparse
basic method DDlter
domain decomposition method Nested Multigrid
smoother basic method SOR
smoother renumber unknowns RenumNoUnknowns
coarse grid basic method GaussElim
coarse grid renumber unknowns AMDhat

Table 4: Unstructured grids, 2D, test1.1i

menu item

answer

geometry

FILE=teapot.geom

partition

FILE=teapot.part

no of grid levels

3

refinement factor

6.0 (standard is 8)

Table 5: Unstructured grids, 3D, test2.1

21

5 Rough domain boundary

Rough boundaries of a domain lead to fine and complicated finite element grids. A
hierarchy of grids for such a domain starts with a fine grid resolving the boundary
and refines this grid further. It is difficult to apply multigrid on such grids since even

the coarsest grid is quite fine and sometimes further refinement is not necessary. boundary
approximation

Often a coarse grid ignoring some of the details of the boundary is sufficient for
a good multigrid method. So it is possible to construct a hierarchy of grids where
only the finest grid represents the boundary exactly while the coarser grids only
approximate the boundary and can be quite coarse (figure 8). Even all grids can be
just approximations of the domain, see [KY94].

The question now is how to construct such coarser grids: We can construct unstruc-
tured grids with a geometrically less accurate representation of the boundary using
some tolerance in the grid generation process. Having constructed such grids, we can
run the standard multigrid code. In the vicinity of the boundary the grids will not
be nested. The grids can also be constructed adaptively, see [DRI6].

‘A‘ NVAN
\/
BORRES

Figure 8: A hierarchy of topologically nested grids successively approximating the
domain

Figure 9: A hierarchy of composite finite element grids obtained by discrete “homog-
enization” with Galerkin products and standard interpolation
mogenization

Under some additional conditions on the finest grid we can just apply dyadic coars-
ening and use the Galerkin products to construct the coarse grid matrices. We first
construct the finest grid. We start with a regular coarse grid that covers the domain,
but may overlap and may be a bad approximation. We apply regular refinement until
the mesh-size is small enough to resolve geometrical details. We modify this fine grid
by removing elements and moving nodes, but without changing the grid topology
and without introducing too much distortion to the elements. This fine grid, which
resolves all geometrical details, may serve as a fine grid (see figure 9 left). The se-
quence of coarse grids is constructed de-refining the grid in the reverse way as the grid

22

simulator

[>]~]

Rn,n-1

¥

Rn-1,n-2

¥

E :

Figure 10: Set up algebraic multigrid

was produced by refinement. This leads to “composite” finite elements which resolve
the boundary perfectly, but have a different shape than standard finite elements (see
figure 9 middle and right). We use the standard interpolation procedures defined
by the element shape functions. The coarse grid matrices are defined by Galerkin
products using the interpolation and its adjoint. The geometrical interpretation of
the coarse spaces are distorted shape functions on the coarse grid, see [HS95].

The alternative is starting with a fine grid resolving all geometrical details. We can
construct coarser grids via some techniques used in algebraic multigrid (see figure 10
and [RS87, BX94]) . We expect in the interior of the domain to have the standard
nested grids and refinement. Near the boundary we get different operators result-
ing from a smoothing/ discrete homogenization of the boundary. The exact results
depends on the algebraic multigrid heuristic we choose.

In the case we cannot avoid large coarse grids, we have to discuss the solution of
the coarse grid system again. Assume we have n unknowns on the finest grid and
N unknowns on the coarsest grid. If we use a direct solver with e.g. a quadratic
complexity means c¢- N? operation on the coarsest grid times the number of visits on
the coarse grid (logn— logN'). The rest of the multigrid method means ¢-n operations.
If the total complexity should not be dominated by the coarse grid solver, we have

to have N < /n.

We can improve the complexity of the coarse grid solver, using some iterative proce-
dure to relax the condition for V. We have to solve the coarse grid precise enough
not to deteriorate the overall multigrid performance.

In the case the coarse grid N is too large, we have to construct coarse grid equations
another way: We can use algebraic multigrid applied to the coarsest grid. This means
a standard geometric refinement and an algebraic coarsening starting from the coarse

grid.

6 Conclusion

In this report we have demonstrated the use of multigrid equation solvers on different
types of grids. The multigrid method operates on a sequence of grids of different
mesh size covering the computation domain.While the previous introductory report

23

algebraic
multigrid

on multigrid methods covered the computation on uniform grids on the unit square,
we have extended both the computation domain and the variety of grids.

We used mapped elements as a modification of structured grids. We used the su-
per element preprocessor to generate a sequence of nested grids based on a coarse
geometric description of the domain by super elements. Finally we introduced the
GeomPack preprocessor interface to generate a sequence of non-nested unstructured
grids of triangles or tetrahedra and run multigrid on this grids.

We made some comments on further modifications due to geometrical details of the
domain which included strategies like algebraic multigrid and rough geometry ap-
proximations on coarse grids.

The efficiency of the multigrid method on unstructured grids relies on an efficient
projection and interpolation procedure. In the case of the GeomPack interface, no
auxiliary information to facilitate this is available. However for adaptive grids to be
covered in a later report this information is available due to the refinement history.

24

References

[BL96]

[BX94]

[DR96]

[Hac85]

[HS95]

[KY94]

[Lan94]

[LPS94]

[RSS7]

[Zum96]

A. M. Bruaset and H. P. Langtangen. A comprehensive set of tools for
solving partial differential equations; Diffpack. In M. Dzehlen and A. Tveito,
editors, Numerical Methods and Software Tools in Industrial Mathematics.
Birkhiuser, 1996.

R. E. Bank and J. Xu. The hierarchical basis multigrid method and incom-
plete LU decompostion. In Proc. Seventh Int. Conf. on Domain Decom-
position Meths., volume 180 of Contemporary Mathematics, pages 163-173,
Providence, 1994. AMS.

W. Dérfler and M. Rumpf. An adaptive strategy for elliptic problems in-
cluding a posteriori controlled boundary approximation. Technical Report
1-96, Math. Fak., Univ. Freiburg, 1996.

W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin,
1985.

W. Hackbusch and S. A. Sauter. A new finite element approach for problems
containing small geometric details. Technical Report 95-6, Mat. Sem., Univ.
Kiel, 1995.

R. Kornhuber and H. Yserentant. Multilevel methods for elliptic problems
on domains not resolved by the coarse grid. In Proc. Seventh Int. Conf. on
Domain Decomposition Meths., volume 180 of Contemporary Mathematics,
pages 49-60, Providence, 1994. AMS.

H. P. Langtangen. Getting started with finite element programming in
Diffpack. Technical Report STF33 A94050, SINTEF Informatics, Oslo,
1994.

H. P. Langtangen, G. Pedersen, and W. Shen. Finite element preprocessors
in Diffpack. Technical Report STF33 A94051, SINTEF Informatics, Oslo,
1994.

J. W. Ruge and K. Stiiben. Algebraic multigrid (AMG). In S. F. Mc-
Cormick, editor, Multigrid Methods, volume 3 of Frontiers in Applied Math-
ematics, pages 73-130. STAM, Philadelphia, PA, 1987.

G. W. Zumbusch. Multigrid methods in Diffpack. Technical Report STF42
F96016, SINTEF Applied Mathematics, Oslo, 1996.

25

