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Abstract

The report is a continuation of an introductory report on the multigrid iterative
solvers in Diffpack. We consider the solution of systems of equations as arising
in linear elasticity, non-symmetric equations as in convection-diffusion problems,
anisotropic operators and bad conditioned equations as for jumping coefficients prob-
lems. In the introductory report only the Laplacian and smooth coefficients were
treated. The first steps are guided by a couple of examples and exercises.
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Multigrid applied to different partial differential operators

Gerhard W. Zumbusch *

November 22, 1996

1 Introduction

The solution of partial differential equations often leads to the solution of equation
systems. For large problem sizes this solution tends to dominate the overall complex-
ity of the whole simulation. Hence efficient equation solver like the multigrid method
are needed. The idea is to construct an iterative solver based on several discretiza-
tions on different scales. The multigrid method reaches optimal linear complexity
which is comparable to the assembly and input/output procedures in a finite element

computation.
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Figure 1: Hierarchy of multigrid and domain decomposition methods

Multigrid methods and domain decomposition methods are implemented in Diffpack
in a common framework applicable to iterative solvers, preconditioners and nonlinear
solvers. The user has to add approximative solvers on the different discretizations and
grid transfer operators projecting and interpolating residuals and corrections from
one discretization to another. These components are specified in the DDSolverUDC
interface in Diffpack.

The multigrid algorithm itself applies the approximate solvers on the different dis-
cretizations and uses coarse (= cheap) discretization to correct solutions on finer (=
expensive) discretization. The standard way to do this is called V-cycle.
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Figure 2: Multigrid V-Cycle

The algorithm may be written recursively like this

et = SYa,b)
e = '+ R;1 ;9 1(0,R; ;1 (b— Ljath))
Bi(z,b) = S*a20b)

where Sdenote the approximative solvers and R;_; ; and R;_; ; are the grid transfer
operators. The evaluation of the residual is denoted by b — Lz. The algorithm on
level one can be defined as

Dy (z,0) = S(z,b)

We assume familiarity with some of the basic concepts of Diffpack [BL96, Lan94b].
We will use and modify some examples presented in in the multigrid introduction
[Zum96]. For a more detailed presentation of the multigrid method we refer to text
books like [Hac85] and other references found in [Zum96]. It may be helpful to have
access to the Diffpack manual pages dpman while reading this tutorial. The source
codes and all the input files are available at $DPR/src/app/pde/ddfem/src/.

The report is organized as follows: We treat each partial differential equation in
a separate chapter. The first one is dedicated to linear elasticity, the next one is
the convection-diffusion equation, then anisotropic problems and rough coefficient
problems follow. We conclude with some remarks on the combination of several
models on different scales in a multigrid method.

2 Systems of Equations, linear Elasticity

We want to extend the code to systems of equations. Take for example the Lameé
equations of linear elasticity with conforming linear finite elements, displacement
approach with low Poisson ratio (high compressibility).

Odu; Ouj
G = % (8% + 817{)
o = 2pe+ A(trace ) — (3A+ 2u)aT'(z)
dive = 0

with positive Lamé constants A and g. We have an elliptic selfadjoint operator similar
to the Laplace operator for the primary unknowns u; (displacement). We have two
unknowns u; in two dimensions and three unknowns in three dimensions. We can
apply multigrid in a block-sense, treating the displacement vector at each node as



one block. The grid transfer can be done for each component using the standard
procedure. The smoother may be some block-relaxation scheme. Using point-wise
smoother instead of block-wise may be dangerous, so at least we have to care about
the node numbering.

The equations may also be written with positive constants, Young’s elasticity modulus
e and the Poisson ratio v < 1/2

A= aEaem)

_€
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We start with the Diffpack multigrid simulator MultiGrid2 of [Zum96] and a pro-
totype implementation of linear elasticity given in Diffpack [Lan96]. The following
input parameters may be some guideline for your experiments?'.
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Figure 3: Displacement field, linear elasticity problem

// prevent multiple inclusion of MGOp4.h
#ifndef MGOp4_h_IS_INCLUDED

#define MGOp4_h_IS_INCLUDED

#include <MultiGrid2.h>

class MGOp4 : public MultiGrid2

{
protected:
Handle(FieldsFE) ud; // displacement field
real lambda, mu; // Lame’s contants
real E,nu; // Young’s module and Poisson’s ratio

!files are in MGOp4/ Verify/

MGOp4.h



real alpha; // temperature expansion coefficient
virtual void integrands (ElmMatVec& elmat, FiniteElement& fe);
void fillEssBC (Spaceld space);
public:
MGOp42 O ;
“MGOp4 () {}

virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan (MenuSystem& menu);

virtual void solveProblem (); // main driver routine

virtual void resultReport (); // write error norms to the screen
};
#endif

The new class is derived from MultiGrid2. It additionally contains the Lamé constant
and the thermal expansion coefficient o and extends the menu accordingly. The
displacement vector field u; is stored in a new data structure Fields instead of the
Field data used previously. The integrands and £il1EssBC are adapted to the new
differential equation.

#include <MGOp4.h>

#include <DDIter.h>

#include <PrecDD.h>

#include <createLinEqSolver.h> // creating smoothers
#include <createDDSolver.h> // creating multigrid object
#include <FieldFE.h>

MGOp4:: MeOp2 O {2

void MGOp4:: define (MenuSystem& menu, int level)
{
menu.addItem (level,
"Young’s module",
"Emodule",
"elasticity constant",
"i.0",
"R[0:1.0e+20]1");
menu.addItem (level,
"Poisson’s ratio",
"nu",
"elasticity constant",
"0.25",
"R[0:1.0e+20]1");
menu.addItem (level,
"alpha',
"alpha',
"thermal expansion coefficient",
"i.0",
"R1M);
MultiGrid2:: define(menu, level);

void MGOp4:: scan (MenuSystem& menu)
{ // load answers from the menu:

MGOp4.C



alpha = menu.get ("alpha").getReal();

E = menu.get ("Young’s module").getReal();
nu = menu.get ("Poisson’s ratio").getReal();
lambda = (nu*E)/((1+nu)*(1-2%nu));

mu = 0.5xE/(1+nu);

no_of_grids = menu.get ('"no of grid levels").getInt();
smooth.redim (no_of_grids);

system.redim (no_of_grids);

smooth_prm.redim (no_of_grids);

proj.redim (no_of_grids-1);

grid.redim (no_of_grids);

dof .redim (no_of_grids);

mat_prm.redim (no_of_grids-1);

scanGrids(menu); // scan and construct the hierarchy of grids

// allocate data structures in the class:
const nsd = grid(1)->getNoSpaceDim();
ud.rebind (new FieldsFE (grid(no_of_grids)(),"u")); // was FieldFE
int i;
for (i=1; i<=no_of_grids; i++)
dof (i) .rebind (new DegFreeFE (grid(i) (), nsd)); // nsd unknown per node
lineq.rebind (new LinEqAdm());
lineg->scan (menu);
linsol.redim (dof(no_of_grids)->getTotalNoDof(});
lineg->attach (linsol);

precondPrm.scan(menu) ;
lineg->attach (precondPrm);

// read_sweeps

Is is(menu.get ("sweeps'));
is->ignore (’[’);

is->get (preSmooth);
is->ignore (’,’);

is->get (postSmooth);

menu.setCommandPrefix("coarse grid");

for (i=1; i<=no_of_grids; i++) {
smooth_prm(i).rebind(new prm(LinEqSolver));
smooth_prm(i)->scan (menu);
smooth(i) .rebind(createLinEgSolver (smooth_prm(i)()));
system(i) .rebind(new LinEqSystemStd (EXTERNAL_STORAGE));
menu.setCommandPrefix("smoother");

}

menu.unsetCommandPrefix () ;

for (i=1; i<no_of_grids; i++)
proj(i) .rebind(new ProjInterpSparse());

ddsolver_prm.scan(menu) ;
ddsolver = createDDSolver(ddsolver_prm) ;
ddsolver->attachUserCode (*this) ;

for (i=1; i<no_of_grids; i++) {
mat_prm(i).rebind(new prm(Matrix(NUMT)) );
mat_prm(i)->scan (menu);
mat_prm(i)->sparse_adrs.rebind (new SparseDS);



}
void MGOp4:: solveProblem () // main routine of class MGOp4
{
initProj();
initMatrices();
f£fillEssBC (no_of_grids); // set essential boundary conditions

makeSystem (dof (no_of_grids) (), lineq()); // calculate linear system

system(no_of_grids)->attach(lineq->Al ());
ddsolver->attachLinRhs(lineq->bl (), no_of_grids, dpFALSE);
ddsolver->attachLinSol(lineq->x1 (), no_of_grids);

if (lineq->getSolver().description().contains("Domain Decomposition")) {
BasicItSolver& sol = CAST_REF(lineq->getSolver(), BasicItSolver);
DDIter& ddsol = CAST_REF(sol, DDIter);
ddsol.attach(*ddsolver);

}

Precond &prec =lineq->getPrec();

if (prec.description().contains("Domain Decomposition'")) {
PrecDD& sol = CAST_REF (prec, PrecDD);
sol.init (*ddsolver);

¥

linsol.fill (0.0); // set all entries to 0 in start vector

dof (no_of_grids)->fillEssBC (linsol); // insert boundary values in start vector
lineg->solve(); // solve linear system

int niterations; BoolLean c; // for iterative solver statistics
if (lineq->getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n **#* solverisconverged in %3d iterations ***\n\n",
c? "™ "™ : " not ",niterations);

// the solution is now in linsol, it must be copied to the ud fields:
dof (no_of_grids)->vec2field (linsol, ud());
Store4Plotting: :dump (ud()); // dump for later visualization

void MGOp4:: resultReport () { }

void MGOp4:: f£fillEssBC (Spaceld space)

{

dof (space) ->initEssBC () ; // init for assignment below

int nno = grid(space)->getNoNodes(); // no of nodes

int nsd_ = grid(space)->getNoSpaceDim();

int i,k;

for (i = 1; i <= nno; i++)

if (grid(space)->BoNode (i)) // is node i subj. to any boundary indicator?
for (k = 1; k <= nsd_; k++)
dof (space) ->fil1EssBC (dof (space)->fields2dof(i,k), 0.0); // u=0 at nodes on the boundary

//dof (space)->printEssBC (s_o, 2); // for checking the essential boundary cond.

}

void MGOp4:: integrands (ElmMatVec& elmat, FiniteElement& fe)
{

int 1,j; // basis function counters



int k,r,s; // 1,..,nsd (space dimension) counters
int ig,jg; // element dof, based on i,j,r,s

real nabla2, shear_term, volume_term;
const int nsd_ = fe.getNoSpaceDim();
const int nbf = fe.getNoBasisFunc();
const real detJxW = fe.detJxW();

static Mat (real) matnod (nsd_,nsd_);

// find the global coord. x of the current integration point:
Ptv(real) x (nsd_);
fe.getGlobalEvalPt (x);
real f_value = f(x);
for (i = 1; 1 <= nbf; i++) {
for (j = 1; j <= nbf; j++) {
nabla2 0;
for (k 1; k <= nsd_; k++)
nabla2 += fe.dN(i,k)*fe.dN(j,k);

for (r = 1; r <= nsd_; r++)
for (s = 1; s <= nsd_; s++)
matnod (r,s) = muxfe.dN(i,s)#*fe.dN(j,r);

for (r = 1; r <= nsd_; r++)
matnod (r,r) += mu*nabla2;

for (r = 1; r <= nsd_; r++)
for (s = 1; s <= nsd_; s++) {
shear_term = matnod(r,s);
volume_term = lambdaxfe.dN(i,r)*fe.dN(j,s);

ig = nsd_*(i-1)+r;

jg = nsd_x(j-1)+s;
elmat.A(ig, jg) += (shear_term + volume_term)*detJxW;
}
}
for (r = 1; r <= nsd_; r++) {
shear_term = 2%mux* (alpha*f_valuexfe.dN(i,r));
volume_term = 3*lambda*(alpha*f_valuexfe.dN(i,r));
ig = nsd_*(i-1)+r;
elmat.b(ig) += (shear_term + volume_term)*detJxW;
}
}

The Poisson ratio v = 0 leads to a Laplace type equation Au = f. We know how
to solve such problems. The limit ¥ = 1/2 means an incompressible material. The
low order discretization of the primal unknowns, the displacement, is not suitable for
this limit case. One rather prefers a mixed finite element formulation, including the
strains €;; in the discretization. If we stick to the previous displacement approach,
we have to keep away from this limit.

Hence it is interesting to lock at the dependency on the Poisson ratio v — 1/2. _

The phenomena of a bad primal discretization is often referred to as “locking”. We
can also observe trouble of an iterative solver for this limit, see table 1, input file

-~



menu item answer
Young’s module 1.0
Poisson’s ratio {0& 2& 3& .4& .45}
alpha 1.0
no of grid levels 4
no of space dimensions 2
coarse partition [2,2]
refinement [2,2]
sweeps [2,2]
basic method DDlter
domain decomposition method Multigrid
smoother basic method SOR
smoother renumber unknowns RenumNoUnknowns

Table 1: Linear elasticity, different Poisson ratios, test1l.i

testl.i.
menu item answer
Poisson’s ratio {0& 2 & 3& .4 & .45}
no of grid levels 3
no of space dimensions 3
coarse partition [2,2,2]
element type ElmB8n3D

Table 2: Linear elasticity, different Poisson ratios, 3D, test2.1

We can repeat the same test for dependence on the Poisson ratio v — 1/2 on the
three dimensional cube and compare the findings to the two dimensional case, see
table 2, input file test2.1.

The construction of an efficient multigrid algorithm requires the tuning of its compo-
nents. Since there is no block smoothing available right now (try to write one!), we
have to be careful especially with the smoothing parameters. Compare the different
pre- and post-smoothing variants, see table 3, input file test3.1i.

Of course there are much more complicated cases of systems of equations. Usually
some of the unknowns have to be treated differently than others.

3 Convection-Diffusion equation

Let us have a look at scalar convection-diffusion equations. We know how to deal
with the diffusion term already. The convection term is of lower order and should
not cause too much trouble on the finest grid. However, we have a non-symmetric
equation system. We have to use a stable discretization which means some upwind
scheme or artificial diffusion. Non-symmetric iterations on the finest grid work well,



menu item answer

Poisson’s ratio 3
no of grid levels 4
no of space dimensions 2
coarse partition [2,2]
refinement [2,2]
sweeps {[1,0] & [0,1] & [2,0] & [1,1] & [0,2]}
smoother basic method SOR

Table 3: Linear elasticity, different smoothing, test3.1

if this grid is fine enough (or we also apply stabilization).
—Au + v-Vu — Hu = f

If we want to apply multigrid, we also have to use coarser discretizations. On coarser
grids the lower order convection term ¥ - V starts to dominate. This means more
stabilization, e.g. artificial diffusion on coarser grids and this means less accurate and
less useful discretizations on coarse grids. Hence very coarse grids do not contribute
much to the multigrid performance.

The next issue is the smoother: To improve the performance of the smoothing we
have to take the convection direction into account. The information and the errors
are transported along the convection, the (isotropic) diffusion will be mall. Smoother
transporting information upstream, against the convection direction will therefore
perform best. We will do experiments with such line-oriented methods like zebra-line
Gauss-Seidel (SOR) (figure 5). ILU with an upstream node ordering is also very
successful.

In the case such an upstream node ordering is available, it is no problem to construct
an efficient multigrid method. If not, one can use heuristics finding suitable orderings
instead. Another approach is using smoothers for several directions at once, so the
every possible convection direction is covered. This leads to line-smoothers treating
whole lines exactly. Problems arise in three dimensions where smoothers may treat
coordinate planes instead of lines. In this case smoothers become more expensive.
Other approaches try to construct more robust smoothers as for example special
versions of ILU.

We start with the Diffpack multigrid simulator MultiGrid2 of [Zum96]. For a
documentation of the discretization of the convection-diffusion equation and the use
of upwind discretizations in Diffpack we refer to [Lan94a] and the manual pages of

UpwindFE.

// prevent multiple inclusion of MGOpi.h
#ifndef MGOp1_h_IS_INCLUDED
#tdefine MGOp1_h_IS_INCLUDED

#include <MultiGrid2.h>
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Figure 5: Zebra-line node ordering

#include <UpwindFE.h>

class MGOpl : public MultiGrid2 // convection diffusion
{
protected:

// general data:

UpwindFE PG;

// coefficients in the equation:

Ptv(real) velocity;

Ptv(real) diffusion;

Ptv(real) v_scale; // scaling velocity

virtual real f(const Ptv(real)& x); // source term in the PDE
virtual real k(const Ptv(real)& x); // coefficient in the PDE
virtual real h(const Ptv(real)& x); // Helmholtz term in the PDE

virtual void v(const Ptv(real)& x, Ptv(real)& v_); // velocity in the PDE

virtual void integrands // evaluate weak form in the FEM equations
(ElmMatVec& elmat, FiniteElement& fe);

10



public:
MGOp1 O ;
“MGOp1 () {}

virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan (MenuSystem& menu);
virtual void solveProblem (); // main driver routine
virtual void resultReport ();

};

#tendif

The class is derived from MultiGrid2. It contains an UpwindFE object to enable the
upwind discretization of the convection term. The additional coefficients are imple-
mented as functions v the velocity, f the source term, h and optional Helmholtz term
and k the coefficient for the second order operator. The procedures handling the
input menu have been extended accordingly. The new integrands function imple-
ments the weak form of the differential operator including the upwind discretization

of the convection.
MGOp1.C

#include <MGOp1.h>
#include <FiniteElement.h>
#include <Vec_real.h>
#include <DDIter.h>
#include <PrecDD.h>

MGOp1:: MeOp1 O {2

void MGOpl:: define (MenuSystem& menu, int level)

{
UpwindFE:: defineStatic (menu, level+1);
menu.addItem (level,
"velocity", // menu command/name
"velocity", // command line option: +velocity
"'scale velocity",
"[1.0,1.0]", // default answer 2D
"S'); // valid answer: String
MultiGrid2::define(menu, level);
}

void MGOpl:: scan (MenuSystem& menu)
{
// load answers from the menu:
PG.scan (menu);

MultiGrid2: :scan(menu);

const int nsd = grid(1)->getNoSpaceDim();
velocity.redim(nsd) ;
diffusion.redim(nsd) ;

v_scale.redim(nsd);

Is rIs(menu.get ("velocity"));

11



rIs->ignore (’[’);
for (int i = 1; i <= nsd; i++) {
rIs->get (v_scale(i));
if (i < nsd)
rIs->ignore (’,’);

void MGOpl:: integrands (ElmMatVec& elmat, FiniteElement& fe)
{

int i,j,q;
const int nbf = fe.getNoBasisFunc(); // no of nodes (or basis functions)
const real detJxW = fe.detJxW(); // det J times numerical itg.-weight

const int nsd = fe.getNoSpaceDim();

// find the global coord. x of the current integration point:
Ptv(real) x (grid(1)->getNoSpaceDim());

fe.getGlobalEvalPt (x);

real f_value = f£(x);

real h_value = h(x);

diffusion = k(x);

v(x, velocity);

PG.calcWeightingFunction(fe, velocity, diffusion, DUMMY, dpTRUE);

real nabla_prod, conv;
for (i = 1; i <= nbf; i++) {
for (j = 1; j <= nbf; j++) {
nabla_prod = 0;
conv = 0;
for (q = 1; q <= nsd; g++) {
nabla_prod += diffusion(q) * PG.dW(i,q)*fe.dN(j,q);
conv += velocity(q) * fe.dN(j,q);
}
conv *= PG.W(i);
elmat.A(i,j) += (conv + nabla_prod - h_value*PG.W(i)*fe.N(j))

*detJxW;
}
elmat.b(i) += PG.W(i)*f_valuexdetJxW;
}
}
void MGOpl:: solveProblem () // main routine of class MGOpl
{
initProj();
initMatrices();
f£fillEssBC (no_of_grids); // set essential boundary conditions

makeSystem (dof (no_of_grids) (), lineq()); // calculate linear system

system(no_of_grids)->attach(lineq->Al ());
ddsolver->attachLinRhs(lineq->bl (), no_of_grids, dpFALSE);
ddsolver->attachLinSol(lineq->x1 (), no_of_grids);

if (lineq->getSolver().description().contains("Domain Decomposition")) {
BasicItSolver& sol = CAST_REF(lineq->getSolver(), BasicItSolver);
DDIter& ddsol = CAST_REF(sol, DDIter);
ddsol.attach(*ddsolver);

}

12



Precond &prec =lineq->getPrec();

if (prec.description().contains(""Domain Decomposition')) {
PrecDD& sol = CAST_REF(prec, PrecDD);
sol.init (*ddsolver);

¥

linsol.fill (0.0); // set all entries to 0 in start vector

dof (no_of_grids)->fillEssBC (linsol); // insert boundary values in start vector
lineg->solve(); // solve linear system

int niterations; BoolLean c; // for iterative solver statistics
if (lineg->getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n *** solverisconverged in %3d iterations ***\n\n",
c? " " : " not ",niterations);

// the solution is now in linsol, it must be copied to the u field:

dof (no_of_grids)->vec2field (linsol, u());

Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());

void MGOp1l:: resultReport ()

{
if (grid(no_of_grids)->getNoNodes() < 300)
u->values () .print ("FILE=u.dat","Nodal values of the solution field");

real MGOpi:: £ (const Ptv(real)& /*x*/)
{

return 1;

}

real MGOpi:: k (const Ptv(real)& /*x*/)
{

return 1;

}

real MGOpi:: h (const Ptv(real)& /*x*/)
{

return 0;

}

void MGOpil:: v(const Ptv(real)& /+#x*/, Ptv(real)& v_)
{

v_ = v_scale;

The following input parameters may be some guideline for your experiments?.

We can apply different upwind schemes to the convection diffusion equation. The
main parameter to play with is certainly the velocity v. Velocity zero means a
standard symmetric Poisson equation. Velocities large compared to the grid size on
the finest level are supposed to cause trouble. Remember that the upwind scheme is a
first order discretization in contrast to second order discretization of the elliptic term.

2files are in MGOp1/Verify/

13



menu item answer
upwind weighting function method {1 & 5}
velocity [100,10]
no of space dimensions 3
no of grid levels 4
coarse partition [2,2]
refinement [2,2]
sweeps [2,2]
matrix type MatSparse
basic method DDlter
domain decomposition method Nested Multigrid
smoother basic method SOR
smoother renumber unknowns RenumNoUnknowns

Table 4: Convection diffusion, testl.i

This means large velocities are discretized not that accurately and we encounter two
problems: A low order discretization and trouble to solve the equations iteratively.
As a starting point, see table 4, input file test1.1i.

menu item answer
velocity [100,10,10]
no of space dimensions 3
coarse partition [2,2,2]
refinement [2,2,2]
matrix type MatSparse

Table 5: Convection diffusion 3D, test2.1

Redo your experiments for the three dimensional case, starting with table 5, input
file test2.1.

4 Anisotropic problems

We have already discussed semi-coarsening in the presence of anisotropic grids (chap-
ter 4.3 in [Zum96]). This may also be necessary in the case of anisotropic operators.

We write an anisotropic second order operator in the form
L = -VKV

with a positive symmetric coefficient tensor A. We can always diagonalize the tensor
by rotating the coordinate system.

K = diag(k1, k2, ks3)

14



The operator is anisotropic, if the eigenvalues differ. Problems arise, if the order of
the eigenvalues differs. Standard estimates just use upper and lower bounds of the
eigenvalues, which may be a large number in the case of a strong anisotropy.

On a isotropic mesh with small aspect ratio elements, which is for example elements
of square or cube shape, the discretization error is anisotropic. In the limit case of a
ratio maxk; /mink; tending to infinity we have a lower dimensional problem. We end
up with a boundary value problem along one direction and independent values along
a orthogonal direction. This also means that the error in an iterative procedure may
behave anisotropic.

We can transform the differential equation to an isotropic one on a distorted domain.
The grid on the domain is also distorted. The elements are distorted and have a
large aspect ratio. It is immediately clear that we will also have trouble to solve the
equation here, since standard estimates rely on the shape regularity of the elements.

The idea now is to change the discretization to a regular grid on the distorted grid
with an isotropic operator. Constructing a hierarchy of grid suitable for multigrid
on the distorted grid means to use semi-coarsening as long as the grid is distorted.
Once an isotropic grid is reached, isotropic refinement can be used. This procedure
corresponds to distorted grids on the original domain with an anisotropic operator
until the anisotropic operator on the distorted grids appears as an isotropic operator.

Smoothers well suited for the distorted grids can be constructed to cope with the limit
case. This means good solvers for the limit lower dimensional case. Such directional
smoother can be constructed using SOR or ILU schemes with some line node ordering
(see figure 5).

We start with the Diffpack multigrid simulator MultiGrid2 of [Zum96].

MGOp3.h

// prevent multiple inclusion of MGOp3.h
#ifndef MGOp3_h_IS_INCLUDED

#define MGOp3_h_IS_INCLUDED

#include <MultiGrid2.h>

class MGOp3 : public MultiGrid2 // anisotropic operator

{
protected:
MatSimple(real) k_tensor; // coefficient tensor
virtual real f(const Ptv(real)& x); // source term in the PDE

virtual void k(const Ptv(real)& x, MatSimple(real)& k_);
// coefficient tensor in the PDE
virtual void integrands(ElmMatVec& elmat, FiniteElement& fe);
// evaluate weak form in the FEM equations
public:
MGOp3 O ;
“MGOp3 () {}

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan (MenuSystem& menu) ;

virtual void solveProblem (); // main driver routine

virtual void resultReport (); // write error norms to the screen
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#tendif

The class is derived from MultiGrid2. It contains an additional symmetric coeffi-
cient tensor k_tensor (= K) implemented as a two dimensional array. The menu
handling procedures are extended accordingly. The function integrands implements

the modified differential operator.

#include <MGOp3.h>
#include <DDIter.h>
#include <PrecDD.h>
MGOp3:: MGOp3 ) {2

void MGOp3:: define (MenuSystem& menu, int level)

{
menu.addItem (level,
"k tensor", // menu command/name
"ktensor", // command line option: +level
"k tensor like (upper triangle) [1., 0., 1.]",
"[1., 0., 1.]1", // default answer 2D
"S'); // valid answer: string
MultiGrid2:: define(menu, level);
}

void MGOp3:: scan (MenuSystem& menu)
{

MultiGrid2:: scan(menu);

const int nsd = grid(1)->getNoSpaceDim();
k_tensor.redim(nsd, nsd);

Is rIs(menu.get ("k tensor"));
rIs->ignore (’[’);
for (int 1 = 1; i <= nsd; i++)
for (int j = i; j <= nsd; j++) {
rIs->get (k_tensor(i,j));
k_tensor(j,i) = k_tensor(i,j);
if ((i < nsd)|I(j < nsd))
rIs->ignore (’,’);
}
s_o0<<"k_tensor =\n"<<k_tensor<<endl<<endl;

}
void MGOp3:: solveProblem () // main routine of class MGOp3
{
initProj();
initMatrices();
£illEssBC (no_of_grids); // set essential boundary conditions

makeSystem (dof (no_of_grids) (), lineq()); // calculate linear system
system(no_of_grids)->attach(lineq->Al ());

ddsolver->attachLinRhs(lineq->bl (), no_of_grids, dpFALSE);
ddsolver->attachLinSol(lineq->x1 (), no_of_grids);
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if (lineq->getSolver().description().contains("Domain Decomposition")) {
BasicItSolver& sol = CAST_REF(lineq->getSolver(), BasicItSolver);
DDIter& ddsol = CAST_REF(sol, DDIter);
ddsol.attach(*ddsolver);

}

Precond &prec =lineq->getPrec();

if (prec.description().contains(""Domain Decomposition')) {
PrecDD& sol = CAST_REF (prec, PrecDD);
sol.init (*ddsolver);

}

linsol.fill (0.0); // set all entries to 0 in start vector

dof (no_of_grids)->fillEssBC (linsol); // insert boundary values in start vector
lineqg->solve(); // solve linear system

int niterations; BoolLean c; // for iterative solver statistics
if (lineq->getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n **#* solverisconverged in %3d iterations ***\n\n",
c? " " : " not ",niterations);

// the solution is now in linsol, it must be copied to the u field:

dof (no_of_grids)->vec2field (linsol, u());

Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());

void MGOp3:: resultReport ()
{
if (grid(no_of_grids)->getNoNodes() < 300)
u->values () .print ("FILE=u.dat","Nodal values of the error field");

void MGOp3:: integrands (ElmMatVec& elmat, FiniteElement& fe)

{
int i,j,q,r;
const int nbf = fe.getNoBasisFunc(); // no of nodes (or basis functions)
const real detJxW = fe.detJxW(); // det J times numerical itg.-weight
const int nsd = fe.getNoSpaceDim();

// find the global coord. x of the current integration point:
Ptv(real) x (nsd);

MatSimple(real) k_value(nsd,nsd);

fe.getGlobalEvalPt (x);

real f_value = f(x);

k(x, k_value);

real nabla_prod;
for (1 = 1; 1 <= nbf; i++) {
for (j = 1; j <= nbf; j++) {
nabla_prod = 0;
for (q = 1; q <= nsd; g++)
for (r = 1; r <= nsd; r++)
nabla_prod += k_value(q,r) * fe.dN(i,q) * fe.dN(j,r);

elmat.A(i,j) += nabla_prod*detJxW;

}
elmat.b(i) += fe.N(i)*f_valuexdetJxW;
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}

}
real MGOp3:: f (const Ptv(real)& /*xx*/)
{

return 1.;
}
void MGOp3:: k (const Ptv(real)& x, MatSimple(real)& k_)
{

k_ = k_tensor;
}
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Figure 6: Isolines of anisotropic solutions.

The following input parameters may be some guideline for your experiments®.

menu item answer
k tensor {[1,0, 1] & [10, 0, 1] & [1, 0, 10] &

[1,0,.1] & [.1,0, 1] & [.01, 0, 1]}
no of grid levels 4
no of space dimensions 2
coarse partition [2,2]
refinement [2,2]
sweeps [2,2]
matrix type MatSparse
basic method DDlter
domain decomposition method Multigrid
smoother basic method SOR
smoother renumber unknowns RenumNoUnknowns

Table 6: Anisotropic operator, testl.i

The play parameter here is of course the coeflicient tensor K. It is specified in the

3files are in MGOp3/ Verify/
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format [k11, k12, ko2l in two dimensions. The first input file distorts either the
x1 or the x4 axis by a factor of 10, see table 6, input file testl.i. We are using a
SOR smoother which is not completely isotropic, but uses a specific iteration order.
Hence distortion parallel to the x; or the x4 axis may have a different effect. The
question is, how this multigrid version behaves for these data. Further experiments
could cover semi-coarsening and modification of the smoothers (renumbering!).

menu item answer
k tensor {[1, 0, .1] & [.55, .45, .55] & [.1, 0, 1] & [.55, -.45, .55]}
no of space dimensions 2
coarse partition [2,2]
refinement [2,2]

Table 7: Anisotropic operator, rotated by 7/4, test2.1

The next test includes distortion in different directions, rotating the main axes of the
coeflicient tensor, see table 7, input file test2.i. Observe how the smoothers handle
distortion parallel to the diagonal compared to distortion parallel one coordinate axis.

menu item answer
k tensor {[1, 0, .01] & [1, 0, .001] & [1, 0, .0001]}
no of space dimensions 2
coarse partition [2,16]
refinement [2,1]
coarse grid basic method SOR

Table 8: Anisotropic operator, anisotropic refinement, test3.1

The next test covers different ratios of distortion, see table 8, input file test3.i. We
employ semi-coarsening to guarantee convergence of the method. Observe both the
difficulties in solving the problem as the large differences in the discretization parallel
to the coordinate axes.

The last test covers the three dimensional case. Even if we only rotate the coefficient
tensor by 7 /4, there are many different cases. We use a distortion by a factor of 10
along different directions, see table 9, input file test4.1i.

5 Rough coefficient operators

We are solving a second order differential equation with a differential operator L. We
write the operator in the form

L = —-VKV

with a (symmetric) coefficient tensor K (z) which usually depends on space. Usu-
ally we require L™ bounds for K (z) and lower and upper bounds kq, k; for the

eigenvalues.
0<Fk <yK(z)y<ky, VeeQand|ylz=1
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menu item answer

k tensor {[1,0,0,1,0,1] &

[[1,0,0,1,0,1] &
[1,0,0,.1,0, 1]

[.55, .45, 0, .55, 0, 1]

[.55, .45, 0, .55, 0, .1]

[.55, .45, 0, .775, .225, .775]}

&
&
&

no of grid levels

no of space dimensions

3
3
coarse partition [2,2,2]
refinement [2,2,2]
element type = ElmB8n3D

Table 9: Anisotropic operator 3D, test4.1

Figure 7: Domain with rough coefficients

Standard estimates just make use of an upper bound for the ratio k9/k;. In the
case of large variation in K (z) this at least leads to bad a priori estimates. Such
a variation often is caused by the presence of different media joined together in the
domain having different coefficients. The jumps in the coefficients may be several
orders of magnitude. This definitely affects the quality of the discretization and the

performance of iterative solvers.
resolved on
coarse grid

In the case the different media zones are resolved on the coarse grid which means
the interface between different media coincides with element interfaces on the coarse
grid we usually do not have to care about the jumps. We assume to have smooth
A(z) with low variation inside each medium. Applying multigrid means that the
coeflicient jumps are visible on each level. Even the additive multigrid with an exact
course grid solver and Jacobi smoother, which has to handle the rough coefficient
problem, works fine. This means that the convergence does not depend on the size

of the material jumps at the interface but on the local ratios ay/a; in each medium. o —-
algrkl?
produc

The problem becomes harder if the coarse grid does not cover the coefficient jumps.
This may be the case of geometrically complicated shapes of the interfaces or too
many domains and interfaces with rough coefficients. In the case we cannot resolve
the interfaces correctly because of their shape, we can apply the following procedure.
The assumption is that each separate domain of a medium on the finest grid is rep-
resented on the coarsest grid with at least one point. Hence we have a geometrically
crude representation of the geometry on the coarsest grid. The idea is now to con-
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Figure 8: Galerkin products to construct stiffness matrices

struct specific operators approximating the coefficient jumps on coarser grids. We
can do this using Galerkin products to construct stiffness matrices on coarser levels

Aj1 = Rjj1A;jR;

]7]_1

This kind of averaging constructs quite good coarse grid problems compared to simple

averaging or more advanced homogenization procedures.
iteration

In the case the coarsest grid is not even approximately suited for representing the
coeflicient jumps which means there are more different domains of media than degrees
of freedom on the coarsest grid, we have to use different estimates. The goal is to
have an iteration which is not sensitive to the size of coefficient jumps. We assume
that the coefficient jumps can be resolved on the finest grid without averaging. We
additionally assume some appropriate right hand side with jumps only on media
interfaces. If we now employ some Krylov iteration preconditioned with a multigrid
we will obtain a low dependence on the coefficients. This is true because of some
multiple extreme eigenvalues immediately removed by the Krylov iteration. In the
case of averaging the values on the finest grid the spectrum will smear out instead of
containing multiple eigenvalues destroying the convergence rate.

In the case all restrictions and assumptions above are still too strict there are some
properties influencing the convergence rate. Analyzing the error of iterative solvers
applied to rough coefficient problems resembles in the question of information trans-
port across the media interfaces. In the case of quasi-monotone distribution of coef-
ficients iterative solvers usually perform better than for randomly distributed coeffi-
cients. This means there is always a path monotone in the coefficients across edges
(faces) of the media interface connecting media with two different coefficients.

Another approach is to still use Galerkin products to construct the coarser grid
stiffness matrices but to use algebraic multigrid heuristics to construct better transfer
operators. In this case even a coarsest grid with one degree of freedom may make
sense.

One comment on discretization error in the presence of large coefficient jumps: One _

question is the solution of such systems, but another question is of course about
the discretization error of such a fine grid. Given a smooth right hand side one
expects large errors in domains with small coefficients. This calls for refined grids and
smaller elements in that area. Such an adaptive refinement both improves the global
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discretization error and the performance of the iterative solver since the coefficient
jumps visible in the stiffness matrix vanish. The situation changes with rough right

hand side and low values inside domains with low coefficients (see above). —

mixe:
thod

In the field of rough coefficients mixed finite element discretization can be applied —

successfully.

We start with the Diffpack multigrid simulator MultiGrid2 of [Zum96].

MGOp2.h

// prevent multiple inclusion of MGOp2.h
#ifndef MGOp2_h_IS_INCLUDED

#define MGOp2_h_IS_INCLUDED

#include <MultiGrid2.h>

class MGOp2 : public MultiGrid2 // discontinous coefficients

{
protected:
real f_inner, k_inner; // coefficients inside [1/3,2/3]"°d, outside 1
virtual real f(const Ptv(real)& x); // source term in the PDE
virtual real k(const Ptv(real)& x); // coefficient in the PDE
public:
MGOp2 O);
“MGOp2 () {}
virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan (MenuSystem& menu) ;
virtual void solveProblem (); // main driver routine
virtual void resultReport (); // write error norms to the screen
};
#tendif

The class is derived from MultiGrid2. It implements basically a new coefficient
function k using the parameter k_inner in the domain [1/3,2/3]? and the coefficient
1 elsewhere. The source term is implemented similarly with a parameter f_inner in
the domain [1/3,2/3]? and the value 1 elsewhere. The menu handling procedures are

extended for the new parameters.
MGOp2.C

#include <MGOp2.h>
#include <DDIter.h>
#include <PrecDD.h>

MGOp2:: MGOp2 () {2}

void MGOp2:: define (MenuSystem& menu, int level)
{
menu.addItem (level,
"inner rhs value", // menu command/name

"irhs", // command line option: +level
"inner rhs value",
"i.0", // default answer
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"R1"); // valid answer: 1 real
menu.addItem (level,
"inner k value", // menu command/name

"ik", // command line option: +level
"inner coefficient k",
"1.0", // default answer
"R1"); // valid answer: 1 real
MultiGrid2:: define(menu, level);
}
void MGOp2:: scan (MenuSystem& menu)
{
f_inner = menu.get ("inner rhs value").getReal();
k_inner = menu.get ("inner k value").getReal();
MultiGrid2:: scan(menu);
}
void MGOp2:: solveProblem () // main routine of class MGOp2
{
initProj();
initMatrices();
f£illEssBC (no_of_grids); // set essential boundary conditions
makeSystem (dof (no_of_grids) (), lineq()); // calculate linear system
system(no_of_grids)->attach(lineq->Al ());
ddsolver->attachLinRhs(lineq->bl (), no_of_grids, dpFALSE);
ddsolver->attachLinSol(lineq->x1 (), no_of_grids);
if (lineq->getSolver().description().contains("Domain Decomposition")) {
BasicItSolver& sol = CAST_REF(lineq->getSolver(), BasicItSolver);
DDIter& ddsol = CAST_REF(sol, DDIter);
ddsol.attach(*ddsolver);
¥
Precond &prec =lineq->getPrec();
if (prec.description().contains(""Domain Decomposition')) {
PrecDD& sol = CAST_REF (prec, PrecDD);
sol.init (*ddsolver);
¥
linsol.fill (0.0); // set all entries to 0 in start vector
dof (no_of_grids)->fillEssBC (linsol); // insert boundary values in start vector
lineqg->solve(); // solve linear system
int niterations; BoolLean c; // for iterative solver statistics
if (lineq->getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n **#* solverisconverged in %3d iterations ***\n\n",
c? " " : " not ",niterations);
// the solution is now in linsol, it must be copied to the u field:
dof (no_of_grids)->vec2field (linsol, u());
Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());
}

void MGOp2:: resultReport ()
{
if (grid(no_of_grids)->getNoNodes() < 300)
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}

u->values () .print ("FILE=u.dat","Nodal values of the error field");

real MGOp2:: f (const Ptv(real)& x)
// coefficients inside [1/3,2/3]°d, outside 1

{

}

const real a = 1./3.;
const real b = 2./3.;
const int nsd = grid(1)->getNoSpaceDim();
for (int 1 = 1; i <= nsd; i++)

if ((x(i)<a) || (x(i)>b)) return 1.;
return f_inner;

real MGOp2:: k (const Ptv(real)& x)

{

The following input parameters may be some guideline for your experiments?.

First we look at the case where the coefficient jumps are resolved on the coarse
grid using a 3 X 3 partition of the unit square. The play parameters are the values
for the coefficient function and the source term inside the domain [1/3,2/3]%
cases f = k = 1is included. The question is how the number of iteration behaves for
extreme values of f and k, if the values of f and k are changed independently or if they
are changed correspondingly. If the values are changed correspondingly, the equations
inside [1/3,2/3]? and outside [1/3,2/3]? are equivalent. There remains the coefficient
jumps at the inner boundary. If the values of f and k are changed independently,

const real a = 1./3.;
const real b = 2./3.;
const int nsd = grid(1)->getNoSpaceDim();
for (int 1 = 1; i <= nsd; i++)

if ((x(i)<a) || (x(i)>b)) return 1.;
return k_inner;

Y-Axis

X-Axis

Figure 9: Isolines of solutions with low k (left) and with high & (right).

*files are in MGOp2/ Verify/
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menu item answer
inner rhs value {0 & .001 & 1 & 1000}
inner k value {.001 & 1 & 1000}
no of grid levels 4
no of space dimensions 2
coarse partition [3,3]
refinement [2,2]
sweeps [2,2]
element type ElmB4n2D
basic method DDlter
domain decomposition method Multigrid
smoother basic method SOR

Table 10: Discontinuous coeflicients resolved on the coarsest grid, testl.1i

either the solution inside or the solution outside of [1/3,2/3]? dominates, while the
solution is almost constant elsewhere, see table 10, input file test1.1i.

menu item answer
inner rhs value {0. & 1. & 1000.}
inner k value {0.001 & 1000.}
coarse partition {12,2] & [4,4]}
relative quadrature order 1

Table 11: Discontinuous coefficients not aligned with / not resolved on the coarse
grid, test2.1

We can redo the computations for the case of a non-matching coarsest grid. We
study some effects of the multigrid solver. This can be either too coarse to resolve
the coefficient jumps (partition 2 x 2) or fine enough but simply not aligned (partition
4 x 4). Compare these two case with the case of an aligned coarsest grid, see table 11,
input file test2.i. There will be one case of divergence due to jumping coefficients.

menu item answer
inner rhs value {0. & 1. & 1000.}
inner k value {0.001 & 1000.}
no of grid levels 3
no of space dimensions 3
coarse partition [3,3,3]
refinement [2,2,2]
element type ElmB8n3D

Table 12: Discontinuous coeflicients aligned with the coarse grid, 3D, test3.1

We can redo the computations for the three dimensional case on the unit cube. The
coefficients and source term functions are define inside and outside of [1/3,2/3]>. The
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coarsest grid is chosen to resolve the jumps with a partition of 3 X 3 X 3, see table
12, input file test3.1.

6 Different models on different scales

As we already saw the type of differential equation may change with the scale of the
discretization. Looking at a convection-diffusion problem on a fine level reveals a dif-
fusion equation with some unsymmetric perturbation caused by the convection term
(section 3). Restricting this equation to a coarse grid means a dominant convection
term with some small additional diffusion which is a transport equation. Numerical
methods to discretize and solve both equations usually differ because the equations
differ. Since a multigrid method makes use of both scales, we can think of combining
two different numerical methods on two different scales into one multigrid method.

coarse model
|

fine model

Figure 10: Different models on different scales

There are some other examples of physical models changing with scale:

fine scale coarse scale
convection-diffusion transport
wave-optics geometrical optics
wave-mechanics geometrical optics
particle system gas dynamics
quantum mechanics particle system

Building a multigrid method on top of discretizations on different scales requires
several levels in between and transfer operators between the levels. Both can cause
trouble: Using two completely distinct models means using one model on some levels
and switching to another model on the rest. There is an abrupt change in the model
between two levels. The models have to be compatible in some sense to construct
meaningful grid transfer operators. Both constructing grid transfer operators and
determining the model switching scale may be difficult.

Having some models continuously depending on some scale parameters leads to
smoother transitions from omne level to the next. Hence grid transfer operations can
be constructed more naturally. The models on different levels are compatible.
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7 Conclusion

In this report we have demonstrated the use of multigrid equation solvers for the
finite element discretization of different partial differential equations. While the pre-
vious introductory report on multigrid covered scalar Poisson equation, smooth linear
and nonlinear coefficient problems, this reports extends the variety of equations. We
applied multigrid to systems of equations implementing linear thermo elasticity, to
non-symmetric problems implementing the convection-diffusion equation with an up-
wind schemes, to jumping coefficient problems and to anisotropic problems.

The simulators were based on a standard Poisson equation simulator with multigrid
developed in the introductory report. The extensions of the simulator to implement
the different operators and input parameters were quite short. Some basic strategies
for efficient multigrid were discussed, while no changes to the multigrid implemen-
tation of the simulators were applied. Although implementation of more advanced
strategies to deal with different operators were discussed and are straightforward to
implement in the framework, not all of them were actually implemented.

This discussion of different partial differential equations is necessarily incomplete and
we have to refer to the literature for the treatment of other operators.
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