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1 Introduction

Humans naturally tend to have many different wishes. Often a situation arises where two
goals are incompatible. For instance, it will be hard to be good friends with two people
who hate each other.
In this spirit things become delicate when many persons are involved. Consider a
population of N individuals. The feelings between two individuals i and j are quantified
by a real number gij . The sign of gij determines wether i and j are friends or enemies,
while the absolute value describes the intensity of these feelings. Without any additional
information and to keep things simple, it is natural to assume that the gij are independent
standard Gaussians. The objective is to seperate the population into two groups, such
that friends are in the same group while enemies are in different ones. Obviously, for
a typical realization of the gij , it will be impossible to find a perfect separation. A
separation can be modeled as a vector σ ∈ {−1, 1}N and a good way to measure its
quality is the quantity

∑
1≤i<j≤N

gijσiσj . (1.1)

Maximizing this quantity can be achieved by making the summands gijσiσj positive,
hence taking σi and σj of the same sign if gij > 0 and of the opposite sign if gij < 0.
This optimization problem is of great difficulty. Interestingly, it can be attacked using
methods of statistical physics since similiar problems arise there. The above quantity 1.1
corresponds to the Hamiltonian of the Sherrington-Kirkpatrick Model which was first
investigated in [SK75]. In contrast to a crystal, the individual atoms are not aligned in a
regular pattern. The competing interactions in this spinsystem yield the occurence of a
new magnetic phase which is called the spin-glass phase. The physicists Mézard, Parisi
and Virasoro formed a non rigorous general theory of the model which was described in
[MPV87]. This theory proposes solutions at any temperature in excellent agreement with
computer simulations and, moreover, is applicable to a wide range of other models. In
particular, its analysis of the Sherrington-Kirkpatrick Model yields directly the solution
to the above optimization problem.
In general, spin glasses show fundamentally different behaviour depending on the tem-
perature. A universal mathematical theory, which verifies the predictions of Parisi, has
not yet been found. In case of the Sherrington-Kirkpatrick Model and some others,
rigorous proofs were presented comprehensively by Talagrand in [Tal10] and [Tal14]. The
proofs are based on Guerra’s smart path interpolation method [GT02]. However, this
method does not address the central issue - even if two models show the same physical
behaviour, it may work for one but not for the other. On the other hand, Talagrand’s
cavity method, which is restricted to the use of high temperatures, is a flexible tool
describing model-independent phenomena.
In this work a multi-species version of the Sherrington-Kirkpatrick Model (see [BCMT15])
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SECTION 1 INTRODUCTION

is studied. Here the interactions gij are no longer assumed to be identically distributed,
rather they are grouped into a fixed number of classes. These additional correlation struc-
tures are represented by a matrix. Under the assumption that this matrix is non negative
definite, results for this model (at all temperatures) were recently suggested by Panchenko
in [Pan15]. Panchenko used versions of Guerra’s interpolation and the Ghirlanda-Guerra
identities [GG98]. This additional restriction demonstrates the weak point of the interpo-
lation method. While it has no physical meaning, this restriction is still essential for the
proofs. On the contrary, this thesis sticks only to the high temperature regime. The cav-
ity method allows one to derive results without any additional assumptions for the matrix.

This thesis is structured as follows. First the basic definitions are given. The dif-
ferent versions of the Sherrington-Kirkpatrick Model are presented and the concept of
the cavity method is explained.
In the main part of this work, the free energy of an important special case, the so called
multi-partite Sherrington-Kirkpatrick Model, is derived rigorously. Due to the additonal
notations needed for the multi-partite Sherrington-Kirkpatrick Model, some of the proofs
are quite technical. To help the reader follow the important arguments of the proofs,
they are prefixed by short sketches. A brief discussion about how the proofs have to
be adapted to the general multi-species Sherrington-Kirkpatrick Model is set out in the
appendix.
Moreover, it is shown that the multi-partite model is, in the limit of many species, an
approximation of the classic model at all temperatures.
This thesis will conclude with a short summary followed by a consideration of possible
future research options.
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2 Basic definitions

The space considered is closely related to ΣN = {−1, 1}N , which represents an N -particle
{±1} spinsystem. A point σ = (σ1, ..., σN ) ∈ ΣN is referred to as a configuration, where
the σi’s are called sites or spins. To each σ a real-valued function HN (σ) is associated -
the energy (Hamiltonian) of the configuration. Similarly to the introduction, the question
arises how the maximum maxσ∈ΣN

HN (σ) behaves. A natural idea is to assign weights
to the HN (σ), such that large values are given to the large elements. In this context, the
function HN induces a probability measure on ΣN through

GN (σ) = exp(βHN (σ))∑
σ′∈ΣN

exp(βHN (σ′)) , (2.1)

which is called the Gibbs measure GN . The choice of the factors is motivated by the
Boltzmann Theory of statistical physics, see [Nol01]. It suggests that GN (σ) can be seen
as the probability of finding the spinsystem with energy levels HN (σ) in configuration
σ, after it has reached thermal equilibrium with an infinite heat bath at temperature
T = 1/β. The term "high temperature" corresponds to β small and "low temperature" to
β large. For large values of β, the Gibbs measure should concentrate on the large values
of HN (σ).
The nominator of (2.1), in the following denoted as the partition function ZN , is in
general of great complexity. It is a large sum of terms of varying order and a priori it
is not clear which of them give the main contribution. The computation of ZN is in
principle equivalent to the understanding of GN , since derivatives of log(ZN ) with respect
to various parameters arise as integrals with respect to GN .
The function HN usually reflects the interactions between the sites. In this thesis, the
interactions will be random Gaussian and therefore the HN (σ) will be random Gaussians.
The so called "Derrida’s random energy model" [Der81], where the HN (σ) are assumed
to be i.i.d., can be threatened with concepts from the classic probability theory. Many
other models show similiar behaviour in the high temperature region. Physically, this
can be compared to the breaking of chemical bonds through heat. At high temperatures
"things become independent".

2.1 The classic Sherrington-Kirkpatrick Model

Things become more delicate if one introduces some correlations. As motivated in the
introduction, the Hamiltonian of the Sherrington-Kirkpatirck Model is given by

HN (σ) = HN (σ, β, h) = β√
N

∑
1≤i<j≤N

gijσiσj + h
∑
i≤N

σi, (2.2)
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SECTION 2 BASIC DEFINITIONS

where the gij are independent standard Gaussians which are called the disorder of the
system. The Expectation with respect to the gij is denoted by E(.) . The h in the
second term represents the strength of an external field, which pushes the spins in one
direction (the physicists write βh′ instead of h, but here it is more comfortable to have
two independent parameters). If this term is neglected, the Hamiltonian fullfills a special
symmetry, namely HN (σ) = HN (−σ), which induces "untypical" effects, see [AST03].
The model provides two sources of randomness: the random sequence (gij)1≤i<j≤N , which
through (2.1) and (2.2) defines a random measure GN on ΣN . The random interactions
gij are fixed initially. They are called quenched. The system then is subjected to thermal
fluctuations through Gibbs’ measure in some sense. In this thesis the static case, where
the system reached thermal equilibrium after a longer time, is considered. Consequently,
the random variables are of the form 〈f〉, where f is a function on Σn

N = (ΣN )n and
〈.〉 = 〈.〉n denotes integration with respect to the (random) product Gibbs’ measure G⊗nN .
Hence

〈f〉 =
∫
f(σ1, ...,σn)dGN (σ1)...dGN (σn)

= 1
ZnN

∑
σ1,...,σn

f(σ1, ...,σn) exp

∑
l≤n

HN (σl)

 . (2.3)

The configurations σ1,σ2, ... belonging to the different copies of (Σn, GN ) are called
replicas. The sequence (σl)l≤n can be seen as an i.i.d. sequence with distribution GN .
Replicas are quite useful to replace products of brackets by a single bracket which is
called "linerization". For instance, a function f on ΣN can be written as

〈f(σ)〉2 = 〈f(σ)〉 〈f(σ)〉 =
〈
f(σ1)

〉〈
f(σ2)

〉
=
〈
f(σ1)f(σ2)

〉
,

where the bracket on the left denotes expectation with respect to GN while on the right
expectation with respect to G⊗2

N .
While in general 〈σ1〉 6= 〈σ2〉, the symmetry in the definition of the model implies that

E 〈σi〉 = E 〈σj〉 , (2.4)

the so called "symmetry between sites". In the same fashion it holds that E 〈σ1σ2〉 =
E 〈σ3σ4〉, however E 〈σ1σ1〉 6= E 〈σ1σ2〉.
The primary goal is to understand the system for a typical realization of the gij . In this
context it means a realization, which occurs asymptotically (N →∞) with probability
one. The quantity of fundamental importance is

pN (β) = 1
N

E logZN (β), (2.5)

which is sometimes referred to as the free energy. The expectation in (2.5) exists since
the integrability of log(ZN ) can be verified separately on {ZN ≥ 1} and {ZN ≤ 1}. On
the former, one makes use of the inequality log x ≤ x in combination with EZN < ∞,
whereas on the latter ZN ≥ exp(HN (σ0)), where σ0 is an arbitrary configuration, can
be used. The importance of (2.5) lies in the fact that the random quantity N−1 logZN
is "selfaveraging" for high temperature. Its fluctuations vanish for N →∞. Hence, as a
rough approximation, one can think of the random variable N−1 logZN as being equal to
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2.1 THE CLASSIC SHERRINGTON-KIRKPATRICK MODEL

the constant pN . A proof of this can be found in [AST03] on page 26.
In contrast to the above, EZN is not a good approximation for ZN . The reason is, that
a large part of EZN is contributed by very rare events. This can be compared to the
lottery phenomenon: One out of 106 tickets offers a huge prize, whereas the expected gain
might be sizeable - the typical gain is 0.

2.1.1 The analysis of the classic model at high temperatures

The Sherrington-Kirkpatrick Model is nowadays widely understood for all β. For the
purpose of this thesis the analysis in the (easier) high temperature setting (called the
replica symmetric phase) is of specific interest. This analysis, as presented compactly by
Talagrand in [AST03] and [Tal98], is the template for this work.
It turns out, that for small β the correlations are not too strong. There will still be some
kind of law of large numbers. In particular, the overlap of two configurations σ and σ′

(which are chosen according to Gibbs’ measure) will be approximately constant for a
typical disorder

R(σ,σ′) := σ · σ′

N
= 1
N

∑
i≤N

σiσ
′
i = q.

This is the central property, which allows the computation of pN for the Sherrington-
Kirkpatrick Model.

Theorem 2.1.1 There is a number β0 ≥ 1/3 such that for all β ≤ β0,

lim
N→∞

pN (β) = log 2 + β2

4 (1− q)2 + E log ch(h+ βg
√
q),

where q is the unique solution of the equation

q = E th2(h+ βg
√
q).

The expectations are taken with respect to a standard Gaussian g.

2.1.1.1 The cavity method

The major tool used in [AST03] is Talagrand’s cavity method. Roughly speaking, this
is simply an induction over N . Usually the goal is to show convergence of 〈fN 〉 for a
sequence of functions fN on ΣN . Often the limit will be 0.
Consider a sequence (gi)i≤N of i.i.d. standard Gaussians, independent of all gij . For
σN+1 ∈ {−1, 1},

HN (σ, β, h) + σN+1

 β√
N

∑
i≤N

giσi + h

 = β√
N

∑
1≤i<j≤N+1

gijσiσj + h
∑

i≤N+1
σi (2.6)

where giN+1 = gi. Setting ρ = (σ, σN+1) ∈ ΣN+1, the right-hand side of (2.6) is
HN+1(ρ, β′, h)) where β′ =

√
(N + 1)/Nβ.

Consequently, (2.6) is the Hamiltonian of an system with (N + 1) spins at a slightly lower
temperature. The corresponding Gibbs’ measure is denoted by GN+1 = GN+1(β′) and by
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SECTION 2 BASIC DEFINITIONS

〈.〉′ average with respect to this measure. Integrating the last spin leads to the following
purely algebraic identity

〈fN+1(ρ)〉′ = 1
Z

〈
Av

σN+1=±1
fN+1(σ, σN+1)E

〉
, (2.7)

where

E(σ, σN+1) = expσN+1

 β√
N

∑
i≤N

giσi + h

 ,
and

Av
σN+1=±1

f(σ, σN+1)E(σ, σN+1) = 1
2f(σ, 1)E(σ, 1) + 1

2f(σ,−1)E(σ,−1)

and

Z =
〈

Av
σN+1=±1

E(σ, σN+1)
〉
.

After averaging, the resulting quantity depends on σ only and expectation with respect
to GN can be taken. This technique allows to relate 〈fN+1〉′ to 〈fN 〉 and for large N
there will be no big difference between 〈.〉 and 〈.〉′.

2.2 The multi-species Sherrington-Kirkpatrick Model

The classic Sherrington-Kirkpatrick Model is greatly homogenous and symmetrical. Each
site interacts with all the others and these interactions underly the same law. A natural
generalization is to group the sites in a finite fixed number of classes. Now the sites are
just treated the same, if they belong to the same class. Particularly, consider two classes
A and B and two sites σ ∈ A and τ ∈ B. The two sites can either interact or not. If they
do, all sites of A will be interacting with all sites of B according to the same law. If not,
there will be no interaction at all between those classes. Additionally, inside the classes
there might be interaction or not.
Now a precise definition of the new model is given, which is in fact the multi-species
Sherrington-Kirkpatrick Model investigated in [BCMT15] and [Pan15], with slight changes
of the notations.
Consider a finite set S with |S| = k and α = (α1, ..., αk) ∈ [0, 1]k. The sites are grouped
into classes Sm (species) indexed by elements of S. For convenience S will be identified
with [k], hence Sm ∼= m. The sizes of the classes are all of the same order O(N) with
relative sizes αi. Precisely, given N , they are

N1 = bα1Nc, ... , Nk = bαkNc.

A configuration is represented by

σ = (σ1, ...,σk) = (σ11, ..., σ1N1 , ..., σk1, ..., σkNk
) ∈ {−1, 1}N1 × ...× {−1, 1}Nk =: Σα

N .

Hence σmi denotes site i of class m while σm denotes all sites of class m. The correlations
are given by a symmetric matrix ∆2 = (∆2)m,n≤k with non negative entries. Write

12



2.2 THE MULTI-SPECIES SHERRINGTON-KIRKPATRICK MODEL

L := {m | m ∈ [k], ∆2
mm > 0}

E := {mn | 1 ≤ m < n ≤ k, ∆2
mn > 0}

for the indices of the non vanishing entries of the upper triangular submatrix. The
dependence structure of the classes can be characterized with an undirected graph
G = ([k], E, L) with vertices [k], edges E and loops L. where the vertices m correspond to
the classes. Two classes m and n are interacting, if and only if mn ∈ E. A class m is self-
interacting, if and only if m ∈ L. The graph G is always assumed to be connected, which
means that the system cannot be decomposed in smaller non interacting subsystems.
The Hamiltonian is defined by

Hα
N (σ1, ...,σk) = β√

N

∑
m∈L

∑
1≤i<j≤Nm

gnjmiσmiσnj

+ β√
N

∑
mn∈E

∑
1=i,j≤Nm,Nn

gnjmiσmiσnj

+
∑
m∈[k]

hm

Nm∑
i=1

σmi

(2.8)

where the gnjmi (the interaction between the sites σmi and σnj) are independent centered
Gaussian variables, with E((gnjmi)2) = ∆2

mn. The first summand of (2.8) describes the
interactions within the classes, the second the interactions in between the classes and the
third the influence of the external fields. As a consequence, the symmetry between sites
(2.4) only holds inside each class.

E 〈σmi〉 = E 〈σmj〉 .

This work ultimatively provides the following generalization of theorem 2.1.1 to the
multi-species Sherrington-Kirkpatrick Model

Theorem 2.2.1 There is a number β0 = β0(∆2), such that

lim
N→∞

pN (β,α,h, ∆2) = log 2
∑
m∈[k]

αm + β2

4
∑
m∈L

(αm − qm)2

+ β2

2
∑
mn∈E

(αm − qm)(αn − qn)

+
∑
m∈[k]

αm E log ch

hm + β
∑

n
mn∈E

gmn
√
qn + β

∑
n∈L

δmngmn
√
qn


for all β ≤ β0, where the gmn are centered Gaussians with Variance ∆2

mn and q =
(q1, ..., qk) is the unique solution of

qm = αm E th2

hm + β
∑

n
mn∈E

gmn
√
qn + β

∑
n∈L

δmngmn
√
qn

 m = 1, ..., k.
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SECTION 2 BASIC DEFINITIONS

The underlying dependence structure is directly reflected in the above formulas.

Remark β0 will depend on k (the number of classes). The proofs presented in this thesis
deliver β0(k) = c/

√
k. This is (asymptotically) of optimal order, which can be seen as

follows: Setting ∆2
mn = 1, αm = 1 and hm = h yields the Hamiltonian of the classic

model at lower temperature
√
kβ. If there was a β0(k) = w(k) (with (1/

√
k)/w(k)→ 0),

such that theorem 2.2.1 holds for all β ≤ β0, the above choices for the parameters would
imply that theorem 2.1.1 holds for all β ≤

√
kβ0(k) =

√
kw(k). This expression converges

to ∞ for k →∞, contradicting [Tal14].

2.2.1 Adaptation of the cavity method

While the basic idea remains the same, it is a priori not clear how to implement the cavity
method in the new setting. The size of the system is characterized by N and α, where
N is the parameter which will be sent to infinity. Here two sites will be added to each
class. This "affects" β and the relative sizes αi of each class. If the starting Hamiltonian
belongs to a system with parameters (N,α, β), the resulting one is the one of a system
with parameters (N + 2,α′, β′). Here α′i = (αiN + 2)/(N + 2) and β′ =

√
(N + 2)/Nβ.

Consequently, in every following step the two new spins of each class are integrated. This
provides the relation between 〈.〉′ and 〈.〉.

2.2.2 The multi-partite Sherrington-Kirkpatrick Model

Due to the amount of notations, the analysis of the general Sherrington-Kirkpatrick
Model is quite unhandy. The special setup, where ∆2

mn = δmn and α = (1, ..., 1) reduces
this to an acceptable degree, while still keeping the new complexity. This model will be
called the multi-partite Sherrington-Kirkpatrick Model.
In this case the state space is Σk

N with ΣN := {−1, 1}N . The Hamiltonian can be written
as

HN (σ) = HN (σ1, ...,σk) = β√
N

∑
1≤m<n≤k

∑
i,j≤N

gnjmiσmiσnj +
∑
m≤k

hm
∑
i≤N

σmi.

The main theorem becomes

Theorem 2.2.2 There is a β0, such that for β ≤ β0

lim
N→∞

pN (β,h)

= k log 2 + β2

2
∑

1≤m<n≤k
(1− qm)(1− qn) +

∑
m≤k

E log ch

hm + β
∑
n6=m

gmn
√
qn

 ,
(2.9)

where q = (q1, ..., qk) is the unique solution of

qm = E th2

hm + β
∑
n6=m

gmn
√
qn

 m = 1, ..., k.

which will be rigorously investigated in the following third chapter. After that, it will be
explained what have to be taken into account in the general setting to receive theorem
2.2.1 .
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3 Rigorous analysis of the multi-partite
model

Similiarly to the analysis of the classic SK model, the central quantities are the overlaps.
For two configurations σ = (σ1, ...,σk),σ′ = (σ′1, ...,σ′k) ∈ Σk

N , these are

R(σm,σ′m) = 1
N

∑
i≤N

σmiσ
′
mi m = 1, ..., k. (3.1)

The fundamental property is, that these overlaps are typically constant in the high
temperature regime. The proof of (2.9) consists of the following steps in analogy to
[AST03]:

• Given the disorder, the generic overlaps are approximately constant (first step)

lim
N→∞

E
〈(
R(σm,σ′m)−

〈
R(σm,σ′m)

〉)2〉 = 0 m = 1, ..., k

• The integrals with respect to Gibbs’ measure in the above equation, namely
〈R(σm,σ′m)〉, are independent of the disorder (second step). These quantities
are denoted by q = (q1, ..., qk), which arises as the unique fixpoint of a function
Ψ : Rk → Rk.

• Viewing the hm’s as parameters rather than free variables, the right hand side of
(2.9) is a function, which depends on β only. The proof is finished by calculating
the derivatives with respect to β.

3.1 Notations for the cavity method

In this section the relevant notations are introduced briefly. One starts with the Hamilto-
nian of an (N, β) system,

β√
N

∑
1≤m<n≤k

∑
i,j≤N

gnjmiσmiσnj +
∑
m≤k

hm
∑
i≤N

σmi.

Adding two sites to each class yields

β√
N

∑
1≤m<n≤k

∑
i,j≤N+2

gnjmiσmiσnj +
∑
m≤k

hm
∑

i≤N+2
σmi,

which is the Hamiltonian of a system with parameters (N+2, β′) with β′ =
√

(N + 2)/Nβ.
Expectation with respect to the corresponding Gibbs’ measure is denoted by 〈.〉′. Inte-
grating the sites gradually results in a sequence of systems "inbetween" the two above,
where some classes contain N sites, some N + 1 and some N + 2.
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SECTION 3 RIGOROUS ANALYSIS OF THE MULTI-PARTITE MODEL

Of specific interest is the ”last” step in this process, where only one class contains addi-
tional sites. For this case denote by 〈.〉′m the average with respect to the Gibbs’ measure
of the system, where only class m contains the two additional sites σmN+1 and σmN+2.
Sometimes it will be necessary to integrate even these two additional sites seperatley.
Here the Gibbs average is denoted by eiter 〈.〉′m(1) (the additional site is σmN+1) or 〈.〉′m(2)

(the additional site is σmN+2).

Algebraic identities are obtained similiarly to (2.7). They can be found in A.2.

3.2 The generic overlaps

In this section the overlaps are investigated in detail for small β. As already mentioned,
it is firstly proven that the overlaps are approximately constant for a given disorder.
From that a limit theorem for the terms, which arise in the use of the cavity method, is
deduced. As a second big step it is shown, that these constants are in fact independent
of the disorder. The function Ψ , which provides these values, is analyzed in detail.

3.2.1 First step

For a typical realization of the g’s the function (σ,σ′) 7→ R(σ,σ′) is nearly equal to its
Gibb’s mean 〈R(σ,σ′)〉.

Theorem 3.2.1 There is a β0 such that, if β ≤ β0,

lim
N→∞

E
〈(
R(σm,σ′m)−

〈
R(σm,σ′m)

〉)2〉 = 0

for m = 1, ..., k.

In order to prove the theorem the following quantities have to be considered

CmN (β) := CmN (β,h) = E
〈(

σ∼m · σ∗m
N

)2〉
.

Remark This quantities arise naturally when one tries to prove that the correlations of
two sites σmi and σmj are small

lim
N→∞

E (〈σmiσmj〉 − 〈σmi〉 〈σmj〉)2 = 0. (3.2)

The introduction of replicas σ1,σ2 (Note: They are independent under Gibb’s measure)
and using symmetrization yields

2 (〈σmiσmj〉 − 〈σmiσmj〉) =
〈(
σ1
mi − σ2

mi

) (
σ1
mj − σ2

mj

)〉
.

To shorten the notation,

σ∼ = σ1 − σ2,

so that (3.2) is equivalent to
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3.2 THE GENERIC OVERLAPS

lim
N→∞

E
〈
σ∼miσ

∼
mj

〉2
= 0.

The square can be removed by another two replicas σ∗ = σ3 − σ4

〈
σ∼miσ

∼
mj

〉2
=
〈
σ∼miσ

∼
mj

〉〈
σ∗miσ

∗
mj

〉
=
〈
σ∼miσ

∼
mjσ

∗
miσ

∗
mj

〉
.

By using symmetry between sites

E
〈(

σ∼m · σ∗m
N

)2〉

=E
〈

1
N2

N∑
i,j=1

σ∼miσ
∼
mjσ

∗
miσ

∗
mj

〉
= 1
N

E
〈
σ∼m1

2σ∗m1
2
〉

+ N − 1
N

E
〈
σ∼mN−1σ

∼
mNσ

∗
mN−1σ

∗
mN

〉
.

(3.3)
Since E

〈
σ∼m1

2σ∗m1
2
〉
≤ E

〈
2222〉 = 16, equation (3.2) is equivalent to limN→∞C

m
N = 0.

Proposition 3.2.2 Set CN (β) :=
∑
m≤k C

m
N (β). There is a β0 = β0(k), such that, if

β ≤ β0,

lim
N→∞

CN (β) = 0.

In particular, limN→∞C
m
N = 0.

Proof The technical calculations are set out in the appendix. It will be helpfull, that∣∣∣∣σ∼m · σ∗mN

∣∣∣∣ ≤ 1
N

∑
i≤N
|σ∼miσ∗mi| ≤ 4.

Two sites are added to all classes (N → N + 2 and β → β′). The symmetry between sites
(equation (3.3)) yields

CmN+2(β′) = 1
N + 2E

〈
σ∼m1

2 σ∗m1
2
〉′

+ N + 1
N + 2E

〈
σ∼mN+1 σ

∗
mN+1 σ

∼
mN+2 σ

∗
mN+2

〉′
≤ 16
N + 2 + E

〈
σ∼mN+1 σ

∗
mN+1 σ

∼
mN+2 σ

∗
mN+2

〉′
.

Since the expressions (σ∼n · σ∗n/N) remain bounded independently of N , the additional
sites of all classes n 6= m can be dropped (the detailed estimation can be found in A.3.1)

E
〈
σ∼mN+1 σ

∗
mN+1 σ

∼
mN+2 σ

∗
mN+2

〉′ ≤ A E
〈
σ∼mN+1 σ

∗
mN+1 σ

∼
mN+2 σ

∗
mN+2

〉′
m
. (3.4)

Remember that 〈.〉′m corresponds to the system, where class m contains N + 2 sites while
the others contain N sites. The constant A is bounded for fixed k and small β. The
integration of the additional sites of class m is done in A.3.2. One ends up with
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SECTION 3 RIGOROUS ANALYSIS OF THE MULTI-PARTITE MODEL

E
〈
σ∼mN+1 σ

∗
mN+1 σ

∼
mN+2 σ

∗
mN+2

〉′
m

≤ E
〈

sh2

β2 ∑
n 6=m

σ∼n · σ∗n
N

 exp β
2

N

∑
n6=m

(
||σ∼n ||2 + ||σ∗n||2

)〉
,

It is crucial that, uniformly in N , the argument of the sinus hyperbolicus vanishes for
β → 0 while the argument of the exponential remains bounded. Precisely, for |x| ≤ 4 the
following (Taylor-type) approximation holds

sh2(β2x) ≤ x2

16sh2(4β2).

This yields

E
〈
σ∼mN+1 σ

∗
mN+1 σ

∼
mN+2 σ

∗
mN+2

〉′
m
≤ A(β) E

〈∑
n 6=m

σ∼n · σ∗n
N

2〉

≤ A(β) (k − 1)
∑
n6=m

E
〈(

σ∼n · σ∗n
N

)2〉
(Cauchy-S.)

= A(β) (k − 1)
∑
n6=m

CnN (β)

≤ A(β) (k − 1)CN (β),
(3.5)

where limβ→0A(β) = 0 . Putting all together results in

CN+2(β′) =
∑
m≤k

CmN+2(β′) ≤
∑
m≤k

E
〈
σ∼mN+1 σ

∗
mN+1 σ

∼
mN+2 σ

∗
mN+2

〉′ + o(1)

≤ A
∑
m≤k

E
〈
σ∼mN+1 σ

∗
mN+1 σ

∼
mN+2 σ

∗
mN+2

〉′
m

+ o(1)

≤ A A(β) (k − 1)
∑
m≤k

CN (β) + o(1) = A A(β)(k − 1)kCN (β) + o(1)

= A′(β) CN (β) + o(1) ≤ 1
2CN (β) + o(1).

(3.6)

where β ≤ β0 and β0 is chosen small enough. A worst-case analysis finishes the proof. Set

aN = sup
β≤β0

CN (β)

and obtain, since β′ ≥ β =
√
N/(N + 2)β′,
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3.2 THE GENERIC OVERLAPS

aN+2 = sup
β′≤β0

CN+2(β′)

≤ 1
2 sup
β′≤β0

CN (β) + o(1)

= 1
2 sup
β≤
√
N/N+2β0

CN (β) + o(1)

≤ 1
2 sup
β≤β0

CN (β) + o(1)

= 1
2aN + o(1).

Since a1 and a2 are bounded it follows that aN → 0.
�

Remark The estimation in A.3.1 is very rough. At this point it may be possible, that
the choice of β0 depends on h (the external field) and k (the number of classes) in a
bad way. Pleasantly, the later stated results in section 3.2.2 imply that, for large N , it
is A ≈ 1 in (3.4). The Taylor-type approximation deliveres A(β) ≈ 1/β4 for small β in
(3.5). Finally, A′(β) ≈ k2/β4 in (3.6) and hence β0 ≥ c/

√
k for some c.

The next two lemmas, which can be taken directly from [AST03], finish the proof of
theorem 3.2.1. Define

Dm
N = Dm

N (β,h) = E
〈(

σ∼m · σ∗m
N

)2〉
.

This quantity is related to CmN through

Lemma 3.2.3
Dm
N ≤

√
CmN

Proof With
σ∼m · σ3

m =
∑
i≤N

σ∼miσ
3
mi,

Cauchy-Schwarz yields

Dm
N = 1

N2 E
∑
i,j≤N

〈
σ∼miσ

3
miσ

∼
mjσ

3
mj

〉
= 1
N2

∑
i,j≤N

E
(〈
σ∼miσ

∼
mj

〉〈
σ3
miσ

3
mj

〉)

≤ 1
N2

∑
i,j≤N

√
E
〈
σ∼miσ

∼
mj

〉2
√

E
〈
σ3
miσ

3
mj

〉2

≤ 1
N2

∑
i,j≤N

√
E
〈
σ∼miσ

∼
mj

〉2
≤
√√√√ 1
N2

∑
i,j≤N

E
〈
σ∼miσ

∼
mj

〉2

=
√√√√ 1
N2

∑
i,j≤N

E
〈
σ∼miσ

∼
mjσ

∗
miσ

∗
mj

〉
=

√√√√E
〈(∑

i≤N σ
∼
miσ

∗
mi

N

)2〉

=
√
CmN .
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�

Combining proposition 3.2.2 and lemma 3.2.3 one deduces that limN→∞D
m
N = 0. Finally

Lemma 3.2.4
E
〈(
R(σm,σ′m)−

〈
R(σm,σ′m)

〉)2〉 ≤ 4Dm
N

Proof Write
bm = 〈σm〉 = (〈σmi〉)i≤N .

Hence, by symmetry between sites

bm · bm =
∑
i≤N
〈σmi〉2 =

∑
i≤N

〈
σ1
miσ

2
mi

〉
=
〈
σ1
m · σ2

m

〉
.

Next, Jensens’s inequality implies

〈(
(σ1

m − bm) · bm
N

)2〉
≤
〈(

σ∼m · σ3
m

N

)2〉
,

when one averages σ2
m for GN inside the square rather than outside. Similarly

〈(
(σ1

m − bm) · bm
N

)2〉
≤
〈(

σ∼m · σ3
m

N

)2〉
. (3.7)

From that and the inequality (a+ b)2 ≤ 2a2 + 2b2 it is received that

E
〈(
R(σ1

m,σ
2
m)−

〈
R(σ1

m,σ
2
m)
〉)2

〉
= E

〈(
σ1
m − σ2

m

N
−
〈
σ1
m − σ2

m

N

〉)2〉

= E
〈(

(σ1
m − bm) · σ2

m

N
+ (σ2

m − bm) · bm
N

)2〉
≤ 4Dm

N ,

which finishes the proof of lemma 3.2.4 and thus of theorem 3.2.1. �

3.2.2 A central limit theorem

This technical section gives two important results

• As mentioned, there is no big difference between 〈.〉′ and 〈.〉

E
∣∣∣〈σmN+z〉′ − 〈σmN+z〉′m(z)

∣∣∣→ 0. (3.8)

• Moreover,

E

∣∣∣∣∣∣〈σmN+z〉′m(z) − th

hm + β√
N

∑
n6=m

gmn · bn

∣∣∣∣∣∣→ 0. (3.9)
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3.2 THE GENERIC OVERLAPS

The usage of the cavity methods leads to quantities like

〈
exp

 t√
N

∑
i≤M

gnimlσni

〉′
m1,...,ml

, (3.10)

where M = N or N + 2, l = N + 1 or N + 2 and t = βσml ( Check A.2 for the notation).
In short notation

∑
i≤Mm

gnimlσni = gn · σn

For the sake of readability the indices will be surpressed in the following proposition,
hence 〈.〉′m1,...,ml

= 〈.〉 . In fact, (3.10) is part of the moment-generating function of
(gn ·σn)/N with respect to the Gibbs’ measure. The next proposition shows, that for the
typical choice of gn, the law of (gn · σn)/N under the Gibbs’ measure will approximately
be N (gn ·bn/

√
N), 1− q̄n). So Gibb’s measure resembles a product measure in some sense.

The proposition has far-reaching consequences. Intuitively, the cavity method works well
since the Hamiltonian is approximately invariant under the operation, which adds two
spins to each class. The Hamiltonian consits mainly of large sums of i.i.d. Gaussian
variables (about N2 summands) and in each step there are only about N newcomers.
This intuition will be justified. In some respect, the proposition says, that Gibbs measure
is already determined by the sequences (〈σmi〉)i = 1, ..., N . Moreover it allows to calculate
〈σmi〉 explicitly.

Remember that bm = 〈σm〉 = (〈σmi〉)i≤M and set

q̄m =
〈
R(σm,σ′m)

〉
= ||bm||

2

N

Proposition 3.2.5 Let f = fN be functions with supN |fN | < ∞ and m1, ...,ml ∈ [k]
Under (3.2.1)

E

∣∣∣∣∣∣
〈
f(σ)

∏
j≤l

exp
(

t√
N
gmj
· σmj

)〉
− 〈f〉

∏
j≤l

exp
(

t√
N
gmj
· bmj + t2

2 (1− q̄mj )
)∣∣∣∣∣∣→ 0

Proof This follows by calculating second moments and using theorem (3.2.1) Set

X =
〈
f(σ)

∏
j≤l

exp t√
N
gmj
· σmj

〉

Y =
〈
f(σ)

∏
j≤l

exp
(

t√
N
gmj
· bmj + t2

2 (1− q̄mj )
)〉

Then it is enough to show that

E(X − Y )2 = E
(
Eg(X2 − 2XY + Y 2)

)
→ 0 (3.11)
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where, as usual, Eg denotes integration in (gmj
)j≤l only. The introduction of replicas

yields

X2 =
〈
f(σ)f(σ′)

∏
j≤l

exp t√
N
gmj
· (σmj + σ′mj

)
〉
,

XY =
〈
f(σ)f(σ′)

∏
j≤l

exp
(

t√
N
gmj
· (σmj + bmj ) + t2

2 (1− q̄mj )
)〉

,

Y 2 =
〈
f(σ)f(σ′)

〉∏
j≤l

exp
(

2t2√
N
gmj
· bmj + t2(1− q̄mj )

)
.

Because of independence and (A.4.1)

EgX2 = Eg

〈
f(σ)f(σ′)

∏
j≤l

∏
i≤Mj

exp t√
N
gmji(σmji + σ′mji)

〉

=
〈
f(σ)f(σ′)

∏
j≤l

∏
i≤Mj

exp t2

2N (σ2
mji + 2σmjiσ

′
mji + σ′mji)

〉

=
〈
f(σ)f(σ′)

∏
j≤l

exp t2
(
Mj

N
+R(σmj ,σ

′
mj

)
)〉

.

Similarly

EgXY =
〈
f(σ)f(σ′)

∏
j≤l

exp t2
(
Mj

N
+
σmj · bmj

N

)〉
,

EgY 2 =
〈
f(σ)f(σ′)

〉∏
j≤l

exp t2(1 + q̄mj )

From theorem 3.2.1 it follows that (note that Mj/N → 1)

E
〈(
R(σm,σ′m)− q̄m

)2〉→ 0.

Moreover, (3.7) and

bmj · bmj =
∑
i

〈
σmji

〉2
=
∑
i

〈
σmjiσ

′
mji

〉
=
〈
σmjσ

′
mj

〉
imply that

E
〈(

σm · bm
N

− q̄m
)2〉

→ 0.

Hence

E
∣∣∣EgX2 − EgY 2

∣∣∣→ 0, E
∣∣∣EgXY − EgY 2

∣∣∣→ 0,

which proves (3.11) and hence proposition 3.2.5. �

This proposition allows to deduce (3.8) and (3.9). The second expression is derived in
detail in the appendix (A.6).
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3.2.3 The fixpoint equations

Theorem 3.2.1 says, that at high temperatures the generic overlap is nearly equal to
its Gibbs’ mean. In the following it will be shown, that this is even independent of
the disorder in g. The overlaps qm are the unique solution of an k-dimensional fixpoint
equation. This equation arises naturally as a generalization of the one established by
Talagrand for the classic Sherrington-Kirkpatrick Model. The technical proposition A.5.1,
known as Gaussian integration by parts, is of fundamental importance.
The equation directly reflects the dependence structure given in this model. Each qm
can be compared to the so called "quenched magnetizations" E 〈σmi〉, which are physical
quantities (this means they can be measured in an experiment). The equations arise as
the fixpoint of the function

Ψ(x1, ..., xk) =


Ψ1(x1, ..., xk)

...
Ψk(x1, ..., xk)


where Ψm is given by

Ψm(x1, ..., xk) = Eth2

hm + β
∑
n 6=m

gmn
√
xn


and the gmn are independent standard Gaussians. Note that Ψm does not depend on xm.
For small β each Ψm is a contraction,

|Ψm(x1, ..., xk)− Ψm(y1, ...., yk)| ≤ L(β)
√∑
n6=m

(xn − yn)2 (3.12)

with arbitrary small Lipschitz constant depending on β. This follows from the fact that
Ψm is obviously continuously differentiable in any xn. Integration and differentiation can
be interchanged. The partial derivatives are

∂

∂xl
Ψm = E

βgml√
xl

th
ch2

hm + β
∑
n 6=m

gmn
√
xn

 = β2E
1− 2sh2

(
hm +

∑
n6=m gmn

√
xn
)

ch4
(
hm +

∑
n6=m gmn

√
xn
)

where Gaussian integration is used for the second equality. Now |∂xlΨm| ≤ 2β2 = L′(β)
and (3.12) results of

|Ψm(x1, ..., xk)− Ψm(y1, ..., yk)| ≤
k∑
l=1
|Ψm(x1, ..., xl, yl+1, ..., yk)− Ψm(x1, ..., xl−1, yl, ..., yk)|

≤ L′(β)
k∑
l=1
|xl − yl| = L′(β)||x− y||1

≤ L(β)||x− y||2,

where L =
√
kL′. As mentioned, L will be arbitrarily small for small β. In particular, Ψ

is a contraction on Rk and hence has a unique fixpoint q = (q1, ..., qk) with
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qm = Ψm(q1, ..., qk) = Eth2

hm + β
∑
n 6=m

gmn
√
qn

 m = 1, ..., k. (3.13)

3.2.4 Second Step

Remember that q̄m := 〈R(σm,σ′m)〉 = ||bm||2/N , where bm = 〈σm〉.

Theorem 3.2.6 Set QmN (β) = QmN (β,h) := E(q̄m − qm)2 and QN (β) :=
∑
m≤kQ

m
N (β).

There is a number β0 ≥ 1/
√

2k, such that if β ≤ β0,

lim
N→∞

QN (β) = 0

In particular, for all m = 1, ..., k

lim
N→∞

QmN (β) = 0.

The proof mainly reduces to the following

• Two sites will be added to each class. Equation (3.8) asserts that for large N
there is no big difference between 〈.〉′ and 〈.〉. Particularly, one can replace 〈.〉′ by
〈.〉′m(z) with z = 1 or z = 2. Hereby, the latter corresponds to the system in which
each class n 6= m contains N sites, while class m contains N sites plus σmN+z.
Consequently, just the relevant site σmN+z has to be integrated.

• Using symmetry between sites and equation (3.9)) give

QmN+2(β′) ≤ L(β)
∑
n6=m

QnN (β).

Summation over m yields

QN+2(β′) ≤ L(β)(k − 1)QN (β),

where L(β) is the Lipschitz constant of the Ψm.

• The proof is finished by a worst-case analysis.

Proof Writing out the square and using symmetry between sites deliveres

QmN (β) = E(q̄m − qm)2 = E

 1
N

∑
i≤N
〈σmi〉2

2

− 2qmE 1
N

∑
i≤N
〈σmi〉2 + q2

m

≤ 1
N

+ E 〈σmN−1〉2 〈σmN 〉2 − 2qmE 〈σmN 〉2 + q2
m.

Now one passes to N + 2 and β′ to obtain

QmN+2(β′) ≤ 1
N + 2 + E 〈σmN+1〉′2 〈σmN+2〉′2 − 2q′mE 〈σmN+1〉′2 + q′2m,
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where q′m is the fixpoint solution to 3.13 for β′. Since β′ =
√

(N + 2)/Nβ it is obvious
that |qm − q′m| = o(1). In the expression above, inside the angle brackets only the sites
σmN+1 or σmN+2 of class m appear. The fact (3.8) asserts that one can pass from 〈.〉′ to
〈.〉′m(z) .

QmN+2(β′) ≤ E 〈σmN+1〉′2m(1) 〈σmN+2〉′2m(2) − 2q′mE 〈σmN+1〉′2m(1) + q2
m + o(1).

Applying 3.9 yields

QmN+2(β′) ≤E

th2

hm + β√
N

∑
n6=m

gmn · bn

 th2

hm + β√
N

∑
n6=m

g′mn · bn


− 2qEth2

hm + β√
N

∑
n6=m

gmn · bn

+ q2
m + o(1),

where gmn = (gnjmN+1)j≤N and g′mn = (gnjmN+2)j≤N . The goal is to use the fixpoint
equations in some way. The centred Gaussians gmn · bm/

√
N and gmn

√
q̄n are identical

in distribution, since

Egmn

( 1√
N
gmn · bn

)2
= 1
N
||bn||2 = q̄n = Eg

(
g
√
q̄n
)2
.

Therefore

Egmn
th2

hm + β√
N

∑
n 6=m

gmn · bn

 = Ψm(q̄1, ..., q̄k).

The same holds for the terms with g′mn. The independence allows to take the expectations
in gmn, g′mn separately

QmN+2(β′) ≤ E(Ψ2
m(q̄1, ..., q̄k))− 2qmEΨm(q̄1, ..., q̄k) + q2

m + o(1)
= E(Ψm(q̄1, ..., q̄k)− qm)2 + o(1)
= E(Ψm(q̄1, ..., q̄m)− Ψm(q1, ..., qm))2 + o(1) (fixpoint-eq.)

≤ L2(β)E
∑
n6=m

(q̄n − qn)2 + o(1)

= L2(β)
∑
n6=m

QnN (β) + o(1) ≤ L2(β)QN (β) + o(1).

Putting all equations together gives

QN+2(β′) =
∑
m≤k

QmN+2(β′) ≤ L(β)2 ∑
m≤k

QN (β) + o(1)

= kL(β)2QN (β) + o(1)

≤ 1
2QN (β) + o(1),

for β ≤ β0. The proof is finished by a worst-case analysis.
�

Theorem (3.2.6) also allows to control the joint quantities.
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Corollary 3.2.7 In the above situation, for all m,n = 1, ..., k

lim
N→∞

E
〈
R(σm,σ′m)R(σn,σ′n)− qmqn

〉
= 0.

Proof

E
〈
R(σm,σ′m)R(σn,σ′n)− qmqn

〉
= E

〈
R(σm,σ′m)

(
R(σn,σ′n)− qm

)〉
+ qnE

〈
R(σm,σ′m)− qm

〉
= E

〈(
R(σm,σ′m)− qm

) (
R(σn,σ′n)− qn

)〉
+ qmE

〈
R(σn,σ′n)− qn

〉
+ qnE

〈
R(σm,σ′m)− qm

〉
.

First note that the second and third term converge to 0 by theorem 3.2.1. Finally applying
Cauchy-Schwarz to the first term

|E
〈(
R(σm,σ′m)− qm

) (
R(σn,σ′n)− qn

)〉
|

≤ E
〈(
R(σm,σ′m)− qm

)2〉E
〈(
R(σn,σ′n)− qn

)2〉
,

finishes the proof.
�

3.3 The free energy

This section contains the calculation of the free energy based on the previous results.
Since the fixpoint equations imply that the partial derivatives ∂/∂qmSK(β, q1, ..., qk)
vanish (SK is defined below) it will suffice to show that |∂pN/∂β − ∂SK/∂β| → 0.

Theorem 3.3.1 There is a β0 such that for β ≤ β0

lim
N→∞

pN (β,h) = k log 2+β2

2
∏

m<n≤k
(1−qm)(1−qn)+

∑
m≤k

E log ch

hm + β
∑
n 6=m

gmn
√
qn


(3.14)

where (q1, ..., qm) is the unique fixpoint of (3.13).

The right-hand side of (3.14) is denoted by SK(β, q1, ..., qk) and h is considered as a
parameter rather than a free variable. Partial differentiation deliveres

∂SK

∂qm
= −β

2

2
∑
n6=m

(1− qn) +
∑
n 6=m

E

βgmn
2qn

th

hn + β
∑
l 6=n

gnl
√
ql

 .
Consequently, one can use Gaussian integration for each term of the second sum together
with the identity 1

ch2(x) = 1− th2(x), so that one obtains

∂SK

∂qm
= −β

2

2
∑
n 6=m

(1− qn) + β2

2
∑
n6=m

E 1
ch2

(
hn + β

∑
l 6=n gnl

√
ql
)

= β2

2
∑
n6=m

−(1− qn) + 1− Eth2

hn + β
∑
l 6=n

gnl
√
ql


= 0,
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where the fixpoint equation was used for the last equality. Thus it follows that

d

dβ
SK (β, q(β,h)) = ∂SK

∂β
(β, q(β,h)) (3.15)

The partial derivative in β can easily be computed

∂SK

∂β
= β

∑
m<n≤k

(1− qm)(1− qn) +
∑
m≤k

∑
n6=m

E

gnm√qnth

hm + β
∑
l 6=m

glm
√
ql


= β

∑
m<n≤k

(1− qm)(1− qn) + β
∑
m≤k

∑
n6=m

qnE 1
ch2

(
hm + β

∑
l 6=m gml

√
ql
)

= β
∑

m<n≤k
(1− qm)(1− qn) + β

∑
m≤k

∑
n6=m

qn(1− qm)

= β
∑

m<n≤k
(1− qmqn).

This will be compared to pN .

Lemma 3.3.2 In this setting,

∂pN
∂β

= β
∑

m<n≤k

(
1− E

〈
R(σm,σ′m)R(σn,σ′n)

〉)
. (3.16)

Proof Integration and differentiation may be interchanged by A.2 in [Tal10]. Once more,
Gaussian integration by parts will play the keyrole. Define

B(σ) = BN (β,h,σ) = exp

 β√
N

∑
m<n≤k

∑
i,j≤N

gjnmiσmiσnj +
∑
m≤k

hm
∑
i≤N

σmi


such that

pN (β,h) = 1
N

E logZN = 1
N

E log
∑
σ

B(σ). (3.17)

Then

∂B(σ)
∂β

= 1√
N

 ∑
m<n≤k

∑
i,j≤N

gnjmiσmiσnj

B(σ) (3.18)

∂B(σ)
∂gnjmi

= β√
N
σmiσnjB(σ). (3.19)

Differentiation of (3.17) yields

∂

∂β
pN (β,h) = 1

N
E
(

1
ZN

∑
σ

∂B(σ)
∂β

)

= 1
N3/2 E

 1
ZN

∑
σ

∑
m<n≤k

∑
i,j≤N

gnjmiσmiσnjB(σ)


= 1
N3/2

∑
σ

∑
m<n≤k

∑
i,j≤N

σmiσnjE
(
gnjmiB(σ)
ZN

)
.
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The independence of the gnjmi allows to use Gaussian integration conditionally upon (gi′,j′),
with (i′, j′) 6= (i, j)

E
(
gnjmi

B(σ)
ZN

)
= E

(
1
ZN

∂B(σ)
gnjmi

− B(σ)
Z2
N

∂ZN

∂gnjmi

)

= β√
N

(
σmiσnjE

(
B(σ)
ZN

)
− E

B(σ)
∑
σ′ σ

′
miσ

′
njB(σ′)

Z2
N

)
.

Since σ2
mi = 1,

∂pN
∂β

= 1
N3/2

∑
σ

∑
m<n≤k

∑
i,j≤N

σmiσnjE
(
gnjmiB(σ)
ZN

)

= β

N2 E

∑
σ

∑
m<n≤k

∑
i,j≤N

σ2
miσ

2
nj

B(σ)
ZN

− 1
Z2
N

∑
σ

∑
m<n≤k

∑
i,j≤N

σmiσnjB(σ)
∑
σ′

σ′miσ
′
njB(σ′)


= β

N2 E

 ∑
m<n≤k

∑
i,j≤N

∑
σ B(σ)
ZN

−
∑

m<n≤k

∑
i,j≤N

∑
σ,σ′ σmiσnjσ

′
miσ

′
njB(σ)B(σ′)

Z2
N


= β

N2

∑
m<n≤k

N2 −
∑
i,j≤N

E
〈
σmiσnjσ

′
miσ

′
nj

〉
=β

∑
m<n≤k

(
1− E

〈∑
i≤N σmiσ

′
mi

N

∑
j≤N σnjσ

′
nj

N

〉)

=β
∑

m<n≤k

(
1− E

〈
R(σm,σ′m)R(σn,σ′n)

〉)
.

�

Finally, corollary (3.2.7) implies that

lim
N→∞

∣∣∣∣∣∣ ∂∂β pN (β,h)− β
∑

m<n≤k
(1− qmqn)

∣∣∣∣∣∣ = 0.

Note that (3.16) is bounded uniformly in N for 0 ≤ β ≤ 1. Moreover, β and h are
independent variables so

SK(β, q(β,h))− SK(0, q(0,h)) =
∫ β

0

d

dβ′
SK(β′, q(β′,h))dβ′

=
∫ β

0

∂

∂β′
SK(β′, q(β′,h))dβ′

=
∫ β

0
lim
N→∞

∂

∂β′
pN (β′,h)dβ′

= lim
N→∞

∫ β′

0

∂

∂β′
pN (β′,h)dβ′ (dom. convergence)

= lim
N→∞

pN (β,h)− lim
N→∞

pN (0,h),

28
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Finally

pN (0,h) = 1
N

E log

∑
σ

exp

 ∑
m≤N

hm
∑
i≤N

σmi


= 1
N

∑
m≤k

log

∑
σm

exp

hm ∑
i≤N

σmi


= 1
N

∑
m≤k

log

∑
l≤N

(
N

l

)
exp(hm(N − 2l))


= 1
N

∑
m≤k

log

exp(hmN)
∑
l≤N

(
N

l

)
(exp(−2hm))l


= 1
N

∑
m≤k

log
(
exp(hmN)(1 + exp(−2hm))l

)
= 1
N

∑
m≤k

log
(
2Nch(hm)

)
=
∑
m≤k

(log(2) + E log(hm))

= SK(0, q(0,h)).

3.4 Approximation of the classic model

Here it is shown that the multi-partite Sherrington-Kirkpatrick model is, in the limit
of many classes, an approximation to the classic model at any temperature. The proof
of that is based on the following lemma, an application of Jensen’s inequality, which is
taken from [ASS03].

Lemma 3.4.1 Let Z(H) denote the partition function for a system with the Hamiltonian
H(σ), and let U(σ) be, for each σ, a centered Gaussian variable which is independent of
H. Then

0 ≤ E
(

log Z(H + U)
Z(H)

)
≤ 1

2E
(
U2
)
. (3.20)

For k|N the Hamiltonian of the multi-partite model with k classes containing N/k sites
is denoted by

H := H
(k)
N (σ) := β√

N

∑
1≤m<n≤k

∑
i,j≤N/k

gnjmiσmiσmj +
∑
m≤k

h
∑
i≤N/k

σmi.

Therefore, with

U := U
(k)
N (σ) := β√

N

∑
m≤k

∑
1≤i<j≤N/k

gmjmi σmiσmj ,

the Hamiltonian of the classic model on N sites can be written as H + U . Set

pN := 1
N

E logZ(H + U)

p
(k)
N := 1

N
E logZ(H).
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Theorem 3.4.2 For all ε > 0 there is a k0 ∈ N such that

|pN − p(k)
N | ≤ ε

for all N, k with N ≥ k ≥ k0.

Proof The same notation as above will be used for the case, where k does not divide N .
Here the sizes of the classes are either bN/kc or dN/ke.
Note first, that

pN − p(k)
N = 1

N
E logZ(H + U)− 1

N
E logZ(H) = 1

N
E
(

log Z(H + U)
Z(H)

)
.

Hence, according to lemma 3.4.1,

0 ≤ pN − p(k)
N ≤

1
2N E

(
U2
)
.

Finally, due to independence and k ≤ N ,

1
2N E

(
U2
)

= β2

2N2

∑
m,m′≤k

∑
1≤i,i′<j,j′≤bN/kc

E
(
gmjmi g

m′j′

m′i′

)
σmiσmjσm′i′σm′j′ +O(k/N2)

= β2

2N2

∑
m,m′≤k

∑
1≤i,i′<j,j′≤bN/kc

δmm′δii′δjj′ + o(1/N)

= β2

2N2k
N

k

(
N

k
− 1

) 1
2 + o(1/N)

= β2

4

(1
k
− 1
N

)
+ o(1/N)

≤ β2

4
1
k

+ o(1/N)→ 0 for k →∞.
(3.21)
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4 Summary

In this work, Talagrand’s cavity method demonstrates once more its wide applicability in
the analysis of mean-field spin-glasses at high temperatures.
The analogies between the classic model and the multi-species model investigated here
become visible. All statements, which were proven for the classic model by Talagrand
in [AST03], generalize naturally. In both cases the central property is that the generic
overlaps are approximately constant in the high temperature regime.
The major challenge of this thesis was to find the right implementation of the cavity
method. The state space of the generalized model is {−1, 1}N1 × ... × {−1, 1}Nk . A
priori it is not clear, if one should view the system as determined by N1, ..., Nk, or by
N,α1, ..., αk, where Ni = bαiNc. In the first case, the sizes of the classes are considered
independently. In the second, however, if one thinks of (α1, ..., αk) being fixed in the
beginning, the size of the system is dictated by the main variable N . Here the second
approach is chosen. Consequently, in every step of the cavity method, the sites are added
to all classes simultaneously. Often the studied quantities were of "squared nature", e.g.
(σ∼m · σ∗m/N)2 or (q̄m − q)2. Adding two sites to each class guarantees that one obtains
squared quantities after such additional sites are integrated.
Another big problem was to find a suitable notation to make the proofs readable. Therefore,
only the multi-partite case was investigated in full detail. On the one hand the complexity
of having various classes is present here, while on the other hand, due to the symmetry
of this case, some technical details need not be considered.
The bounds given for β0 in the proofs are probably far from the optimum. Even in the
case of the classic Sherrington-Kirkpatrick Model, the maximum region in the (β, h)-space,
where theorem 2.1.1 holds (called the high temperature regime or the replica symmetric
regime), is not yet known. Nevertheless, it is believed to be determined by the so called
Almeida-Thouless line.
The results obtained should be viewed only as a first step. They are meant to be a
demonstration of the flexibility of the cavity method. As a subsequent step, it would
be interesting to take a look at the TAP-equations of the multi-species model at low
temperatures. These are self-consistent equations for the quenched magnetizations of the
sites. In the case of the classic model at low temperatures, the number of solutions of
these equations is growing rapidly with N , which is problematic. The hope is that the
situation is simpler for the multi-species model, and that restults can be transferred to
the classic model through the approximation theorem 3.4.2.
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Appendix

A.1 The general case

The cavity method will be used in a similiar way - again two sites are added to each class.
If one starts with an (N,α, β) system, this results in a (N + 2,α′, β′) system, where
α′i = (αiN + 2)/(N + 2) and β′ =

√
(N + 2)/Nβ.

The following points have to be taken into consideration:

• The restriction αi ≤ 1 implies that αi ≤ α′i. Moreover, since β ≤ β′, this allows to
use worst-case arguments in β and α.

• Without loss of generality, assume that ∆2
mn ≤ 1 for all m,n ∈ [k]. Larger values

would just yield a smaller β0. With this choice, for a Gaussian g = gnjmi with
Eg2 = ∆2

mn ≤ 1, it holds that

E exp ag = exp a
2∆2

mn

2 ≤ exp a
2

2 .

Therefore, expectation in additional Gaussians can be taken in the same manner.

• In case of m being a self-interacting class (which additionally interacts with the
classes n ∈ L ⊂ [k] \m), the calculation in section 3.2.1 changes to

E
〈
σ∼mN+1 σ

∗
mN+1 σ

∼
mN+2 σ

∗
mN+2

〉′
m

≤ C E
〈

sh
(
β2
(
σ̇∼m · σ̇∗m

N
+
∑
n∈L

σ∼n · σ∗n
N

))
sh
(
β2 ∑

n∈L

σ∼n · σ∗n
N

)〉

≈ C E
〈

sh2

β2 ∑
n∈L∪{m}

σ∼n · σ∗n
N

〉 ,
where σ̇n = (σn1, ..., σnN , σnN+1).

A.1.1 The general fixpoint equation

The function Ψ changes due to the new dependence structure

Ψm(x1, ..., xk) = αmE th2

hm + β
∑

n
mn∈E

gmn
√
xn + β

∑
n∈L

δmngmn
√
xn

 .
Similarly, it follows that Ψm is a contraction. The unique fixpoint is given by

qm = αmE th2

hm + β
∑

n
mn∈E

gmn
√
qn + β

∑
n∈L

δmngmn
√
qn

 m = 1, ..., k.
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APPENDIX

A.2 Algebraic identities for the cavity method

Integrating the spins gradually results in a sequence of systems "inbetween" the N + 2-
system and the N -system, where some classes contains N sites and some N + 1 or
N + 2. Specifically, consider m = (m1, ...,mk) with mi ∈ [k] and mi 6= mj for i 6= j.
The sequence m determines the "integration order". First the sites of the class Sm1 are
integrated, then the one of Sm2 and so forth. With the notation Mi = [k] \ {m1, ...,mi}
and M = [k], the Hamiltonian after the i-th step is given by

β√
N

∑
s<t

ms,mt∈M\Mi

∑
i,j≤N

gmtj
msi

σmsiσmtj + β√
N

∑
s<t

ms∈M\Mi,mt∈Mi

∑
i≤N

j≤N+2

gmtj
msi

σmsiσmtj

+ β√
N

∑
s<t

ms,mt∈Mi

∑
i,j≤N+2

gmtj
msi

σmsiσmtj

+
∑

ms∈M\Mi

hms

∑
i≤N

σmsi +
∑

ms∈Mi

hms

∑
i≤N+2

σmsi.

Integration with respect to the corresponding Gibbs’ measure is denoted by 〈.〉′Mi
. Alge-

braic identities are obtained similiarly to (2.7). For a function f on Σi−1
N ×Σk−(i−1)

N+z it
holds that

〈f〉′Mi−1
= 1
ZMi

〈
Av

σmiN+1,...,σmiN+z
fEMi

〉′
Mi

,

where

EMi

=
N+2∏

n=N+1
expσmin

 β√
N

 ∑
ms∈M\Mi−1

∑
j≤N

gmsj
minσmsj +

∑
ms∈Mi

∑
j≤N+2

gmsj
minσmsj

+ hmi

 ,
and

ZMi =
〈

Av
σmj N+1,...,σmj N+z

EMi

〉′
Mi

.

The formulas can be generalized to the case when multiple replicas are involoved. Let f
be a function on

(
Σi−1
N ×Σk−(i−1)

N+z

)n
. Then

〈f〉′Mi−1
= 1

(ZMi)n

〈
Av

σ1
miN+1,...,σ

n
miN+z

fEsMi

〉′
Mi

,

where

EnMi

=
N+2∏

n=N+1
exp

∑
l≤n

σlmin

 β√
N

 ∑
ms∈M\Mi−1

∑
j≤N

gmsj
minσ

l
msj +

∑
ms∈Mi

∑
j≤N+2

gmsj
minσ

l
msj

+ hmi


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A.3 SUPPLEMENTS TO PROPOSITION 3.2.2

A.3 Supplements to Proposition 3.2.2

A.3.1 Dropping uninvolved sites

It holds that

E
〈
σ∼mN+1σ

∗
mN+1σ

∼
mN+2σ

∗
mN+2

〉′ ≤ A E
〈
σ∼mN+1σ

∗
mN+1σ

∼
mN+2σ

∗
mN+2

〉′
m
,

where

A = A(k,h, β) = exp(8k2β2)
∏
m≤k

ch8(hm).

Hence, A remains bounded for fixed k and h (uniformly for small β).

Proof These are simple calculations. Choose m1 = n 6= m and integrate the two sites of
class m1 first. Similar arugments as in the next subsection (A.3.2) are used.
Remember that 〈.〉M1

denotes the Gibbs’ average with respect to the system, where class
m1 contains N sites and the others N + 2. By setting f = σ∼mN+1σ

∗
mN+1σ

∼
mN+2σ

∗
mN+2

and σ(i)
m1N+1 = εi, σ(i)

m1N+2 = ιi, one obtains

E 〈f〉′

= 1
ZM1

E
〈
f Av
ε1,...,ε8

EM1

〉′
M1

≤E
〈
f Av
ε1,...,ι4

EM1

〉′
M1

=E〈f Av exp
∑
l≤4

εl

 β√
N

∑
n6=m1

∑
j≤N+2

gnjm1N+1σ
l
nj + hm1


+ ιl

 β√
N

∑
n6=m1

∑
j≤N+2

gnjm1N+2σ
l
nj + hm1

〉′M1

=E
〈
f
∏
l≤4

Av
εl,ιl

exp εlhm1 exp ιlhm1

∏
n6=m1

∏
j≤N+2

exp
(
gnjm1N+1

εlσ
l
njβ√
N

)
exp

(
gnjm1N+2

ιlσ
l
njβ√
N

)〉
M1

=E
〈
f
∏
l≤4

Av
εl,ιl

exp εlhm1 exp ιlhm1

∏
n6=m1

∏
j≤N+2

exp β2

2N exp β2

2N

〉
M1

≤E
〈
f
∏
l≤4

exp(2(k − 1)β2)Av
εl,ιl

exp εlhm1 exp ιlhm1

〉′
M1

=ch8hm exp(8(k − 1)β2)E 〈f〉′M1
.

Iterating this process for all mi 6= m finishes the proof.

�
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APPENDIX

A.3.2 Integrating the last sites

It holds that

E
〈
σ∼mN+1 σ

∗
mN+1 σ

∼
mN+2 σ

∗
mN+2

〉′
m

≤E
〈

sh2

β2 ∑
n6=m

σ∼n · σ∗n
N

 exp β
2

N

∑
n6=m

(
||σ∼n ||2 + ||σ∗n||2

)〉
,

Proof The notation is lightened by setting εl = σlN+1 and ιl = σlN+2. One obtains

E 〈ε∼ε∗ι∼ι∗〉′m = 1
Z4
m

E
〈

Av ε∼ε∗ι∼ι∗E4
m

〉
,

where the average is taken over ε1, ..., ι4 and

E4
m =

N+2∏
z=N+1

exp
∑
l≤4

σmN+z
β√
N

∑
n6=m

gnjmN+zσ
l
nj + hm


Since Zm ≥ 1 and

E
〈

Av ε∼ε∗ι∼ι∗E4
m

〉′
m

= E
〈

Av ε∼ε∗E2
m

〉′2
m
≥ 0

one deduces

E 〈ε∼ε∗ι∼ι∗〉′m ≤ E
〈

Av ε∼ε∗ι∼ι∗E4
m

〉
.

The integrand is different from 0, if ε∼, ε∗, ι∼, ι∗ 6= 0. This is equivalent to ε2 = −ε1, ε4 =
−ε3, ι2 = −ι1, ι4 = −ι3. It follows that

ε∼ε∗ι∼ι∗E4
m = ε∼ε∗E ′m,1ι∼ι∗E ′m,2,

where

E ′m,1 = exp β√
N

∑
n6=m

∑
j≤N

gnjmN+1(ε1σ∼nj + ε3σ∗nj),

E ′m,2 = exp β√
N

∑
n6=m

∑
j≤N

gnjmN+2(ι1σ∼nj + ι3σ∗nj).

Since

Av
ε2
ε∼ = ε1 Av

ε3
ε∗ = ε3 Av

ι2
ε∼ = ι1 Av

ι4
ι∗ = ι3

it follows that

E
〈

Av ε∼ε∗ι∼ι∗E4
m

〉
= E

〈
Av ε1ε3E ′m,1ι1ι3E ′m,2

〉
,

where on the right hand side ε2, ε4, ι2, ι4 are averaged out. Expectation in (gnjmN+1)j≤N,n6=m
or (gnjmN+2)j≤N,n6=m only is denoted by Eg,1 and Eg,2 respectively. Thus
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A.3 SUPPLEMENTS TO PROPOSITION 3.2.2

E ′′m,1 = Eg,1E ′m,1 = exp β2

2N
∑
n6=m

∑
j≤N

((σ∼nj)2 + (σ∗nj)2 + 2ε1ε3σ∼njσ∗nj)

= exp β2

2N
∑
n6=m

(
||σn∼||2 + ||σn∗||2 + 2ε1ε3σn∼ · σn∗

)

where ||σ∼n ||2 :=
∑
i≤N (σni)2. Now

E ′′m,2 = Eg,2E ′m,2 = exp β2

2N
∑
n6=m

∑
j≤N

((σ∼nj)2 + (σ∗nj)2 + 2ι1ι3σ∼njσ∗nj)

= exp β2

2N

∑
n6=m
||σ∼n ||2 + ||σ∗n||2 + 2ι1ι3σn∼ · σn∗

 .
Since the disorder in 〈.〉 is independent of the gnjmN+1’s and g

nj
mN+2’s,

E
〈

Av ε1ε3E ′m,1ι1ι3E ′m,2
〉

=E
〈

Av
ε1,ε3

ε1ε3E ′′m,1 Av
ι1,ι3

ι1ι3E ′′m,2
〉

=E
〈

sh2

β2

N

∑
n 6=m

σ∼n · σ∗n

 exp β
2

N

∑
n6=m

(
||σ∼n ||2 + ||σ̇∗n||2

)〉
.

�

A.3.3 Taylor Expansion

For |x| ≤ 4 it holds that

sh2(β2x) ≤ x2/16 sh2(4β2)

Proof Note that sh(x) is monotonically increasing. For 0 ≤ x ≤ 4, it holds that

xshβ2x ≤ x2/4 sh4β2.

Respectively, for 0 ≥ x ≥ −4, the antisymmetry of sh(x) implies that

xshβ2x ≤ xsh(−4β2) = −xsh4β2 ≤ x2/4sh4β2.

Thus for |x| ≤ 4,

xshβ2x ≤ x2

4 sh4β2.

Taking squares first and then dividing both sides by x2 finishes the proof. �
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APPENDIX

A.4 Moment-generating function of a Gaussian

Proposition A.4.1 Let g be a centered Gaussian with E[g2] = τ2. Then

E exp ag = exp a
2τ2

2

Proof
E exp ag = 1√

2πτ2

∫
exp at exp− t2

2τ2 dt

= 1√
2πτ2

∫
exp−

(
t√
2τ2
− aτ√

2

)2
exp a

2τ2

2 dt

= exp a
2τ2

2
1√

2πτ2

∫
exp−ξ2dξ

√
2τ2

= exp a
2τ2

2
�

A.5 Gaussian integration by parts

Proposition A.5.1 Let f be a smooth function, such that (1 +x2)−kf(x) is bounded for
some k. Additionally, g is a centered Gaussian with E(g2) = τ2. Then

E(gf(g)) = E(g2)E(f ′(g))

Proof This is a direct consequence of the integration by parts formula for integrals

1√
2πτ2

∫
tf(t) exp

(
− t2

2τ2

)
dt = τ2 1√

2πτ2

∫
f ′(t) exp

(
− t2

2τ2

)
dt

�

A.6 Proof of (3.9)

Proof
〈σmN+1〉′M\m = 1

Z

〈
Av

σmN+1
σmN+1E

〉
,

where

E := expσmN+1

 β√
N

∑
n6=m

gnjmN+1σnj + hm


Z = 〈AvE〉 .
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A.6 PROOF OF (3.9)

So

Z =
〈

Av expσmN+1

 β√
N

∑
n6=m

gnjmN+1σnj + hm

〉

=1
2

〈
exphm

∏
n6=m

exp β√
N
gmnbn

〉
+ 1

2

〈
exp−hm

∏
n6=m

exp −β√
N
gmn · bn

〉

.

Now proposition 3.2.5 yields

E

∣∣∣∣∣∣Z − exp β
2

2
∑
n6=m

(1− q̄n)ch

hm + β√
N

∑
n6=m

gmn · bn

∣∣∣∣∣∣
and similarly

E

∣∣∣∣∣∣〈σmN+1〉′M\m − exp β
2

2
∑
n6=m

(1− q̄n)sh

hm + β√
N

∑
n6=m

gmn · bn

∣∣∣∣∣∣ .
Finally, since Z ≥ 1,

E

∣∣∣∣∣∣〈σmN+1〉′M\m − th

hm + β√
N

∑
n6=m

gmn · bn

∣∣∣∣∣∣
= 1
Z

E

∣∣∣∣∣∣〈AvσmN+1E〉 − Z th

hm + β√
N

∑
n6=m

gmn · bn

∣∣∣∣∣∣
≤E

∣∣∣∣∣∣〈AvσmN+1E〉 − exp β
2

2
∑
n6=m

(1− q̄n)sh

hm + β√
N

∑
n6=m

gmn · bn

∣∣∣∣∣∣
+ E

∣∣∣∣∣∣exp β
2

2
∑
n6=m

(1− q̄n)sh

hm + β√
N

∑
n6=m

gmn · bn

− Z th

hm + β√
N

∑
n6=m

gmn · bn

∣∣∣∣∣∣
→ 0.

Note that, by subsequent integration, (3.8) can be obtained similiarly.
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