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In [1] Mallet-Paret introduces a Fredholm Alternative theorem for asymptotically
hyperbolic linear functional differential equations of mixed type and first order and
uses it in [2] to apply the implicit function theorem to certain one dimensional nonlinear
functional differential equations of first order. In this thesis, we try to use these results
for some two dimensional or order two equations.
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1 Introduction

1.1 Problem

When investigating solutions to nonlinear function differential equations of mixed type
as

0 = G(c, x, ρ)(ξ)

= −cx(1)(ξ)− F
(
x(ξ + r1), · · · , x(ξ + rN ), ρ

) (1.1)

for d ∈ N, N ∈ N \{1, 2}, c 6= 0, ρ ∈ R, x, F ∈
(
Rd
)R

sufficiently smooth and r1 =
0, r2, · · · rN ∈ R distinct, one might ask for existence of solutions near known ones for a
varying parameter ρ ∈ V taken from an open subset V of some Banach space W , i.e. if
the implicit function theorem may be applied.

Such equations may arise from various sources such as the search for traveling wave
solutions f(z, t) = ϕ(

〈
z, v
〉
− ct) of some differential equation

0 = −ḟ(x, t)− F (f(x+ x0, t), · · · , f(x+ xN , t), ρ)

with some x, x0, · · · , xN , z, v ∈ Rd;ϕ ∈
(
Rd
)R
, f ∈

(
Rd
)Rd×R

sufficiently smooth.
For use of implicit function theorem for solutions of (1.1) around some (c0, x0, ρ0) we

need G to be at least Fréchet C1 in some open neighborhood of (c0, x0, ρ0) and Dc,xG to
be an isomorphism. Fréchet differentiability is often only a technicality, if F is sufficiently
smooth. The isomorphism condition on Dc,x(c0, x0, ρ0) however might not be so easy to
show.

However if Dc,x(c0, x0, ρ0) is asymptotically hyperbolic, then parts of proving bijectivity
can be done as roughly outlined in the following section.

1.2 Agenda

Taking, dependent on (c, x, ρ) with some fixed ρ ∈ V

Ai = Ai,x,ρ(ξ) = Dx(·+rj) F (x(ξ + r1), · · · , x(ξ + rN ), ρ) (1.2)

(Λy)(ξ) = (Λc,x,ρy)(ξ) = −cy(1)(ξ)−
N∑
i=1

Ai;x,ρ(ξ)y(ξ + ri) (1.3)
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the linearization of G about some (c0, x0, ρ0), where x0 is not an equlibrium of (1.1),
with respect to (c0, x0) takes the form((

Dc,xG
)
(c0, x0, ρ0)

)
(d, u)(ξ) =

(
−x(1)

0 (ξ)
)
d+(

−c0u
(1)(ξ)−

N∑
i=1

Ai(ξ;x0, ρ0)u(ξ + ri)
)

=
((
−x(1)

0 d
)

+
(
Λc0,x0,ρ0u

))
(ξ).

(1.4)

Since we consider multiple equations in the later parts, we will add a supscript to dif-
ferentiate the origins of operators, coefficients etc like AFi,x,ρ.

Studying Dc,xG(c0, x0, ρ0) naturually involves studying Λc0,x0,ρ0 and its relation to the

linear span of x
(1)
0 . Naturally if (c0, x0, ρ0) is some solution to (1.1) with x0 not being

an equilibrium then ∀ξ ∈ R :

0 =
d

dξ
G(c0, x0, ρ0)(ξ)

= −c
(
x

(1)
0

)(1)
(ξ)−

N∑
i=1

Dx(·+rj) F (x0(ξ + r1), · · · , x0(ξ + rN ), ρ)x
(1)
0 (ξ + ri)

=
(

Λ(c0, x0, ρ0)x
(1)
0

)
(ξ)

so u ≡ x(1)
0 solves

0 = Λc0,x0,ρ0u. (1.5)

This implies x
(1)
0 ∈ Kc0,x0,ρ0

:= ker Λc0,x0,ρ0 and dimKc0,x0,ρ0 ≥ 1. Hence, assuming
that G : R×W 1,∞ × V → L∞, any restriction Dc,xG(c0, x0, ρ0) : R×X → L∞ to a
subspace W 1,∞ ⊇ X 3 x0, on which Λc0,x0,ρ0 is injective and whose range does not

contain x
(1)
0 , is injective. Surjectivity can then be established by just setting Y :=

x
(1)
0 R⊕Λc0,x0,ρ0(X). To sum up we need to

1. establish x0 /∈ Kc0,x0,ρ0 , (1.6a)

2. find W 1,∞ ⊇ X 3 x0 such that X ∩ Kc0,x0,ρ0 = {0}, (1.6b)

3. establish x
(1)
0 /∈ Λc0,x0,ρ0(X), (1.6c)

4. set Y := Λc0,x0,ρ0 ⊕ x
(1)
0 R, (1.6d)

5. and use the implicit function theorem on G : R×X × V → Y. (1.6e)

f Kc0,x0,ρ0 splits W 1,∞, then a natural choice for X is a indexsplit topological complement
of the kernel or any closed subspace thereof.

We remark that a restriction to some closed subspace as proposed in (1.6e) does not
restrict validity of the implicit function theorem, i.e if the implicit function theorem
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were applicable for a larger space yielding some unique solution, then it would have to
coincide with a unique solution obtained from the smaller space.

f Λc0,x0,ρ0 is a Fredholm operator, i.e. dimKc0,x0,ρ0 <∞ and codim Λc0,x0,ρ0(W 1,∞) <
∞, then a standard result from functional analysis, e.g. Standard Example 17 in subsec-
tion 3.9.4 from [4], guarantees that Kc0,x0,ρ0 , since it’s finite dimensional, splits W 1,∞.

Then we only need to show x
(1)
0 /∈ Λc0,x0,ρ0(X). Λc0,x0,ρ0 being Fredholm also implies

Λc0,x0,ρ0 = K∗⊥L∞

where K∗ is usually the kernel of Λc0,x0,ρ0 ’s dual operator and B⊥L∞ denotes B’s annihi-

lator in L∞. Hence knowledge of K∗, i.e. just one u∗ ∈ K∗ such that f(x
(1)
0 ) 6= 0, proves

x
(1)
0 /∈ Λc0,x0,ρ0 .
If Λc0,x0,ρ0 really were Fredholm then its index

ind Λc0,x0,ρ0 = dim ker Λc0,x0,ρ0 − codim Λc0,x0,ρ0 = dim ker Λc0,x0,ρ0 − dimK∗ (1.7)

together with knowledge of Kc0,x0,ρ0 , of which we already know that it contains x
(1)
0 R, can

help us to establish dimension of K∗ and hence find some u∗ ∈ K∗ satisfying
〈
x

(1)
0 , u∗

〉
=

u∗(x
(1)
0 ) 6= 0.

For the last few arguments to be applicable we of course have to establish that Λc0,x0,ρ0

is really a Fredholm operator. Normally this would already require explicit knowledge
of kernel and range of this operator but theory established in [1] and reexamined in [3]
allows us to forego such explicit knowledge and prove Fredholmness as long as Λc0,x0,ρ0

is an asymptotically hyperbolic linear operator, which is basically an operator that joins
two limiting linear constant coefficients operators without imaginary eigenvalues.

In particular this theory from originally [1] establishes Fredholmness for all asymp-
totically hyperbolic linear operators W 1,∞ → L∞. Since the ind: F (W 1,∞, L∞) → N
is a continuous function from the set of Fredholm operators to the natural numbers in
discrete topology, the index is constant along continuous paths in F (W 1,∞, L∞), i.e.

∀A : [0, 1]→ F (W 1,∞, L∞) continuous : ρ→ indA(ρ) ≡ const.

. So continuous transformations of asymptotic hyperbolic operators, which preserve
asymptotic hyperbolicity, also preserve Fredholmness and hence the index. This knowl-
edge can enable us to establish the index of Λc0,x0,ρ0 by just finding homotopies in the
space of asymptotically hyperbolic operators that join operators we investigate and oper-
ators with known indices. Morever we know from this theory, that hyperbolic operators
are isomorphisms and hence operators with known index zero.

Furthermore theory from [1] tells us that we need not concern ourselves with dual

spaces and dual operators for determination of x
(1)
0 /∈ Λc0,x0,ρ0 via Fredholm Alternative,

but can instead use an asymptotically hyperbolic quasidual operator

Λ∗c0,x0,ρ0
: W 1,1 → L1

3



for the dual correspondencies normally associated with Fredholm operators. In particu-
lar, similar to Fredholm Alternatives via Dual Pairs in section 5.10 of [4], we have

Λc0,x0,ρ0(W 1,∞) = K∗⊥L∞ = {f ∈ L∞|∀u∗ ∈ ker Λ∗c0,x0,ρ0
:

∫
R

〈
f, u∗

〉
= 0}

which might further simply the search for some u∗ ∈ K∗ : u∗(x
(1)
0 ) 6= 0.

In any case we would have to establish asymptotical hyperbolicity of Λc0,x0,ρ0 for the
preceding arguments to be valid. If x0 is a nonequlibirum solution that joins two stable
equilibria, say x̄± of the main nonlinear equation (1.1), then smoothness requirements
imposed on F tell us that asymptotical hyperbolicity is equivalent to hyperbolicity of
the linearizations at the equilibria it joins, Λc0,x̄±,ρ0 . Then these linearizations also form
the limiting operators of Λc0,x0,ρ0 .

For actual equations we now try to work our way backwards in our preceding argu-
ments to enable us to use the implicit function theorem. Accordingly, if we have the goal
of using the implicit function theorem to find solutions around some solution x0 of (1.1)
joining the stable equilibrium x̄− at −∞ to x̄+ at∞ and forego the use of Λc0,x0,ρ’s dual
by just using the quasidual, we might accomplish this if we

1. establish hyperbolicity of Λc0,x̄±,ρ0 , (1.8a)

2. calculate ind Λc0,x0,ρ0 , (1.8b)

3. derive Kc0,x0,ρ0 , and dimKc0,x0,ρ0 (1.8c)

4. set X 3 x0 as closed subspace of the topological complement of Kc0,x0,ρ0 . (1.8d)

5. use (1.8b) and (1.8c) to find u∗ ∈ K∗ := ker Λ∗c0,x0,ρ0
, (1.8e)

6. establish

∫
R

〈
x

(1)
0 , u∗

〉
6= 0 for some u∗ ∈ K∗ (1.8f)

7. set Y := x
(1)
0 R⊕Λc0,x0,ρ0(X) (1.8g)

8. and finally use the implicit function theorem at (c0, x0, ρ0) for

G : R×X × V → Y, (1.8h)

which now has an isomorphic Dc,xG(c0, x0, ρ0) by construction.

Later we might choose to drop some of the subscript ·c0,x0,ρ0 when the context should
leave no doubt about the origins of things or when considering the general class of linear
equations with the properties of Λc0,x0,ρ0 as arising from linearizations about known
solutions.
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2 Already known

To be able to follow the steps noted in (1.8) we now reproduce some definitions, notations
and basic results taken from [1], [2], [3].

The first section establishes notation and basic definitions and notation. Some of the
definitions might not be optimal for a context more general than just the discussion of
implicit function theorem use for solutions of (1.1) but might keep the notation coherent
throughout the remainder of this thesis.

Afterwards we present two results from [1]. The first concerns the relation between
Fredholmness and asymptotic hyperbolicity and the dual pairing of asymptotically hy-
perbolic W 1,p → Lp and W 1,q → Lq operators. The second result allows one to calculate
the Fredholm index of asymptotically hyperbolic. The third one gives us asymptotics
information on solutions to asymptotically hyperbolic linear solutions based on the eigen-
values of the limiting operators.

Finally, to complete our review and presentation of already known thing, we present
some of the main results from [2], reexamined in [3], that are needed in the last chapter
of this thesis to analyze a simple 2d equation composed of two components solving the
equation discussed in [2].

Since this chapter mainly contains reviews and reproductions we only sketch the gen-
eral ideas of proofs for just copied results.

2.1 Some definitions

We start with some definitions and notation as used in [1] for theory of asymptotically
hyperbolic linear operators Λ: W 1,p(R,Cd)→ Lp(R,Cd) for 1 ≤ p ≤ ∞.

Definition 2.1.1
We will use the common notations

Lp := Lp(R, Cd)

W k,p := {f ∈ Lp|∀0 ≤ j ≤ k : f (k) ∈ Lp}

for Lp and Sobolev spaces, Y X := {f : X → Y } for functions between any two sets
X,Y and B(X,Y ) ⊆ Y X as the normed space of all bounded linear operators X → Y ,
X∗ = B(X,C) for the dual space of a normed space X.

Moreover for any open interval J ⊆ R we write

Ck(J) := Ck(J,Cd)

CkB(J) :=
(
{f ∈ Ck(J)|‖f‖CkB(J) <∞}, ‖· ‖CkB(J)

)
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with derivatives generally to be assumed in the weak sense,

‖f‖CkB(J) := sup
0≤j≤k

sup ξ ∈ J‖f (i)(ξ)‖

and

Ck(J) := {f ∈
(
Cd
)J |(f |J) ∈ Ck(J) ∧ ∀0 ≤ i ≤ k : f (i) continuously extendable to J}

CkB(J) := {f ∈ Ck(J)|‖f‖CkB(J) <∞}

for the closure J of a relatively compact interval J .
For A ∈ B(X,Y ) we shall use

kerA := {x ∈ X : Ax = 0} A(X) := {Ax|x ∈ X}

for kernel and range of a bounded linear operator.
For any normed space X and A ⊆ X,B ⊆ X∗ we write

B⊥ = B⊥A := {x ∈ A|∀f ∈ B : f(x) = 0}

for a subsets annihilator and omit the A in ⊥A when the setting is clear.
Most of these notations can be found in textbooks on general functional analysis like

[4] or books on PDEs or Sobolev spaces.
Morever we use the ‖· ‖2 with Cd’s and ‖(a, b)‖X×Y := ‖a‖X + ‖B‖Y for the product

of two normed spaces (X, ‖· ‖X), (Y, ‖· ‖Y .

Definition 2.1.2
We already introduced a special case of

0 =
(
Λx
)
(ξ) =

(
Λcx

)
(ξ) = −cx(1)(ξ)−

N∑
i=1

Ai(ξ)x(ξ + ri) (2.1)

in (1.5), with c ∈ R \{0}, x ∈W 1,∞ and Ais uniformly bounded and measurable.
For convenience we introduce the minimal and maximal shifts

r− := min{ri|1 ≤ i ≤ N} r+ := max{ri|1 ≤ i ≤ N} (2.2)

and some shift operator for ξ ∈ R

τξ :
(
Cd
)R → (

Cd
)R

(τξf)(η) = f(η − ξ)
(2.3)

to describe equation (2.1) with a family of operators

L(ξ) : CB([r−, r+])→ Cd

ϕ 7→
N∑
i=1

Ai(ξ)ϕ(ri)
(2.4)
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with L(ξ) = Lx0,ρ0(ξ) in the setting of the linearization (1.5) to introduce the notation

0 =
(
Λc,Lx

)
(ξ) = x(1)(ξ)− L(ξ)

(
(τ−ξx)|[r−,r+]

)
for (2.1), with (τ−ξx)|[r−,r+] ∈ CB([r−, r+) being guaranteed by the Sobolev embedding

W k,p → Ck−1
B .

Whenever a Λ0 as in (2.1) and hence some L0 as in (2.4) has constant coefficients Ai,
we may introduce a characteristic function

∆ = ∆c,L0 : C→ C

λ 7→ −cλ−
N∑
i=1

Aie
λri

(2.5)

We call the constant coefficient system/equation (2.1)/operator Λc,L0/operator 1
cL0

hyperbolic if
∀b ∈ R : ∆c,L0(ib) 6= 0 (2.6)

and the values {λ ∈ C |∆(λ) = 0} eigenvalues, the term arising from the context of the
point spectrum of the operator

A : {ϕ ∈ C1(R,Cd)|∀ξ ∈ R : ϕ(1)(ξ) = L0τ−ξ} → C(R,Cd)

ϕ 7→ ϕ(1)

which coincides with the zeros of ∆c,L0 . If a hyperbolic operator arises from linearizations
about an equilibrium we also call this equilibrium hyperbolic.

We call the elements in the generalized eigenspaces of A to each such eigenvalue λ
eigensolutions. Note however that while these functions do solve ϕ(ξ) = L0τ−ξϕ with
L0 being applicable here, eigensolutions x are not per se solutions to Λx = 0 since the
setting is generally

Λ: W 1,∞ → L∞

in addition to the smoothness requirements of the linearization and implicit function
theorem setting. Moreover these eigensolutions all take the form ξ 7→ eλξv0 for some
v0 ∈ Cd. Note that the term eigenvalues might be misleading in regards to the point
spectrum of L(ξ) for various ξ or Λc,L to which they have no connection. We shall write
EΛ for the eigenvalues of Λ.

If we can express L(ξ) as a perturbation of some constant coefficient operator L0, i.e.

L(ξ) = L0 +M(ξ) ≡ ∀i : Ai(ξ) = Ai +Bi(ξ) (2.7)

with some Bis, uniformly bounded and measurable like the Ais, and

lim
ξ→∞
‖M(ξ)‖ = ‖M(ξ)‖B(C1

B([r−,r+],Cd),Cd) = 0

⇔ lim
ξ→∞
‖Bi(ξ)‖ = 0 uniformly with respect to i

7



then we call L(ξ) or Λ or (2.1) asymptotically autonomous at ∞. We call it/them
asymptotically autonomous at −∞ it the same conditions are fulfilled for ξ → −∞. If
it is/they are asymptotically autonomous at both ±∞ we call it/them asymptotically
autonomous.

If L is asymptotically autonomous with limiting operators L±,Λc,± at ±∞ and fur-
thermore Λc,± are hyperbolic then we call (2.1),L,Λc,L± asymptotically hyperbolic.

In the context of the asymptotic autonomy we write Ai,+,··· etc for the coefficients
and other things related to the constant coefficient operator at ∞ and Ai,−,··· etc for the
constant coefficient operator at −∞.

Definition 2.1.3
Let X,Y be two Banach spaces over C. A ∈ B(X,Y ) ⊆ L(X,Y ), with B(X,Y ) denoting
the space of continuous linear operators and L(X,Y ) the space of all linear operators
X → Y , is called a Fredholm Operator or simply Fredholm iff

dim kerA <∞ codimA(X) <∞.

Then the index or Fredholm index of A is defined as the integer

indA := dim kerA− codimA(X) (2.8)

Let F (X,Y ) ⊆ B(X,Y ) denote the closed space of all Fredholm operators and let
A ∈ F (X,Y ). Then, with X∗ denoting Xs dual and AT its dual operator, the following
properties are met.

1. A(X) is closed (2.9a)

2. A(X) = (kerAT )⊥ and AT (Y ∗) = (kerA)⊥ (2.9b)

3. codimAT (Y ∗) = dim kerA (2.9c)

4. codimA(X) = dim kerAT = dim kerA− indA (2.9d)

5. AT : Y ∗ → X∗ is Fredholm and indAT = − indA (2.9e)

6. ind : L(X,Y )→ N is continuous (2.9f)

(2.9b), (2.9c), (2.9d) represent a so called Fredholm Alternative.
The interested reader is referred to [4]. For (2.9f) in particular, which is the basis of

relatively simple calculation of the Fredholm index for asymptotically hyperbolic linear
equations as (1.3), see Proposition 1 of section 5.8 of [4].

Definition 2.1.4
With solution, e.g. to (1.1), we generally mean a function x ∈ W 1,∞(R,Rd) satisfying
(1.1) in Lp sense. Let J ⊆ R be some interval. Then by a solution on J we mean a
function x : J# := J + {ri|1 ≤ i ≤ N} satisfying

1. x ∈ “C(J#,Cd) ∩ Lp(J#,Cd)′′ (2.10a)

8



2. x|J ∈W 1,p(J,Cd) (2.10b)

3. ∀ξ ∈ J : : 0 = −cx(1)(ξ)− F (x(ξ + r1), · · · , x(ξ + rN ), ρ) (2.10c)

with C(R,Cd)∩Lp understood in usual sense of Lp functions with continuous represen-
tatives. Equivalent definitions hold for equations with F = F (ξ, x(ξ), · · · ) etc.

Before beginning to recall theory established in [1] and [2] we just add a standard
lemma to make sure G is really Fréchet C1.

Lemma 2.1.5
Assume that F = F (v, ρ) in (1.1) is C1 in (Rd)N × V . and that DvF (v, ρ) is locally
Lipschitz with respect to v.

Then G is C1 on the open set

U :=
(
R \{0}

)
× {x ∈W 1,∞|x(1) 6= 0} × V ⊆ R×W 1,∞ ×W (2.11)

and the partial Fréchet derivative Dc,xG(c, x, ρ) takes the form (1.5).

Proof. Fix (c, x, ρ) ∈ U . We set κ(x, ξ) := (x(ξ + r1), · · · , x(ξ + rN ))

L(c, x, ρ) : R×W 1,∞ ×W → L∞

(d, y, σ) 7→ −dx(1) + Λc,x,ρy −
∂

∂ρ
F (κ(x, · ), ρ)σ

(2.12)

Obviously (c, x, ρ) 7→ L(c, x, ρ) is continuous in U .
We claim that L is G’s Fréchet derivative.
Since F is C1 in (Rd)N × V we have ∀(v, ρ) ∈ (Rd)N × V : ∀ε > 0: ∃δ0(ε) > 0 such

that ∀δ0 > ‖(w, σ)‖ :

1

‖(w, σ)‖

(
F (v + w, ρ+ σ)− F (v, ρ)−Dv,ρF (v, ρ)(w, σ)

)
≤ ε.

From the definition of κ we get ∀ξ ∈ R : ∀x ∈W 1,∞ :

‖κ(x, ξ)‖ = ‖(x(ξ + r1), · · · , x(ξ + rN ))‖

≤
N∑
i=1

‖x(ξ + ri)‖ ≤ N‖x‖L∞

≤ N‖x‖W 1,∞

Since
|d|‖y‖W 1,∞

‖(d, y)‖
=
|d|‖y‖W 1,∞

|d|+ ‖y‖W 1,∞

it follows that if ‖d, y‖ < 1
N ε =: δ1 we have

|d|‖y‖W 1,∞

‖(d, y)‖
<

1

2N
ε.

9



With ‖(d, y, σ)‖ < max{ 1
2N δ0( 1

N ε), δ1} =: δ we now have

1

N‖(d, y, σ)‖
‖
(
G(c+ d, x+ y, ρ+ σ)− G(c, x, ρ)

− L(c, x, ρ)(d, y, σ)
)

(ξ)‖

≤

1

‖d, (κ(y, ξ), σ)‖
‖
(
− (c+ d)(x+ y)(1)(ξ) + cx(1)(ξ)

− F (κ(x+ y, ξ), ρ+ σ) + F (κ(x, ξ), ρ)

+ dx(1)(ξ) + cy(1)(ξ) +Dx,ρ

(
F (κ(x, ξ), ρ)

)
(κ(y, ξ), σ)

)
‖

≤

1

‖(κ(y, ξ), σ)‖

(
|d|‖y(1)‖W 1,∞ + ‖

(
F (κ(x, ξ) + κ(y, ξ), ρ+ σ)− F (κ(x, ξ), ρ)

−Dv,ρF (κ(x, ξ), ρ)(κ(y, ξ), σ)
)
‖

)
≤ 1

N
ε.

Taking the (essential) supremum over ξ and multiplying with N yields ∀‖(d, y, σ)‖ <
δ :

1

‖(d, y, σ‖
‖G(c+ d, x+ y, ρ+ σ)− G(c, x, ρ)− L(c, x, ρ)(d, y, σ)‖L∞ ≤ ε

Thus G has the Fréchet derivative L and since L is continuous G is C1 in U .
Proposition 8 from section 4.2 of [4] applied to (2.12) together with the first part of

the proof yields (
Dc,xG(c, x, ρ)

)
(d, y) =

(
Dc,x,ρG(c, x, ρ)

)
(d, y, 0)

=
(
L(c, x, ρ)

)
(d, y, 0)

= −x(1)d+ Λc,x,ρy + 0.

This proves the second part of the lemma.

2.2 Linear Fredholm Theory

Using the above definitions and notation we now p pr As advertised we present two
results, which establish Fredholmness for asymptotically hyperbolic linear operators with
duality for W 1,p → Lp through a dual pairing with W 1,q → Lq for conjugated 1 ≤ p, q ≤
∞ and means to calculate the index when the limiting operators at ±∞ are related
or can be joined in a hyperbolicity preserving way. A third one establishes a relation
between general solutions and eigensolutions of (2.1).
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A Fredholm Alternative

First we reproduce a theorem established as Theorem A in [1] and reexamined as Theo-
rem 3.2.3 in [3]. Using this result we can later establish step (1.8a) of our agenda, that
is, establish Fredholmness of Λc0,x0,ρ0 .

Theorem 2.2.1
Consider an asymptotically hyperbolic equation as in (2.1). Let 1 ≤ q ≤ ∞ be conjugated
to some 1 ≤ p ≤ ∞. Then the quasidual operator defined by

Λ∗ : W 1,q → Lq(
Λ∗y

)
(ξ) = cy(1)(ξ) +

N∑
i=1

ATi (ξ − ri)y(ξ − ri)
(2.14)

Λ∗ is also asymptotically hyperbolic and

1. hyperbolic, constant coefficient Λ are isomorphisms (2.15a)

2. Λ,Λ∗ are Fredholm operators (2.15b)

3. ker Λ, ker Λ∗ are independent from p, q. (2.15c)

4.
Λ(W k,p) =

(
ker Λ∗

)
⊥Lp

Λ∗(W k,q) =
(
ker Λ

)
⊥Lq

(2.15d)

5.

codim Λ(W k,p) = dim ker Λ∗

codim Λ∗(W k,q) = dim ker Λ

ind Λ = − ind Λ∗
(2.15e)

using ker Λ for kernel, Λ(W k,p for image of the operator Λ and X⊥Y for the annihilator
of X as subspace of Y .

Proof. (2.15a) is Theorem 4.1 from [1] or Theorem 2.1.2 from [3]. The proof involves
viewing (2.1) as an equation of temepered distributions and solving it by transforming Λ
into multiplication operator via Fourier transform. This gives rise to a Green’s function
for Λ. The equation holding for tempered distributionally for a distribution induced by
a proper function implies that the equation also holds for weak derivatives and hence in
the W 1,p and Lp sense.

(2.15b) to (2.15e) follow by first investigating small perturbations of the isomorphic
hyperbolic constant coefficient operators as in (2.15a). In this case the von Neumann
series can establish bijectivity and existance of a Green’s function for such perturbations.

Asymptotic autonomy implies that asymtptically hyperbolic operators can be viewed
as such perturbations for large ξ. This enables us to use the results on small pertur-
bations of hyperbolic constant coefficient operators to establish asymptotics of general
asymptotically hyperbolic linear operators. These asymptotics combined with the Arzelà
Ascoli theorem then enable us to prove relative compactness of W 1,p sets with relative
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compact range under Λ in Lp. This fact leads to finite dimensionality of the kernel via
compactness of the unit ball and closedness of the range. With this and the defintion of
Λ∗ the remaining results follow.

In the context of traveling wave solutions and implicit function theorem as in (1.1) we
have c 6= 0 so Λc0,x0,ρ0 for solutions x0 joining hyperbolic equilibria is applicable.

Computation of the Fredholm Index

The next result is Theorem B of [1] with slight addendums. We are specifically interested
in the implication, that if the hyperbolic linearizations Λc0,x̄±,ρ0 about equilibria x̄± can
be connected by a simple homotopy (in fact any but we only provide the proof for the
line connecting them) that preserves hyperbolicty, then linearizations about any solution
x0 joining these two equilibria have index zero and thus finishing step (1.8b).

All the results on the Fredholm index are based on continuity of ind : F (X,Y ) → N
with N in discrete topology. Hence homotopies in F (X,Y ) preserve the index and we
need only find such between the operators we want to study and operators having the
index we need. However such homotopies ρ 7→ Λ only impose continuity restrictions on
Λ(ρ), i.e. Ai(ρ), Ai(ξ) need still only be measurable and uniformly bounded.

Theorem 2.2.2
Consider an asymptotically hyperbolic linear operator Λ as in (2.1). Assume that the
limiting operators at ±∞ are Λpm.

Then the Fredholm index of Λ only depends on Λ±, i.e.

ind Λ = ı(Λ−,Λ+). (2.16a)

Furthermore for any triple Λ1,Λ2,Λ3 of hyperbolic constant coefficient operators

ı(Λ1,Λ1) = 0 (2.16b)

and
ı(Λ1,Λ2) + ı(Λ2,Λ3) = ı(Λ1,Λ3) (2.16c)

the latter being dubbed the Cocycle property.
Furthermore, if

∀ρ ∈ [0, 1] : (1− ρ)Λ1 + ρΛ2 is hyperbolic,

then
ı(Λ1,Λ2) = 0 (2.16d)

Proof. First we show that the index only depends on the limiting operators. Let Λ0,Λ1

be two asymptotically hyperbolic linear operators as in (2.1) with the same limiting
operators Λ± at ±∞.

For ρ in [0, 1] set
Λρ = (1− ρ)Λ0 + ρΛ1.

12



Then for each ρ the operator Λρ again is asymptotically hyperbolic with limiting op-
erators Λ± and hence according to 2.2.1 is a Fredholm operator. Thus ρ 7→ Λρ is a
continuous function R→ F (W 1,p, Lp) so ind Λ0 = ind Λ1, proving (2.16a).

Since each Λi is hyperbolic, each on of these operators is an isomorphism according
to 2.2.1. Hence they all have index 0.

Consider an operator Λ with both limiting operators being Λ1. Then

Λρ = (1− ρ)Λ + ρΛ1

for ρ ∈ [0, 1] yields asymptotically hyperbolic operators with limiting operator Λ1 at
both ±∞ for each ρ. ρ → Λρ is again a continuous function through F (W 1,p, Lp), so
ind Λ = ind Λ1 = 0, proving (2.16b)

For (2.16c) set

R(ρ) =

(
cos(πρ2 )Id sin(πρ2 )Id
− sin(πρ2 )Id cos(πρ2 )Id

)
and consider the family of 2d operators defined by

(
Λρ
(
x
y

))
(ξ) =



(
Λ1x

Λ2y

)
(ξ) ξ < 0

(
R(ρ)

(
Λ2

Λ3

)
R(−ρ)

(
x

y

))
(ξ) ξ ≥ 0

.

with Id denoting the d×d identity matrix. With this definition Λρ is asymptotically hy-
perbolic for all ρ ∈ [0, 1]. Its limit at −∞ is (Λ1,Λ2) and −∞ it’s

(
R(ρ)(Λ2,Λ3)R(−ρ)

)
.

For ρ = 0 and ρ = 1 the system decouples and the index can be explicitly calculated
as the sum of the indices of the x and y equations. Furthermore ρ 7→ Λρ is again a
continuous map [0, 1]→ F (W k,p, Lp) and hence, using (2.16a)

ı(Λ1,Λ2) + ı(Λ2,Λ3) = ind Λ0 = ind Λ1 = ı(Λ2,Λ3) + ı(Λ2,Λ2)︸ ︷︷ ︸
=0

= ı(Λ1,Λ3)

By (2.16a) it suffices to show, that just one asymptotically hyperbolic linear operator
with limits Λ1,Λ2 has index zero to prove (2.16d). Consider the family of operators
defined by (

Λρx
)
(ξ) =

{(
Λ1x

)
(ξ) ξ < 0(

(1− ρ)Λ1 + ρΛ2

)
(ξ) ξ ≥ 0

Then Λ0 = Λ1 is an index 0 operator and Λ1 is asymptotically hyperbolic with Λ1,Λ2 as
limits at ±∞. Furthermore Λρ is asymptotically hyperbolic with limiting operators Λ1

at −∞ and (1− ρ)Λ1 + ρΛ2 at +∞ for each ρ ∈ [0, 1] and hence, according to Theorem
2.1.2, is again Fredholm. Since ρ 7→ Λρ is continuous it follows that ind Λ1 = ind Λ0 =
ind Λ1 = 0 and (2.16d) is shown.
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Eigensolutions

The final result, Proposition 7.2 from [1], we present establishes that solutions of the
linear equations (2.1) are asymptotically close to eigensolutions.

Theorem 2.2.3
Let that x is a solution of (2.1) on some interval [τ,∞). Assume that this linear equation
is asymptotically autonomous at ∞ and use the notations established in Defition 2.1.2,
in particular the decomposition (2.7). Assume ∃a > 0, k > 0 such that

x(ξ) ∈ O(ξ 7→ e−aξ) ‖M(ξ)‖ ∈ O(ξ 7→ e−kξ) ξ →∞ (2.17)

Then either one of the following hold.

1. ∃b ≥ a, ε > 0 and a nontrivial eigensolution y of the limiting equation at ∞
corresponding to the nonempty set of eigenvalues λ with <λ = −b such that

x(ξ)− y(ξ) ∈ O(ξ 7→ e−(b+ε)ξ) (2.18a)

2. for each b ∈ R we have
lim
ξ→∞

ebξx(ξ) = 0 (2.18b)

We remark that we have not required hyperbolicity of the limiting operator at ∞.

Proof. Set
b = sup{a0 ≥ a|x(ξ) ∈ O(ξ 7→ e−a0ξ) as ξ →∞}

If b =∞ then (2.18b) holds.
If b <∞ then, we can rewrite the linear equation (2.1) to an inhomogeneous constant

coefficient equation
(Λ0x)(ξ) = M(ξ)(τ−ξx)

with the right hand side satisfying a growth condition O(ξ 7→ e(k+b−ε)ξ) for some ε > 0.
This growth condition together with the growth conditions (2.17) allow us to Laplace
transform the inhomogeneous constant coefficient equation. Because of the growth con-
ditions we thus obtain holomorphy of the Laplace transforms of (Λ0x) and ξ 7→M(ξ) on
some half planes <s > d for some d ∈ R. The Laplace transform transforms Λ0 into a
multiplication operator with the associated characteristic function ∆0, which is almost
a polynomial. For ∆0· x̃ to be holomorphic on some half plane, x̃ has to be at least
meromorphic in this half plane. Thus, using the inverse Laplace transform to get x from
its Laplace transform x̃, shifting the path of integration, and using the residue theorem,
we get

x(ξ) = y(ξ) + w(ξ)

where y(ξ) is a sum of residuals, which is an eigensolution and w is the reconstruction
along the shifter path. Investigation of w with its integral formula obtained from w’s
definition as shifted inverse Laplace transform of x̃ establishes w ∈ O(ξ 7→ e−(b+ε)ξ).
Finally triviality of y would contradict the definition of b which would finish the proof.
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2.3 A 1d equation

These section is just a summary sections 4 and the beginning of section 6 of [2] or chapter
4 from [3]. We try to only reproduce the results that can be used for a 2d equation with
two decoupled components solving the following 1d equation and only give outlines of
the proofs and relations between the results.

The interest in [2] was the equation

0 = G(c, x, ρ)(ξ) = −cx(1)(ξ)− F (x(ξ + r1), · · · , x(ξ + rN ), ρ) (2.19)

as in (1.1) with G : R×W 1,∞(R,R)× V → R and F satisfying

1. F satisfies

F : RN ×V → R, (v, ρ) 7→ F (v, ρ) is C1

DvF : RN ×V → B(RN ,RN ) is locally Lipschitz in v
(2.20a)

2. ∀ρ ∈ V : ∃U(ρ) ⊆ {1, · · · , N} : U(ρ) 6= ∅ :

∀i ∈ U(ρ) : ∀v ∈ RN :
( ∂
∂vi

F
)
(v, ρ) > 0

∀i ∈ {1, · · · , N} \ U(ρ) :
( ∂
∂vi

F
)
(v, ρ) = 0

(2.20b)

3. With

ΦF : R×V → R
(y, ρ) 7→ F (y, · · · , y, ρ)

we have ∀ρ ∈ V : ∃qF (ρ) ∈ (−1, 1) such that

∀y ∈ (−∞,−1) ∪ (qF (ρ), 1) : ΦF (y, ρ) > 0

∀y ∈ (−1, qF (ρ)) ∪ (1,∞) : ΦF (y, ρ) < 0

ΦF (−1, ρ) = ΦF (qy(ρ), ρ) = ΦF (1, ρ) = 0

(2.20c)

4. Additionally we require
DyΦ

F (−1, ρ) < 0

DyΦ
F (1, ρ) < 0

ΦF (q(ρ), ρ) > 0

(2.20d)

and r1 = 0, r2, · · · , rN ∈ R still distinct.
In line with our agenda in the beginning we search for uses of the implicit function

theorem around solutions x0 joining the two equilibria x̄− = −1 at −∞ to x̄+ = 1 at
∞, hence the boundary conditions

lim
ξ→−∞

x(ξ) = x̄− = −1 lim
ξ→∞

x(ξ) = x̄+ = 1. (2.21)

We remark that by (2.20c) these two are the only two stable equilibria. Furthermore
the study of solutions joining 1 at −∞ to −1 at ∞ follows trivially from the studies of
solutions satisfying (2.21) by a change of variables ξ 7→ −ξ.
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Linear

Linearizations of (2.19) are associated with the operator

0 = (Λu)(ξ) = −cu(1)(ξ)−
N∑
i=1

Ai(ξ)u(ξ + ri). (2.22)

as in the decomposition (1.4) with continuous Ai satisfying ∃α, β ∈ (0,∞) such that
∀i ∈ {2, · · ·N} :

1. Ai 6= 0⇒ ∀ξ ∈ R : α ≤ Ai(ξ) ≤ β (2.23a)

2. If (2.22) is a constant coefficient equation then

N∑
i=1

Ai < 0 (2.23b)

Condition (2.23a) arises from condition (2.20b). The only constant coefficient equations
we study in the context of (2.19) are Λc0,±1,ρ0 . Hence (2.20d) would translate into

0 > DyΦ
F (±1, ρ) =

N∑
i=1

∂

∂ui
F (±1, · · · ,±1, ρ) = Ai,±1,ρ0

(2.23b) for Λc0,±1,ρ0 .
The condition Ai 6= 0 is necessary because the shifts ri are the global shifts even for

varying ρ ∈ V but for distinct ρ F does not have to depend on the same x(ξ+ri). This is
also the reason why there is the set U(ρ) in condition (2.20b) for the nonlinear equation
(2.19). Later this will also be important when considering a 2d equation consiting of
two (2.19) components whose shifts do not have to align at all.

Before immeadeatly going over to step (1.8a) of our agenda and establishing hyper-
bolicity of x̄± = ±1 we first present a results concerning a broader class of equations
encompassing both our linear and nonlinear 1d equations (2.22) and (2.19). These allow
us to later show that solutions x0 of (2.19) joining −1 to 1 all satisy −1 < x0 < 1 and
that solutions u ≥ 0 of (2.22) all satisfy u > 0. This is useful as

∫
R fg 6= 0 if f > 0, g > 0,

which might help when going over step (1.8f) of our agenda.
Consider

0 = −cx(1)(ξ)−G(ξ, x(ξ + r1), · · · , x(ξ + rN )). (2.24)

with

1.
G : R×RN → R

(ξ, u) 7→ G(ξ, u) is continuous, locally Lipschitz in u
(2.25a)

2. ∀u ∈ RN : ∀i ∈ {1, · · · , N} :
∂

∂ui
G(·, u) 6= 0⇒ ∀ξ ∈ R :

∂

∂ui
G(ξ, u) > 0 (2.25b)
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For fixed c, ρ both (2.19) and (2.22) are versions of (2.24).
The following Lemma is a summarization of Lemmata 3.1 and 3.3 of [2] or Lemmata

4.1.1 and 4.1.2 of [3]

Lemma 2.3.1
Assume G satisfies the conditions (2.25) and that x1, x2 are two solutions of (2.24) on
R.

1. If x1 ≥ x2 and ∃τ : x1(τ) = x2(τ) then

c > 0⇒ x1|[τ,∞) = x2|[τ,∞) c < 0⇒ x1|(−∞,τ ] = x2|(−∞,τ ] (2.26a)

2. If ∃τ such that x1|[τ+r−,τ+r+] = x2|[τ+r−,τ+r+] then

x1 = x2 (2.26b)

Proof. For (2.26a) the difference y = x1 − x2 ≥ 0 solves the initial value problem

−cy(1)(ξ) =G(ξ, x2(ξ) + y(ξ), x1(ξ + r1), · · · , x1(ξ + rN ))

−G(ξ, x1(ξ + r1), · · · , x1(ξ + rN ))

=:H(ξ, y(ξ))

y(τ) =0

with ∀ξ ∈ R : H(ξ, 0) ≤ 0. A standard argument with the Picard Lindelöf theorem
establishes (2.26a) for either (−∞, τ ] or [τ,∞) depending on the sign of c.

(2.26b) is shown by assuming x1 = x2 not holding on (−∞, τ + r+]. Assumption of
r− < 0 leads to a contradiction and r− = 0 implies c = 0 which contradicts the general
assumption c 6= 0. The arguments for [τ + r−,∞) are very similar.

This lemma enables us to reduce certain questions of uniqueness of solutions or linear
independence in preimages of Λc0,x0,ρ0 or in K or K∗ to finding just single points or
short intervals in which the solutions coincide. We remark that with nondegenerate
(i.e. nonordinary) functional differential equations, contrary to ordinary differential
equations, a single coincision point is generally not enough to establish conincision of
solutions on a larger scale.

Now we finally start with following through with our agenda (1.8) for the nonlinear
1d equation (2.19) and start by recalling some results on the characteristic function of
a constant coefficient equation satisfying (2.23),

∆(λ) = −cλ−
N∑
i=1

Aie
λri . (2.27)

The next lemma, Lemma 4.2 from [2] or its copy Lemma 4.2.2 from [3] together with∑N
i=1Ai < 0 from condition (2.23b) enable us to finish step (1.8a).
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Lemma 2.3.2
Consider the characteristic function ∆Λ of some linear constant coefficient operator Λ
satisfying (2.23).

Then, if a ∈ R, b ∈ R \0,

∆(a) ≥ 0⇒ ∆(a+ ib) 6= 0.

Proof. Assume ∆(a) ≥ 0 and ∆(a+ ib) = 0. Then

c(a+ ib) +A0 = −
N∑
i=1

Aie
(a+ib)ri

ca+A0 ≤ −
N∑
i=1

Aie
ari < 0

As |<ρ| ≤ |ρ| for all complex ρ we have

−(ca+A0) = |ca+A0| ≤ |c(a+ ib) +A0| = |
N∑
i=1

Aie
riaeiri | ≤ |

N∑
i=1

Aie
ria| ≤ −(ca+A0).

Hence all inequalities in this chain are equalities, the last two terms implying ∆(a) = 0,
the second and third implying

|ca+A0|2 = |c(a+ ib) +A0|2 = |ca+A0|2 + |icb|2,

and so b = 0.
Thus we have

∆(a) ≥ 0 ∧∆(a+ ib) = 0⇒ ∆(a) = 0 ∧ b = 0

and the proof is finished.

An essential step here in this proof was the inequality |a + c| ≤ |(a + ib) + c| for
a, b, c ∈ R, which cannot be extended to something like |ak+c| ≤ |(a+ib)k+c| whenever
k > 1, c 6= 0, foreclosing attempts to determine characteristics of the eigenvalues in a
similar manner when considering equations of higher order or dimension.

Since

∆c0,±1,ρ0(0) = 0−
N∑
i=1

Ai,±1,ρ0e
0 = −

N∑
i=1

Ai > 0, (2.28)

Lemma 2.3.2 implies ∀b ∈ R : ∆c0,±1,ρ0(0 + ib) 6= 0 so ±1 are hyperbolic. This finishes
step (1.8a).

Moreover by setting
Aµi = (1− µ)Ai,−1,ρ0 + µAi,1,ρ0 ,

these Ai satisfy the conditions of (2.23) so the linear equation

0 =
(
Λµx

)
(ξ) = −cx(1)(ξ)−

N∑
i=1

Aµi x(ξ + ri)
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and Λµ are hyperbolic. In particular Λµ is a Fredholm operator by (2.15a) of Theorem
2.2.1. Furthermore Λ0 = Λc0,−1,ρ0 and Λ1 = Λc0,1,ρ0 so the conditions of (2.16d) of
Theorem (2.2.2) are met. Hence for any solution x0 joining ±1 we have Fredholm
index 0 for Λc0,x0,ρ0 . Of course this argument holds not only for linearizations but any
asymptotically hyperbolic linear operator as in (2.22) satisfying (2.23). This finishes
step (1.8b).

The next steps need more work and will use the fact that solutions to asymptotically
hyperbolic (2.1) are close to eigensolutions at the respective ends in the sense of Theorem
2.2.3. For such a study based on eigensolutions we first need to find out a little more
about the eigenvalues.

The next lemma is part of Proposition 4.3 of [2] or Proposition 4.2.3 of [3].

Lemma 2.3.3
For a constant coefficient Λ as in (2.22) satisfying (2.23) there exist at most one real
negative eigenvalue λΛ

− ∈ (−∞, 0) ∩ EΛ and at most one real positive eigenvalue λΛ
+ ∈

(0,∞) ∩ EΛ. Per convention we will set λΛ
± = ±∞ if these eigenvalues actually don’t

exist.
Moreover, using the conventions (−∞,−∞) = (∞,∞) = ∅, we have

<
(
EΛ \ {λΛ

−, λ
λ
+}
)
⊆ (−∞, λΛ

−) ∪ (λΛ
+) (2.29)

Proof. Since f : R→ R, a 7→ ∆Λ(a) is a strictly concave function as

f (2)(a) = −
N∑
i=1

Ai︸︷︷︸
>0

r2
i e
ari < 0.

Together with f(0) = −
∑N

i=1Ai > 0 the results on λΛ
± follow immedeatly. Moreover it

follows that f |(λΛ
−,λ

Λ
+) > 0 so (2.29) follows by Lemma 2.3.2.

For an asymptotically hyperbolic linear operator Λ as in (2.22) with (2.23) with lim-
iting hyerpbolic constant coefficient operators Λ± at ±∞ we write

λu,Λ = λ
Λ−
+ λs,Λ = λ

Λ+
− (2.30)

For linearizations Λc0,x0,ρ for solutions x0 satisfying the boundary conditions (2.21)
these are

λuc0,x0,ρ0
= λ

Λc0,x̄−,ρ0
+ λsc0,x0,ρ0

= λ
Λc0,x̄+,ρ0
− . (2.31)

The next Proposition is parts of Propositions 4.6 from [2] or 4.2.6 from [3] and gives us
mentioned asymptotical approach of solutions of (2.22) to eigensolutions of the limiting
operators via Theorem 2.2.3. Obviously this introduces the additional conditions of this
theorem, which can later be shown to hold for Λc0,x0,ρ0 .
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Proposition 2.3.4
Assume that the condition (2.17) on M from Theorem 2.2.3 holds for both the decom-
positions at ±∞ of some Λ satisfying (2.23).

Assume the remaining asymptotic conditions hold for ∞ and x : [τ,∞) is a bounded
solution of (2.22) on [τ,∞) for some τ ∈ R.

1. If λsc0,x0,ρ0
> −∞ then ∃C+ = C+

c0,x0,ρ0
∈ R, ε > 0 such that

x(ξ)− C+eλ
s,Λξ ∈ O(ξ 7→ e(λsc0,x0,ρ0

−ε)ξ) (2.32a)

2. If λs,Λ > −∞, x ≥ 0, x 6= 0 then C+ > 0 (2.32b)

3. the bound obtained from formally differentiating (2.32a) hold (2.32c)

4. If λsc0,x0,ρ0
= −∞, x ≥ 0 then x = 0 (2.32d)

The analogous result holds for −∞ and (−∞, τ ].

Proof. Theorem 2.2.3 is applicable since x is a bounded and hence O(ξ 7→ e0ξ) solution.
Both cases of (2.18) from Theorem 2.2.3 imply (2.32a), the second trivially and the

first together with Lemma 2.3.3 and the fact that multiples of ξ 7→ eξ 7→λ
s,Λ

are the only
eigensolutions for λs,Λ.

For (2.32b) C+ ≥ 0 follows trivially from x ≥ 0. For nonnegative solutions on [τ,∞)
it can be shown that there exist a, b ∈ R, R > 0 such that

∀ξ ∈ [τ +R,∞) : ax(ξ) ≤ x(1)(ξ) ≤ bx(ξ) (2.33)

Hence the second option resulting from Theorem 2.2.3 is not possible. Because x does
not vanish identically it follows that (2.18a) holds for some eigenvalue λ ∈ EΛ with
<λ < λs,Λ. But such an eigenvalue would have nonzero imaginary part and hence x ≥ 0
would be impossible.

(2.32c) follows by plugging (2.32a) onto the linear equation (2.22) for ξ ≥ τ .
λs,Λ = −∞ implies that <EΛ ∩ (−∞, 0) = ∅ by Lemma 2.3.3 so the first option

resulting from Theorem 2.2.3 is impossible. But with (2.33) the second option is only
possible if x = 0.

Using Proposition 2.3.4 we get a result found in Proposition 4.7, Theorem 4.1 from
[2] or Proposition 4.2.7, Theorem 4.2.8 from [3].

Proposition 2.3.5
Assume that p ≥ 0 is a nontrivial solution to the linear equation (2.22) with some Λ
satisfying (2.23) and that condition (2.18) from Theorem 2.2.3 on M holds for both
ξ → ±∞.

Then

1. λs,Λ and λu,Λ are finite (2.34a)

20



2. p > 0 (2.34b)

3. KΛ = pR (2.34c)

4. ∃p∗ > 0 ∈ K∗,Λ (2.34d)

5. K∗,Λ = p∗R

Proof. (2.34a) follows from p 6= 0. Assuming otherwise would imply that p vanishes on
some (−∞, τ ] or [τ,∞) by (2.32d) of Proposition 2.3.4. Lemma 2.3.1 would cause p to
vanish everywhere.

(2.34b) follows from Lemma 2.3.1
(2.34c) is obtained by assuming existance of some y ∈ KΛ linearily independent from

p and using the asymptotic formula (2.32a) from Proposition 2.3.4 to lead to a contra-
diction.

(2.34c) implies dimKΛ = 1. Since we have already established ind Λ = 0 after Lemma
2.3.2 we already know dimK∗,Λ = 1. Assumption of p∗ > 0 /∈ K∗ thus implies existance
of some nontrivial p∗ ∈ K∗ that takes both values ±0. p∗ taking both positive and
negative values implies existance of some h ≥ 0 compactly supported such that∫

R
p∗h = 0.

According to the Fredholm Alternative (2.15d) from Theorem 2.2.1 it would follow that
h ∈ Λ(W 1,∞). Closer examination fo the preimage of h with help from Proposition 2.3.4
yields a contradiction thus proving (2.34d).

(5) follows directly from (2.34c) and the arguments this equation’s proof.

One sees that this Proposition would serve as a good basis for all the steps (1.8c)
to (1.8f) but only if the condition of exponential approach of the limiting equations
(2.17) and existance of a nontrivial nonnegative solution really hold for Λc0,x0,ρ0 . This is
established in the following subsection with a closer investigation of the original nonlinear
equation (2.19).

Nonlinear

Based on the agenda (1.8) and the results from the last subsection we still need to prove

existance of 0 ≤ p ∈ Kc0,x0,ρ0 , i.e. x
(1)
0 ≥ 0, and the exponential approach condition

(2.17) on M for Λc0,x0,ρ0 to enjoy the benefits of Proposition as a basis for steps (1.8c) to
(1.8f). Moreover we need to find a result that guarantees that solutions obtained from
the implicit function theorem satisfy the boundary conditions (2.21).

The last requirement can be fulfilled with Lemma 6.1 from [2], Lemma 4.3.1 from [3].

Lemma 2.3.6
Let x0 ∈W 1,∞ be a solution to (2.19) and

µ− := inf{x0(ξ)|ξ ∈ R} µ+ := sup{x0(ξ)|ξ ∈ R} (2.35)
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Then

µ− ∈ [−1, q(ρ)] ∪ {1} µ+ ∈ {−1} ∪ [q(ρ), 1] (2.36)

The same conclusion holds for

µ−,∞ := lim inf
ξ→∞

x0(ξ) µ+,∞ := lim sup
ξ→∞

x0(ξ)

µ−,−∞ := lim inf
ξ→−∞

x0(ξ) µ+,−∞ := lim sup
ξ→−∞

x0(ξ)

Proof. The proof for µ± works with a standard argument with some series ξ ∈ RN such
that x0(ξj)→ µ± for j →∞ and continuity of F .

For the lim inf etc the proof works with some sequence ξ ∈ RN with ξj → ±∞ for
j → ∞. Then yi = τ−ξix are all solutions of (2.19) and satisfy the conditions of the
Arzelà-Ascoli theorem. The resulting limits are also solutions of (2.19) and its inf, sup
coincide with x0’s lim inf, lim sup etc. The already proven parts of this lemma then yield
the required result.

The next result is Corollary 6.2 from [2] or Corollary 4.3.2 from [3].

Lemma 2.3.7
Let x0 ∈ W∞(R,R) be a solution of (2.19) with (2.20) holding and x0 satisfying the
boundary conditions (2.21). Then

− 1 < x0 < 1 (2.37)

Proof. −1 ≤ x0 ≤ 1 follows from the preceding Lemma 2.3.6 and the fact that x satisfies
the boundary conditions.
−1 < x0 < 1 follows from a usual application of Lemma 2.3.1.

With parts of Theorem 2.2 of [2] or Theorem 4.3.3 of [3] we are able to establish true-
ness of the exponential approach conditions (2.17) required of M for Λc0,x0,ρ0 enabling
us to finally use Proposition 2.3.5 for Λc0,x0,ρ0 .

Proposition 2.3.8
Assume that x0 ∈ W 1,∞ is a solution of (2.19) with (2.20) satisfying the boundary
conditions (2.21).

Then using the asymptotic decompositions

(
Λc,x0,ρx

)
(ξ) =

{(
Λc,x̄−,ρ

)
(ξ)−M−(ξ)τ−ξx ξ → −∞(

Λc,x̄+,ρ

)
(ξ)−M+(ξ)τ−ξx ξ →∞

(2.38)

we have

1. ∃k > 0 such that
ξ 7→ ‖M±(ξ)‖ ∈ O(ξ 7→ e−kξ) (2.39a)
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2. ∃C± > 0, ∃ε > 0, such that

x0(ξ) =

{
−1 + C−e

λuξ +O(ξ 7→ e(λu+ε)ξ) ξ → −∞
1− C+e

λsξ +O(ξ 7→ e(λs−ε)ξ) ξ →∞
(2.39b)

and the formulas obtained from formally differentiating (2.39b) hold.

Proof. Again we only consider the case ξ →∞, as the proof(s) of the results for ξ → −∞
are similar.

Consider y = 1− x0. Let ξ ∈ R. For any two v, w ∈ RN we have

F (v, ρ)− F (w, ρ) =

∫ 1

0

d

dt
F (tv + (1− t)w, ρ)dt

=
N∑
i=1

(∫ 1

0

( ∂
∂ui

F
)
(tv + (1− t)w, ρ)dt

)
(vi − wi)

Hence setting

Di(ξ) :=

∫ 1

0

( ∂
∂ui

F
)
(t+ (1− t)x0(ξ + r1), · · · , t+ (1− t)x0(ξ + rN ))dt

we conclude that y solves the linear equation

−cy(1) =
N∑
i=1

Di(ξ)y(ξ + ri)

Without loss of generality we may assume U(ρ) = {1, · · · , N}. As x0 satisfies the
boundary conditions (2.21) we have ∀1 ≤ i ≤ N :

Di,+ = lim
ξ→∞

Ai(ξ)

= lim
ξ→∞

∫ 1

0

( ∂
∂ui

F
)
(t+ (1− t)P (ξ + r1), · · · , t+ (1− t)P (ξ + rN ), ρ)dt

=

∫ 1

0

( ∂
∂ui

F
)
(t+ (1− t) lim

ξ→∞
P (ξ + r1), · · · , t+ (1− t) lim

ξ→∞
P (ξ + rN ), ρ)dt

=

∫ 1

0

( ∂
∂ui

F
)
(1, · · · , 1, ρ)dt

=
( ∂
∂ui

F
)
(1, · · · , 1, ρ)

using dominated convergence and continuity. Hence for ξ → ∞ the matrix coefficients
are exactly those of Λc,x̄+,ρ obtained from a linearization around the solution x0 = 1.

We have already established hyperbolicity of Λc,x̄±,ρ so y solves an equation, that is
asymptotically hyperbolic at ∞. Proposition 5.3 from [1] or Proposition from [3] or
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Theorem 2.2.3 with boundedness of y yield some a > 0 such that y ∈ O(ξ 7→ e−aξ) for
ξ →∞.
DvF is locally Lipschitz (2.20a) so this function is Lipschitz continuous on compact

sets. By Lemma 2.3.7 we already know that −1 < x0(ξ) < 1. Hence {t+(1− t)x0(ξ)|ξ ∈
R, t ∈ [0, 1]}N ⊆ RN is bounded and hence relatively compact. Thus, if L is the Lipschitz
constant of DvF on this set’s closure, then ∀ξ ∈ R :

|Di(ξ)−Di,+| = |
∫ 1

0

( ∂
∂ui

F
)
(t+ (1− t)P (ξ), · · · , ρ)dt−

( ∂
∂ui

F
)
(1, ρ)|

= |
∫ 1

0

( ∂
∂ui

F
)
(t+ (1− t)P (ξ), · · · , ρ)−

( ∂
∂ui

F
)
(1, ρ)dt|

≤
∫ 1

0
|
( ∂
∂ui

F
)
(t+ (1− t)P (ξ), · · · , ρ)−

( ∂
∂ui

F
)
(1, ρ)|dt

≤
∫ 1

0
CN |t+ (1− t)P (ξ)− 1|dt

= CN

∫ 1

0
|1− t||1− P (ξ)|dt

= CN |y(ξ)|
∫ 1

0
1− tdt

=
CN

2
|y(ξ)|

Hence ξ 7→ |Di(ξ)−Di,+| ∈ O(ξ 7→ e−aξ) for ξ →∞
Upper uniform boundedness of the functions Di follows from continuity of F and

boundedness of arguments for F in Di’s definitions. All that remains to be shown for
Proposition 2.3.4 to be applicable are lower bounds for D1, · · · , DN .

Fix i ∈ {1, · · · , N}. We already know that Di(ξ) → Di,+ > 0 for ξ → ∞. Hence

∃τ > 0 : ∀ξ ≥ τ : Di(ξ) ≥ Di,+
2 . Moreover the continuous function Di takes a minimum

αi > 0 on the compact set [0, τ ]. Thus we have ∀ξ ≥ 0 : Di(ξ) ≥ min{Ai,+2 , αi} > 0.
Proposition 2.3.4 is now applicable for the case ξ → ∞. As x0(ξ) < 1 implies y =

1− x0 > 0 and hence y does not vanish identically on any [τ,∞) with τ ∈ R, (2.32d) of
Proposition 2.3.4 implies that λsc,x0,ρ0

> −∞ and ∃C+ > 0,∃ε > 0 such that

1− x0(ξ) = y(ξ) = C+e
λsc,x0,ρ

ξ +O(e(λsc,x0,ρ
−ε)ξ) (2.40)

for ξ →∞. Moreover the formula obtained by formally differentiating the last equation
holds, also by Proposition 2.3.4. Hence we have shown (2.39b).

For (2.39a) we recall the definition of L above and obtain

|Ai,x0,ρ(ξ)−Ai,x̄+,ρ| = |
∂

∂vi
F (x0(ξ + r1), · · · , x0(ξ + rN ), ρ)− ∂

∂vi
F (1, · · · , 1, ρ)|

≤ L‖(x0(ξ + r1)− 1, · · · , x0(ξ + rN )− 1)‖
≤ LN max

1≤i≤N
|y(ξ + ri)|
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Hence ξ 7→ |Ai,x0,ρ −Ai,x̄+,ρ| ∈ O(ξ 7→ e−aξ). Finiteness of N now yields (2.39a).

Now all that is left to show for applicability of Proposition 2.3.5 is the existance
of some solution p ≥ 0. If Proposition 2.3.5 were already applicable, we would know

dimKc0,x0,ρ0 = 1. Knowing x
(1)
0 ∈ Kc0,x0,ρ0 this would suggest x

(1)
0 ≥ 0 since the bound-

ary conditions (2.21) prohibit x
(1)
0 ≤ 0. In fact using the formulas obtained from formally

differentiating (2.39b) it is possible to show x
(1)
0 ≥ 0.

Originally this was covered Proposition 6.3 of [2] and reexamined in Proposition of
4.3.4 [3], i.e.

Proposition 2.3.9
Let x0 ∈W 1,∞ be a solution of (2.19) with (2.20) holding and x0 satisfying the boundary
conditions (2.21).

Then
x

(1)
0 > 0 (2.41)

Proof. By Proposition 2.3.8, i.e. from formally differentiating (2.39b), we have ∃τ0 ∈
R : ∀|ξ| ≥ τ0 : x

(1)
0 (ξ) > 0.

x0 takes a minimum x0,− ∈ (−1, 1) and a maximum x0,+ in compact interval [−τ0, τ0].
x0 satisfies the boundary conditions (2.21) so ∃τ1, τ2 > τ0 such that ∀ξ ≥ τ1 : x0(ξ) >

x0,+ and ∀ξ ≤ −τ2 : x0(ξ) < x0,−.
Taking τ := max{τ0, τ1, τ2} we obtain

∀|ξ| ≥ τ : P (1)(ξ) > 0

∀|ξ| < τ : P (−τ) < P (ξ) < P (τ)
(2.42)

with x
(1)
0 |[−τ2,−τ0]∪[τ0,τ1] > 0 implying x0(−τ) < x0|[−τ2,−τ0]∪[τ0,τ1] < x0(τ). Moreover it

follows from the same inequality that x0(−τ) < x0,− and x0,+ < x0(τ).
(2.42) also implies that ∀k ≥ 2τ : ∀ξ ∈ R : x0(ξ + k) > x0(ξ).

Suppose now that x
(1)
0 (ξ0)) < 0 for some ξ0 ∈ R and set

k0 := inf{k > 0|∀ξ ∈ R : P (ξ + k) > P (ξ)} ≤ 2τ.

x
(1)
0 (ξ0) < 0 implies k0 > 0.
By definition ∀ξ ∈ R : x0(ξ+k0) ≥ x0(ξ) and ∀k ∈ (0, k0) there exists some ξ1 ∈ R such

that x0(ξ1 + k) ≤ x0(ξ1). From definition of τ it follows that |ξ1| ≤ τ and |ξ1 + k| ≤ τ .
But using continuity of x0 we get

x0(ξ1 + k0)− x0(ξ1) = lim
k↗k0

x0(ξ1 + k)− x0(ξ1) ≤ 0.

The definition of k0 now yields x0(ξ1 + k0) = x0(ξ1).
Both x0 and τ−k0x0 are solutions to (2.19) so Lemma 2.3.1 can be applied. Hence

x0(ξ) = x0(ξ + k0) either ∀ξ ≤ ξ1 or ∀ξ ≥ ξ1 which are both impossible. We conclude

that x
(1)
0 (ξ) < 0 is impossible proving x

(1)
0 ≥ 0.

x
(1)
0 ≥ 0 together with (2.39) of Proposition 2.3.8 allow us to use Proposition 2.3.5 for

Λc,x0,ρ. (2.34a) of Propositon 2.3.5 establishes x
(1)
0 > 0.
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Finally we are able to finish all the steps in (1.8) and obtain Proposition 6.4 from [2]
or Proposition 4.3.5 from [3].

Set
W 1,∞

0 := {x ∈W 1,∞|x(0) = 0, (2.43)

which is a closed subspace of W 1,∞.
Any solution of x of (2.19) fulfilling the boundary conditions (2.21) has a unique

representative in τ−ηx ∈W 1,∞
0 because of Proposition 2.3.9 we can without loss assume

x ∈W 1,∞
0 and get results for the original nonnormalized x witch τη.

Proposition 2.3.10
Let x0 be a solution of (2.19) for some c0 6= 0, ρ0 ∈ V with F satisfying (2.20) and x0

satisfying the boundary conditions (2.21)
Set

Y := Λc0,x0,ρ0(W 1,∞
0 )⊕ x(1)

0 R . (2.44)

which is a closed subspace of L∞.
Consider the restriction

G : R×W 1,∞ × V → Y

as in (2.19) with (2.20).
Then there exists some ε > 0 such that

∀ρ ∈ Bε(ρ) : ∃!(c(ρ), x(ρ)) : G(c(ρ), x(ρ), ρ) = 0 (2.45)

and ρ 7→ (c(ρ), x(ρ)) is C1.
Moreover the boundary condition (2.21) hold for each x(ρ).

Proof. As we have already gathered all the materials depicted in the agenda, we only
need to reiterate through (1.8).

Lemma 2.1.5 ensures that G is C1 and that the linearization at (c0, x0, ρ0) is as in
(1.4).

Now focus on Λc0,x0,ρ0 .
(1.8a): Lemma 2.3.2 ensures hyperbolicty of Λc0,x̄±,ρ0 .
Theorem 2.2.1 yields asymptotic hyperbolicity of Λc0,x0,ρ0 .
(1.8b): From Lemma 2.3.2 again we get fulfillment of the conditions of (2.16d) of

Theorem 2.2.2 so
ind Λc0,x0,ρ0 = 0

(1.8c): From Proposition 2.3.9 we get applicability of Proposition 2.3.5, which yields

Kc0,x0,ρ0 = x
(1)
0 R.

(1.8d): x0 ∈ W 1,∞
0 by assumption. Since Kc0,x0,ρ0 = x

(1)
0 we know that for any

k ∈ Kc0,x0,ρ0 : ∃ξ : k(ξ) = 0 ⇒ k ≡ 0. It follows that W 1,∞
0 is a closed subspace of the

topological complement of Kc0,x0,ρ0 .
(1.8e): From Proposition 2.3.5 we have K∗c0,x0,ρ0

= p∗ for some W 1,1 3 p∗ > 0.
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(1.8f): Hence ∀p∗ ∈ K∗c0,x0,ρ0
\ {0} either p∗ > 0 or p∗ < 0. Since x

(1)
0 > 0 it follows

that ∫
x

(1)
0 p∗ 6= 0

and therefore

x
(1)
0 /∈

(
K∗c0,x0,ρ0

)
⊥L∞ = Λc0,x0,ρ0(W 1,∞) ⊇ Λc0,x0,ρ0(W 1,∞

0 )

(1.8g) holds already.

(1.8h): We have established that Λc0,x0,ρ0) is injective. x
(1)
0 /∈ Λc0,x0,ρ0(W 1,∞) implies

injectivity of Dc,xG(c0, x0, ρ).
The definition of Y guarantees surjectivity of Dc,xG(x0, x0, ρ0).
The implicit function theorem is now applicable and yields ρ→ (c(ρ), x(ρ)), C1 such

that G(c(ρ), x(ρ), ρ) = 0 for some neighbourhood B(ρ0)
From Proposition 2.3.8 we know that ∀ρ ∈ B(ρ0) :

lim inf
ξ→∞

x(ρ)(ξ) ∈ [−1, q(ρ)] ∪ {1} lim sup
ξ→∞

x(ρ)(ξ) ∈ {−1} ∪ [q(ρ), 1]

lim inf
ξ→−∞

x(ρ)(ξ) ∈ [−1, q(ρ)] ∪ {1} lim sup
ξ→−∞

x(ρ)(ξ) ∈ {−1} ∪ [q(ρ), 1]

Since

lim inf
ξ→−∞

x0(ξ) = lim sup
ξ→−∞

x0(ξ) = −1

lim inf
ξ→∞

x0(ξ) = lim sup
ξ→∞

x0(ξ) = 1

it follows by continuity of ρ→ x(ρ) that

lim inf
ξ→∞

x(ρ)(ξ) = −1 lim sup
ξ→−∞

x(ρ)(ξ) = 1

and necessarily

lim inf
ξ→−∞

x(ρ)(ξ) ≤ lim sup
ξ→−∞

x(ρ)(ξ) lim inf
ξ→∞

x(ρ)(ξ) ≤ lim sup
ξ→∞

x(ρ)(ξ)

it follows that x(ρ) satisfies the boundary conditions (2.21).
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3 A 2d equation

We investigate the 2d system obtained from taking 2 components both solving the equa-
tion discussed in [2]. We already know a lot about the 1d case as presented in section 2.3
and just try to find some formulations for the 2d case, showcasing some of the differences,
difficulties and problems when trying to solve equations of higher order or dimensional-
ity. When possible and meaningful we try to base our 2d results on preceding 2d results
instead of the 1d results from 2.3.

Hence the equation we investigate is

0 = G(c, x, ρ)(ξ) = −cx(1)(ξ)− F (x(ξ + r1), · · · , x(ξ + rN ), ρ)

= −c
(
y
z

)(1)

(ξ)−
(
G(y(ξ + r1), · · · , y(ξ + rN ), σ)
H(z(ξ + r1), · · · , z(ξ + rN ), τ)

) (3.1)

with x = (y, z), ρ = (σ, τ) and G,H both fulfilling the conditions (2.20) imposed on the
previously discussed 1d equation (2.19).

For the rest of the thesis we will use supscripts ·F for everything relating to F and
·G , ·H etc for the corresponding elements pertaining to just single components of (3.1).

For any c, ρ the stable equilibria x̄F of (3.1) are

(−1,−1) (−1, 1) (1,−1) (1, 1)

We try to use the implicit function theorem around solutions x0 pertaining to orbits
joining these equilibria. We present results for solutions joining x̄F− = (−1,−1) and
x̄+ = (1, 1), i.e. fulfilling the boundary conditions

lim
ξ→±∞

x(ξ) = x̄± (3.2)

Equivalent results for the other pairs z̄,−z̄ follow easily and can be researched with the
same steps or change of variables ξ → −ξ in both or just of the components.

Using our theory for solutions between the other pairs of the decoupled systems is
trickier as solutions connecting these do not automatically have nontrivial components
so the steps in the agenda around and following the steps in (1.8) might not be possible.

First some results for linear equations related to (3.1) similar to those found in section
2.3 for (2.19).

3.1 Linear

Linearizations of (3.1) around particular solutions yield(
Dc,xG(c0, x0, ρ0)

)
(d, u)(ξ) =

(
−cx(1)

0

)
(ξ)d+

(
ΛFc0,x0,ρ0

u
)

(ξ) (3.3)
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with u = (v, w) and

(
ΛFc0,x0,ρ0

u
)
(ξ) = −c

(
v
w

)(1)

(ξ)−
N∑
i=1

(
AGi 0
0 AHi

)
(ξ)

(
v
w

)
(ξ + ri)

=

(
ΛGc0,y0,σ0

ΛHc0,y0,τ0

) (3.4)

For constant coefficients this gives us the characteristic equation

0 = det ∆F
c0,x0,ρ0

(λ)

= det

(
∆G
c0,y0,σ0

0

0 ∆H
c0,z0,τ0

)
(λ)

= ∆G(λ)∆H(λ)

for λ ∈ C. This implies that for decoupled systems hyperbolicity of each component of
a constant coefficient system equates hyperbolicity of the whole system and asymptotic
hyperbolicity of each component of a linear system as (3.4) warrants asymptotically
hyperbolicity of the whole system, as

∆F (λ) = 0 ⇔ ∆G(λ) = 0 ∨∆H(λ) = 0. (3.5)

So, denoting the eigenvalues of the G,H components of the a 2d constant coefficient
equation as obtained from (3.4) around equilibria with EG, EH and the eigenvalues of
the whole system with just EF , we get EF = EG ∪ EH .

However this is not of significant interest, as we do not need another eigenvalue based
asymptotic analysis of solutions but can simply use the 1d results. However we do point
out here, that there are difficulties with finding properties of these eigenvalues as implied
by Lemma (2.3.2) and the comments thereafter.

Steps (1.8a) and (1.8b) on calculation of the Fredholm index can be summarized as
follows with the help of our 1d results.

Lemma 3.1.1
Consider linearizations of (3.1). Let x̄F1 , x̄

F
2 be any two of the 4 stable equilibria and x0

a solution of (3.1) joining x̄1 at −∞ and x̄2 at ∞ for paramterers c = c0, ρ = ρ0.
Then

1. ΛFc0,x̄1,ρ0
is hyperbolic (3.6a)

2. ΛFc0,x0,ρ0
is asymptotically hyperbolic (3.6b)

3. ΛFc0,x0,ρ0
is Fredholm (3.6c)

4. ind ΛFc0,x0,ρ0
= ı(ΛF

c0,x̄F1 ,ρ0
,ΛF

c0,x̄F2 ,ρ0,
) = 0 (3.6d)
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Proof. From Lemma 2.3.2 we have already obtained hyperbolicity of ±1 as equlibria of
the 1d equations 2.19 for G,H. From (3.5) it follows that all equlibria (±1,±1) of the
2d linear equation (3.4) are hyperbolic. This proves (3.6a).

As in the 1d case continuity of F , i.e continuity of G,H imply asymptotic hyperbolicity
of ΛFc0,x0,ρ0

if x0 joins any of the equlibria x̄F finishing the proof of (3.6b).
As in the 1d case Fredholmness and hence validity of (3.6c) follows from Theorem

2.2.1.
As in the 1d case the conditions imposed on F,G suggest that a homotopy as in the con-

dition of (2.16d) of Theorem 2.2.2 preserves hyperbolicity of the equlibria. Thus it pre-
serves asymptotic hyperbolicity and hence includedness in F (W 1,∞(R,R2), L∞(R,R2)).
Theorem 2.2.2 is applicable now and (2.16d) yields (3.6d).

For x0 fulfilling the boundary condition (3.2) we can copy even more of the 1d results
giving us an equivalent to Proposition 2.3.5.

Proposition 3.1.2
Consider (3.4) with the preceding assumptions and additionally existance of some so-
lution (v, w) to (3.4) with nontrivial components v ≥ 0 and w ≥ 0. Morever, us-
ing L(ξ) = L± + M±(ξ) for the decompositions with regards to the limiting opera-
tors/equations at ±∞ we assume that ∃k > 0:

ξ 7→ ‖M±(ξ)‖ ∈ O
(
ξ 7→ e−kξ

)
(3.7)

Then, with Λ: W 1,∞(R,R2)→ L∞(R,R2), we have

1. Λ is asymptotically hyperbolic (3.8a)

2. Λ is Fredholm (3.8b)

3. ind Λ = 0 (3.8c)

4. v > 0, w > 0 (3.8d)

5. ∃v∗ > 0, w∗ > 0 ∈ L∞ : (v∗, w∗) ∈ KF,∗ (3.8e)

6. Finally for the kernels of ΛF and ΛF,∗ we have

KF = (v, 0)R⊕(0, w)RKF,∗ = (v∗, 0)R⊕(0, w∗)R dimK = dimK∗ = 2 (3.8f)

Proof. (3.8a), (3.8b) and (3.8c) follow are part of the preceding Lemma 3.1.1.
Since the components solutions of (3.4) solve the 1d equation (2.22) and we have (3.7)

we can apply Proposition 2.3.5.
(3.8d) follows from (2.34b) of Proposition 2.3.5.
(3.8e) follows from (2.34d) of Proposition 2.3.5.
(3.8f) follows from (3.8d) and (3.8e) since, by definition of (3.1) based on (2.19), we

have (3.4) which implies that

ΛFc0,(y0,z0),(ρ0,σ0)(v, w) = 0⇔ ΛGc0,y0,ρ0
v = 0 ∧ ΛHc0,z0,ρ0

w = 0
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3.2 Nonlinear

Now we can formulate results equivalent to those of section 2.3 of the treatise on (2.19).
For the remainder of this part x0 = (y0, z0) shall always be a solution of (3.1) fulfilling

the boundary conditions (3.2) for some c0 6= 0 and ρ0 ∈ V .

Lemma 3.2.1
If preceding assumptions are met then

y
(1)
0 > 0 z

(1)
0 > 0 (3.9)

Proof. Again, since y0, z0 are both solutions of the 1d equations (2.19) satifying the
boundary conditions (2.21), Proposition 2.3.9 can be applied which gives us (3.9).

Trying to find X as in step (1.8d) proves to be more of a hassle for the 2d case. In
the 1d case we could use W 1,∞

0 . However in the 2d case (3.1), we may not find a unique
translate in {f ∈ W 1,∞(R,R2)|f(0) = 0} for all solutions joining two stable equilibria
±x̄, ȳ since the components need not match up their zero so the construction of the
spaces for use in the implicit function theorem is more x0 centric. So, while the 1d case
enabled us to find continuations via implicit function theorem in spaces independent of
the points around which we try find solutions, our way of handling X from (1.8d) does
not permit this.

Lemma 3.2.2
There exists a closed subspace XF ⊆W 1,∞(R,R2) :

W 1,∞ = XF ⊕ KFc0,x0,ρ0
(3.10a)

L∞ = ΛFc0,x0,ρ0
(W 1,∞)⊕ KFc0,x0,ρ0

= ΛFc0,x0,ρ0
(XF )⊕ KFc0,x0,ρ0

(3.10b)

Proof. Existance of XF as complement of KFc0,x0,ρ0
follows from finite dimensionality of

KFc0,x0,ρ0
since ΛFc0,x0,ρ0

is Fredholm by Lemma 3.1.1.

ΛFc0,x0,ρ0
(XF ) = ΛFc0,x0,ρ0

(W 1,∞) follows from construction of XF as complement of
the kernel.

Lemma 3.2.1 enables us to use Proposition 3.1.2. Theorem 2.2.1 implies that ∀(r, s) ∈
Λ(X) : ∀a, b ∈ R : ∫

R

〈
(s, t), av∗, bw∗

〉
) = a

∫
R
sv∗ + b

∫
R
tw∗.

Since y
(1)
0 > 0, z

(1)
0 > 0 and v∗ > 0, w∗ > 0 it follows that KFc0,x0,ρ0

∩ΛFc0,x0,ρ0
(XF ) = {0}.

codim ΛFc0,x0,ρ0
(XF ) = 2, also from 3.1.2 implies L∞ = ΛFc0,x0,ρ0

(XF )⊕ KFc0,x0,ρ0
.
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Proposition 3.2.3
Set

Y := ΛFc0,x0,y0
(XF )⊕ x0 R (3.11)

and
B := {x ∈ X|x fulfills (3.2)}

Consider GF from (3.1) as a map R×XF × V → Y .
Then there exists open neighbourhood U(ρ0) ⊆ V and C1 maps c : U(ρ)→ R, x : U(ρ)→

S such that ∀ρ ∈ U(ρ0)
GF (c(ρ), x(ρ), ρ) = 0

Proof. Differentiability of GF follows from Lemma 2.1.5.
ΛFc0,x0,ρ0

fulfills all requirements of Proposition 3.1.2 and together with construction

of X in Lemma 3.2.2 shows injectivity of ΛFc0,x0,ρ0
. As x

(1)
0 /∈ ΛFc0,x0,ρ0

(X) it follows that(
Dc,xG

)
(c0, x0, ρ0) is injective.

Construction of Y yields surjectivity of
(
Dc,xGF

)
(c0, x0, ρ0).

An application of the implicit function theorem yields U, c, x as required, but with
x : U(ρ)→ X instead of x : U(ρ)→ B. We hence have to check fulfillment of the bound-
ary conditions for x(ρ). From Lemma 2.3.6 we get, with inf, sup taken componentwise

µ−,±∞(x̃) := lim inf
ξ→±∞

x̃(ξ) ∈
(
[−1, qF (σ)] ∪ {1}

)
×
(
[−1, qG(τ)] ∪ {1}

)
µ+,±∞(x̃) := lim sup

ξ→±∞
x̃(ξ) ∈

(
{−1} ∪ [qF (σ), 1]

)
×
(
{−1} ∪ [qG(τ), 1]

)
for any solutions x̃ of our nonlinear equation 3.1 with parameters c, ρ = (σ, τ) including
those not fulfilling the boundary conditions. x0 fulfilling the boundary conditions gives
us µ±,−∞(x0) = (−1,−1), µ±,∞(x0) = (1, 1). Thus continuity of x yields ∀ρ ∈ U(ρ0) :

µ−,∞(x(ρ)) = 1 µ+,−∞(x(ρ)) = −1

Since µ−,±∞ ≤ µ+,±∞ and x ∈ L∞ it follows that the boundary conditions (3.2) are
fulfilled along x so x : U(ρ0)→ S.
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