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We revisit the concept of source term representation, originally developed
for boundary control problems subject to pointwise state constraints in the
domain, and apply it to linear-quadratic parabolic control problems with
purely time-dependent control subject to pointwise state constraints and con-
trol bounds. Since control and state are de�ned on di�erent domains, classical
Lavrentiev regularization cannot be applied. Instead, in the source term rep-
resentation ansatz, the adjoint operator is applied to an auxiliary control
that is de�ned in the same domain as the state. By this ansatz, additional
pure control bounds would be transformed into arti�cial state constraint and
were therefore previously excluded from the discussion. For purely time de-
pendent control we observe that control constraints will become averaged in
space and pointwise in time state constraints, and can apply available theory
for the existence of Lagrange multipliers. We brie�y visit elliptic problems
with �nitely many control parameters, where this regularization of pointwise
state constraints transforms additional simple bounds on the control param-
eters into easy-to-handle integral-state constraints.

1 Introduction

In this paper, we revisit a source term regularization method developed for boundary
control problems with pointwise state constraints, cf. [38, 37] for elliptic problems, or
the work [33] by Tröltzsch and the author for parabolic optimal problems. We will apply
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this to a parabolic problem with purely time dependent control and pointwise state
constraints as well as an additional bound on the control, and also visit brie�y an elliptic
counterpart with �nitely many control parameters. Additional control constraints could
not be handled in the original works on boundary control. In this way, we will be able
to narrow an interesting theoretical gap in the theory of this regularization concept.

More precisely, we will be concerned with the following simple parabolic model prob-
lem, whose complete functional analytic setting will be de�ned in the next section.

min J(y, u) =
1

2
‖y − yd‖2L2(Q) +

ν

2
‖u‖2L2(0,T ) (1.1)

subject to the heat equation

yt −∆y = u(t)e(x) in Q := Ω× (0, T )

y = 0 in Σ := Γ× (0, T )

y(·, 0) = 0 in Ω,

(1.2)

and constraints on the state as well as the control

ya ≤ y ≤ yb in Q, u ≤ ub in (0, T ). (1.3)

Here, the control u is a purely time-dependent function u : (0, T ) 7→ R and for a given
�xed shape function e : Ω 7→ R we set

Bu = u(t)e(x).

We note in passing that the results in this manuscript can be extended to more than one
time dependent control, i.e. a time dependent control vector

u : (0, T ) 7→ Rm, Bu =
m∑

i=1

ui(t)ei(x),

for m > 1 given shape functions ei : Ω→ R.
Problems with state constraints are meanwhile well-investigated. The main challenges

of pointwise state constraints are due to the fact that a constraint quali�cation is usually
needed to obtain Lagrange multipliers for the state constraints in a Karush-Kuhn-Tucker
system. Often, one relies on the Slater condition, which requires the existence of a strictly
feasible point with respect to the state constraints, and usually continuity of the state
for all admissible controls as in [5, 6] or [34]. Then, the Lagrange multipliers are usually
obtained in the space of regular Borel measures. For elliptic problems, improved regu-
larity of the multiplier under certain conditions has been obtained in [9]. For parabolic
problems, the question of existence of Lagrange multipliers is more delicate than in the
elliptic setting and might lead to restrictions on the spatial dimension or regularity re-
quirements on the control, not only for the existence of Lagrange multipliers but also for
second order su�cient conditions, see e.g. [12]. However, even the discussion of semi-
linear problems, [12] or certain quasilinear problems, see [18, 8] is meanwhile possible.
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Very recently, results on improved regularity without Slater point assumptions but rather
compatibility conditions between the bound and the di�erential operator were obtained
in [10]. Let us also refer to the introduction of these last more recent papers for further
references, also including e.g. �nite element error analysis, which is not within the scope
of the present paper.

Di�erent regularization concepts have been studied in a variety of contexts. It is
probably safe to say that the Moreau-Yosida regularization concept, see e.g. [19], is
often the method of choice, yet it removes the constraints by a penalization method. We
also like to point out [1, 2, 3, 21, 16]. Another regularization concept, that explicitly
keeps certain constraints, is the classical Lavrentiev regularization originally introduced
for elliptic problems with distributed controls by Meyer, Rösch, and Tröltzsch in [31], and
Meyer and Tröltzsch in [32], leading to mixed pointwise control-state constraints. Since
this method is not applicable for e.g. boundary control problems with state constraints
in the domain, further methods have been developed for this problem class.

The source term extension of Lavrentiev regularization to the case of elliptic or parabolic
boundary control and pointwise constraints in the domain, including a limit analysis, was
suggested in [37, 38] and [33], respectively. Let us also mention the virtual control con-
cept from [20]. Here, we apply the idea of source term representation. For purely time
dependent control, as for boundary control, it is not possible to consider the expression
w = λu + y since u is de�ned on the time interval I := (0, T ), while y is de�ned on
the whole space time domain Q. The main idea from [37, 38, 33] was to introduce an
auxiliary control v ∈ L2(Q) and using for u the ansatz u = S∗v, where S denotes the
control to state mapping for the state equation with range in L2(Q). The motivation
behind this choice comes from the fact that in case a Lagrange multiplier for the state
constraints exists, it will often be a measure entering the adjoint equation, and one will
obtain a coupling of the optimal control ū with this adjoint state. By the ansatz u = S∗v,
smoothing is performed. This idea can readily be applied to di�erent control domains as
in our model problem (1.1)-(1.3). Then the state y = y(v) is given by y = SS∗v and the
state constraint ya ≤ SS∗v ≤ yb can be relaxed by

ya ≤ λv + SS∗v ≤ yb,

similar to classical Lavrentiev regularization, cf. for instance [31]. Note that then the
control bound u ≤ ub is transformed into

S∗v ≤ ub,

i.e. an arti�cial state constraint is obtained, and all di�culties mentioned previously will
in principle apply to this problem. However, in our model problem formulation due to
having purely time-dependent controls, these constraints will only hold in time. We will
see that in fact ∫

Ω

z(x, t)e(x)dx ≤ ub(t)
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is obtained, where z is a solution of an adjoint equation with right-hand-side v ∈ L2(Q).
Due to regularity properties of parabolic PDEs, these constraints can be handled point-
wise in time. In [27], similar problems of this type have been analyzed with respect
to �nite element discretization error estimates, and �rst order optimality conditions of
Karush-Kuhn-Tucker type have been used.

The analysis of this problem closes a gap in the analysis of source term representation
relying on a speci�c, yet practically typical structure of the controls. Pointwise state
constraints, that cause di�culties even with respect to existence of Lagrange multipliers
are transformed into more regular mixed constraints with regular multipliers. On the
downside, simple control bounds are transformed into more di�cult state constraints,
but of integral type in space pointwise in time. Rating the di�erent types of constraints
by their di�culty, both the easiest and the hardest type of constraint are transformed
into constraints with medium di�culty, so to speak. In a similar way, this is the case for
elliptic problems, that we will brie�y discuss at the end of the paper. While the analysis
of the resulting problems does not pose particularly new challenges, they have not been
analysed as a result of a regularization strategy.

To the best of the author's knowledge, this direct application of source term repre-
sentation regularization to time-dependent controls has not been considered in the lit-
erature, even though problems with purely-time-dependent controls and pointwise state
constraints have been analyzed in a variety of settings. We only mention results on sec-
ond order su�cient conditions for semilinear problems in [12], or quasilinear problems in
[4, 18]. For �nite element error analysis we refer to [17]. They are also often considered
in the context of model order reduction such as proper orthogonal decomposition. In
this context, pointwise state constraints and boundary control have been analyzed by
a virtual control regularization, see [26]. Mixed constraints similar to our setting, but
transformed into the control space U = L2(0, T ), have been considered in [15].

Before we analyse our model problem in detail, let us note that in practice of course
also pointwise in time state constraints need some attention in the numerical treatment,
such as regularization.

2 Assumptions and challenges of the unregularized problem

2.1 Preliminaries

In this paper, we agree on the following notation and general assumptions that we choose
close to the ones considered in [33] on parabolic boundary control problems, since the
application of the regularization technique is the main point of our paper. We nevertheless
point out that parabolic PDEs can also be discussed on rough domains for instance, see
e.g. [28]. We collect all assumptions needed at some point in the paper, and point out
that some results require less regularity of the given data.

Assumption 2.1. The set Ω ⊂ Rn, n ∈ {1, 2, 3}, is a nonempty, convex polygonal
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or polyhedral domain in R2 or R3, respectively, or an intervall in R. The real number

T > 0 is a �xed �nal time, and we denote the time interval by I := (0, T ). Further,

we have positive real numbers ν, λ, and ε, functions yd ∈ L2(Q), y0 ∈ H1
0 (Ω) ∩ C(Ω̄),

e ∈ L2(Ω) and bounds ya, yb ∈ C(Q̄) ∩ L2(0, T, V ), ya < yb in Q, ya < 0 < yb on Γ,
ya(·, 0) < y0 < y(·, 0), and ub ∈ C([0, T ]).

We will denote V = H1
0 (Ω), and by H = L2(Ω), so that we obtain the Gelfand triple

property V ↪→ H ↪→ V ∗ with dense, compact, and continuous embeddings. The state
space Y will be given by

Y := W (0, T ) = {v : I × Ω→ R|v ∈ L2(I, V ) and vt ∈ L2(0, T, V ∗)}.

The embedding W (0, T ) ↪→ L2(Q) is compact, cf. for instance [23], and we also have the
well-known continuous embedding W (0, T ) ↪→ C([0, T ], H), [39]. The latter is important
for our further considerations of (transformed) control constraints for the regularized
problem. For the control space, we set U = L2(0, T ). Moreover, let us de�ne the set of
admissible controls Uad = {u ∈ L2(0, T )} : u ≤ ub a. e. in (0, T )} and the set of feasible
controls, Ufeas = {u ∈ Uad : ya ≤ Su ≤ yb a. e. in Q}. Last, inner products and norms
will be abbreviated as follows

(v, w) := (v, w)L2(Ω), ‖v‖ := ‖v‖L2(Ω),

(v, w)I := (v, w)L2(0,T ), ‖v‖I := ‖v‖L2(0,T ),

(v, w)Q := (v, w)L2(Q), ‖v‖I := ‖v‖L2(Q).

(2.1)

All other norms will be indicated by a corresponding subscript. The duality pairings
will be denoted by 〈·, ·, 〉 with corresponding subscripts. For the duality pairing between
C([0, T ]) and C([0, T ])∗ we use the short notation 〈·, ·〉 without further subscript. Before
analyzing our speci�c control problem, let us discuss solution theory for the parabolic
equations.

Proposition 2.2. Let Assumption 2.1 hold. For every f ∈ L2(0, T, V ∗) and initial state

y0 ∈ H, the initial boundary value problem

T∫
0

〈 yt, ϕ〉V ∗,V dt+ (∇y,∇ϕ)Q = (f, ϕ)Q ∀ ϕ ∈ L2(0, T, V ),

y(0, ·) = y0 in Ω,

(2.2)

admits a unique weak solution y ∈W (0, T ). For f ∈ L2(0, T,H) and y0 ∈ V, the improved
regularity y ∈ L2(0, T,H2(Ω) ∩ V ) ∩ L∞(0, T, V ) ∩H1(0, T,H) holds. If f ∈ Lr(Q) with
r > n/2 + 1 and y0 ∈ C(Ω̄), we obtain y ∈ C(Q̄).

In these cases, the norm estimates

‖y‖Q + ‖y‖L∞(0,T,H) + ‖y‖W (0,T ) ≤ c (‖f‖L2(0,T,V ∗) + ‖y0‖),
‖∇y‖L∞(0,T,H + ‖∇2y‖Q + ‖yt‖Q ≤ c (‖f‖I + ‖y0‖V ),

‖y‖C(Q̄) ≤ c(r)(‖f‖Lp(Q) + ‖y0‖C(Ω̄)).
(2.3)

hold with constants c, c(r) > 0.
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Proof. For the existence of a unique solution y ∈ W (0, T ) we refer to [22] or [11]. Con-
tinuity of solutions was discussed in [7],[34], or [36], the regularity y ∈ L2(0, T,H2(Ω) ∩
V )∩L∞(0, T, V )∩H1(0, T,H) is proven in [13]. We also point out the existence theorems
in [15] and [27] for problems close to our model problem.

We note in passing that the existence and regularity results from Proposition 2.2 also
hold for backward parabolic PDEs such as

−pt −∆p = f in Q,
p(T, ·) = pT in Ω,

p = 0 on Σ
(2.4)

by a simple time transformation argument. Equations of this type will appear in the
optimality conditions and the regularized problem formulation. If measures are present
in the right-hand side, i.e.

−pt + ∆p = µQ in Q,
p(T, ·) = µT in Ω,

p = 0 on Σ.
(2.5)

existence results are obtained in [7]. From there, it is known that for µ ∈ C0(Q̄)∗, (2.5)
admits a unique solution p ∈ Lτ (I,W 1,s

0 (Ω)) for all τ, s ∈ [1, 2) with (2/τ)+(n/s) > n+1.

2.2 Existence of solutions and optimality conditions

After the preliminary discussion we now observe for our parabolic model problem (1.1)-
(1.3) that for every control u ∈ L2(0, T ), we obtain a unique state y ∈W (0, T ), which is
not necessarily continuous. Let us denote by

G : L2(Q)→W (0, T ) ↪→ C([0, T ], H)

the solution operator of the state equation with right-hand-side from L2(Q), such that
the control-to-state mapping G is obtained by concatenation of G and B, the latter being
de�ned by

B : L2(0, T )→ L2(Q), Bϕ =

∫

Ω
ϕe(x)dx,

i.e.
G : L2(0, T )→W (0, T ) ↪→ C([0, T ], H), G = GB.

In what follows, we will denote by S the operator G with range in L2(Q) and by S the
control-to-state mapping G with range in L2(Q). We can rewrite the problem in its usual
reduced form:

min f(u) := J(Su, u) s.t. ya ≤ Su ≤ yb a.e. in Q, u ≤ ub a.e. in (0, T ). (P)

Note that here both types of constraints are prescribed in an L2 almost everywhere sense
and L2 regularity of y0, ub, ya, yb would be su�cient. By standard arguments we can
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then prove existence of a unique optimal control ū ∈ L2(0, T ) with associated optimal
state ȳ ∈W (0, T ), provided that the feasible set Ufeas is not empty. To obtain optimality
conditions of Karush-Kuhn-Tucker type, we use the higher regularity of y0, ya, yb from
Assumption 2.1, as well as of the optimal control ū, along with e ∈ Lr(Ω), r > n/2 + 1.
Assuming for instance ū ∈ Lr(0, T ), r > n/2 + 1, we obtain continuity of the optimal
state, and the state inequality constraints can be considered in the space C(Q̄), i.e.

ya(t, x) ≤ y(t, x) ≤ yb(t, x) ∀(t, x) ∈ Q.

A posteriori, the space of controls U can be taken as Lr(0, T ). Note that this regularity
of the optimal control can easily be guaranteed by bilateral control bounds in L∞(0, T )
and a more regular shape function e, say e ∈ L∞(Ω) for simplicity. In the optimality
system we would then obtain Lagrange multipliers in the dual space of the state space,
i.e. the space of regular Borel measures. The following theorem on �rst order optimality
conditions follows from the Pontryagin principle in [6], cf. also the presentation in [33].
For time-dependent controls speci�cally, we also refer to Theorem 4 in [12]. In this paper,
regularity conditions for e and u are explored in more detail.

Assumption 2.3. Let the shape function ful�ll the regularity e ∈ L∞(Ω) and let there

exist a Slater point ũ ∈ Uad ∩ Lr(0, T ), r > n/2 + 1, such that ỹ := y(ũ) satis�es

ya(t, x) + δ ≤ ỹ(t, x) ≤ yb(t, x)− δ ∀(t, x) ∈ Q̄

for some δ > 0 (Slater condition).

Theorem 2.4. Let Assumptions 2.1 and 2.3 hold and let the optimal solution pair (ū, ȳ)
of (P) ful�ll the regularity

(ū, ȳ) ∈ Lr(0, T )×W (0, T ) ∩ C(Q̄), r > n/2 + 1.

Then there exist µa, µb ∈ M(Q̄) and an adjoint state p ∈ Lρ(0, T ;W 1,σ(Ω)), for all

ρ, σ ∈ [1, 2) with 2
ρ + n

σ > n + 1, such that the adjoint equation (2.6), the variational

inequality (2.7), and the complementary slackness condition (2.8) hold true:

(ϕt, p)Q + (∇ϕ,∇p)Q = (ȳ − yd, ϕ)Q + 〈ϕ, µb − µa〉C(Q̄),M(Q̄) (2.6)

for all ϕ ∈ C1(Q̄) ∩ C0(Q ∪ ΩT ),

〈νū+

∫

Ω
p(t, x)e(x)dx, u− ū〉Lr′ (I),Lr(0,T ) ≥ 0 ∀u ≤ ub, a.e. in (0, T ), u ∈ Lr(O, T ),

(2.7)∫

Q̄
(ya − ȳ)dµa = 0, µa ≥ 0,

∫

Q̄
(ȳ − yb)dµb = 0, µb ≥ 0, (2.8)

where µiQ = µi|Q, µiT = µi|Ω̄×T
denote the restrictions of µi to the indicated sets.

Note that in the last theorem µba|Σ = µb|Σ = 0 since due to Assumption 2.1 the state
constraints cannot be active on the boundary with homogeneous Dirichlet boundary
conditions.
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3 The regularized problem

3.1 Problem formulation

In order to be able to treat the problem for L2 controls without any additional regularity
assumptions or restrictions of the dimension to obtain a Lagrange multiplier, we regu-
larize the pointwise constraints on the state as explained in the introduction. Along the
lines of [33], we introduce an auxiliary control v ∈ L2(Q) and use the ansatz u = S∗v in
order to be able to replace the pointwise state constraints

ya(t, x) ≤ y(t, x) ≤ yb(t, x) ∀(t, x) ∈ Q

by mixed control-state constraints

ya ≤ λv + SS∗v ≤ yb a. e. in Q, S∗v =

∫

Ω
z(t, x)e(x)dx,

where z ∈W (0, T ) ∩H1(0, T, V ) ∩ L2(0, T,H2(Ω) ∩ V ) solves

−(zt, ϕ)Q + (∇z,∇ϕ)Q = (v, ϕ)Q ∀ ϕ ∈ L2(0, T, V )
z(T, ·) = 0 in Ω,

(3.1)

cf., for instance [24] or [36] for the adjoint of G. The concatenation with B and its
adjoint B∗, respectively, is obvious. Note that the use of the L2-inner product for
the term containing the time derivative is justi�ed by the improved regularity results.
Moreover, recall that S is the control-to-state mapping G with range in L2(Q), hence
S∗ : L2(Q) → L2(0, T ). With meanwhile well-known arguments we expect existence of
Lagrange multipliers associated with the mixed constraints in the more regular space
L2(Q). This will follow from a transformation with a new control w := 1

λ(y − v), cf. eg.
[31], where Lagrange multipliers can be constructed due to the simple structure of the
transformed constraints. We would also like to mention the paper [35], that deals with
regularity of Lagrange multipliers, including those for mixed constraints. Having said
this, we will not be able to use these results directly.

The source term representation concept has so far only been used in the case of bound-
ary control without control constraints, and these in fact require closer attention. By the
ansatz

u := S∗v,

the control now takes the role of an additional state in the regularized problem, and
the control bounds become state constraints. Hence, all remarks on the di�culty of
pointwise state constraints now in principle hold for the control. Especially, they cannot
be treated with Slater-type arguments when prescribed in L2(0, T ). However, as pointed
out in the introduction, the speci�c control structure provides a remedy. We note that
z takes values in W (0, T ) ↪→ C([0, T ], H), which allows to consider the bound u ≤ ub
pointwise in time, without any additional regularity assumption on the optimal controls.
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For this constraint, we can rely on a Slater condition to ensure existence of an associated
Lagrange multiplier. We obtain the regularized problem formulation

min Jε(y, z, v) :=
1

2
‖y − yd‖2Q +

ν

2
‖B∗z‖2I +

ε

2
‖v‖2Q (Pλ)

subject to

(yt, ϕ)Q + (∇y,∇ϕ)Q = (BB∗z, ϕ)Q ∀ ϕ ∈ L2(I, V ), y(0, ·) = y0 in Ω, (3.2)

−(zt, ϕ)Q + (∇z,∇ϕ)Q = (v, ϕ)Q ∀ ϕ ∈ L2(I, V ), z(T, ·) = 0 in Ω, (3.3)

and the constraints

ya ≤ λv + y ≤ yb a. e. in Q,

∫

Ω
z(t, x)e(x)dx ≤ ub(t) ∀t ∈ [0, T ].

Here, the dual of the operator B : L2(0, T ) → L2(Q), (Bω)(t, x) = ω(t)e(x), takes the
form B∗ : L2(Q)→ L2(0, T ), B∗ϕ =

∫
Ω ϕ(t, x)e(x)dx.

3.2 Existence of regularized solutions and regular Lagrange multipliers

In what follows, we now combine the arguments from [33] and [27] to obtain an optimality
system. We consider the solution operator for the auxiliary state equation for z in two
di�erent function space settings, as is typical for problems with pointwise state constraint.
We have already explained that for v ∈ L2(Q) we obtain a unique z = S∗v ∈ L2(Q), and
B∗S∗v = B∗z ∈ L2(Q). For y we then observe y = SB∗S∗v = SS∗v. These expressions
can be inserted in the objective functional and in the mixed control-state-constraints.
To consider the former control bound u ≤ ub, let A : L2(Q) → W (0, T ) ↪→ C([0, T ], H)
denote the operator S∗ with range in W (0, T ) ↪→ C([0, T ], H). If we denote by B∗
the restriction of B∗ to W (0, T ), it is clear that B∗A maps L2(Q) into C([0, T ]) by
construction. We de�ne

g : L2(Q)→ R, g(v) = B∗Av − ub,

and obtain the reduced problem formulation

min fε(v) subject to g(v)(t) ≤ 0 ∀t ∈ I, λv + SS∗v ≤ yb a.e. in Q. (Pλ)

The following assumption is needed to prove the existence of a Lagrange multiplier for
the constraints on z. The mixed constraints on v and y do not require a Slater condition
for Lagrange multipliers to exist.

Assumption 3.1. There is Slater point ṽ ∈ L2(Q), such that ya ≤ λṽ+ ỹ ≤ yb a.e. and
∫

Ω
z̃(t, x)e(x)dx ≤ ub(t)− δ ∀t ∈ [0, T ]

for some δ > 0, where ỹ = Gṽ and z̃ = Aṽ.
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Existence of a unique optimal control v̄λ ∈ L2(Q) with associated ūλ ∈ C([0, T ], H)
and ȳλ ∈W (0, T ) follows by standard arguments due to the feasibility of the Slater point.
Along the lines of [33], we now consider the linear equation

(λI + SS∗)v = w,

where I denotes the identity operator in L2(Q). We refer to [31] for the original transfor-
mation argument in the case of elliptic distributed control. Since SS∗ is positive de�nite
and compact in L2(Q), (λI + SS∗) has, for every λ > 0, a bounded and linear inverse
operator K : L2(Q)→ L2(Q),

K = (λI + SS∗)−1 (3.4)

due to the Fredholm alternative. We also mention [15, Lemma 2.1] where the existence
of a bounded inverse has been shown for a slightly di�erent operator F without relation
to S∗. Thus, with

v = Kw, F (w) := fε(Kw), gw := g(Kw), Wad := {w ∈ L2(Q) |ya ≤ w ≤ yb a.e. in Q}

we obtain a further transformation of our problem into

min F (w) =
1

2
‖SS∗Kw − yd‖2Q +

ν

2
‖S∗Kw‖2I +

ε

2
‖Kw‖2Q (Pw)

subject to
w ∈Wad, gw(w)(t) ≤ 0 ∀t ∈ [0, T ].

We will obtain a multiplier η ∈ C([0, T ])∗ for the pointwise in time constraint on z
as in [27], and will construct regular Lagrange multipliers for the mixed control-state
constraints, following [33, 31]. Since Jε is di�erentiable we also have di�erentiability of
fε. Since K is a linear and continuous operator F is also di�erentiable by the chain rule.
Likewise, one sees di�erentiability of g and hence gw.

Lemma 3.2. Under the Slater condition from Assumption 3.1 there exists a nonnegative

Lagrange multiplier η ∈ C([0, T ])∗ such that

〈gw(w̄), η〉 = 0, g(w̄) ≤ 0, and F ′(w̄)(w − w̄) + 〈g′w(w̄)(w − w̄), η〉 ≥ 0 ∀w ∈Wad.

Proof. We observe that Wad is a nonempty, closed and convex subset of K2(Q) and that
F : L2(Q)→ R is convex and di�erentiable. We de�ne the cone

C([0, T ]) ⊃ K := {ϕ ∈ C([0, T ]) : v ≤ 0 in [0, T ]}

and observe that gw : L2(Q)→ C([0, T ]). With this, we can rewrite (Pw) into

minF (w) s.t. w ∈Wad, gw(w) ∈ K.

The claim follows by known generalized KKT theory, see [25] or also the presentation in
[36, Theorem 6.2], noting that Assumption 3.1 provides a Slater point w̃ = λṽ + ỹ.
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For the simple bound constraint on w we can now derive existence of Lagrange multipli-
ers by a constructive argument, see [31]. The arguments in [33] only need to be adapted
to the presence of η. Note that (g′w(w̄))∗ is a mapping from C([0, T ])∗ to L2(0, T, V ).
Hence, the variational inequality form the last lemma can be rewritten as

(F ′(w̄) + (g′w(w̄))∗η, w − w̄)Q ≥ 0 ∀w ∈Wad.

We set µλ,a := (F ′(w̄)+(g′w(w̄))∗(η))+ and µλ,b := (F ′(w̄)+g′w(w̄)∗(η̄))−, which directly
implies µλ,a, µλ,b ≥ 0 and

F ′(w̄) + (g′w(w̄))∗η + µλ,b − µλ,a = 0. (3.5)

We further observe, cf. for instance [31], µλ,a(t, x) = 0 almost everywhere where ya(t, x) <
w̄(t, x) and µλ,b(t, x) = 0 almost everywhere where w̄(t, x) < yb(t, x), and w̄(t, x) =
ya(t, x) where µλ,a(t, x) > 0 as well as w̄(t, x) = yb(t, x) where µλ,b(t, x) > 0. This
implies

(µλ,a, ya − w̄)Q = (µλ,b, w̄ − yb)Q = 0. (3.6)

It remains to reformulate the obtained results in terms of our control problem in v.

Theorem 3.3. A control v̄λ ∈ L2(Q)) is the optimal control for (Pλ) with associated

states ȳλ, z̄λ ∈ W (0, T ) if and only if g(v̄λ) ≤ 0, ya ≤ λv̄ + ȳ ≤ yb and there exist

nonnegative Lagrange multipliers µλ,a, µλ,b ∈ L2(Q), η ∈ C([0, T ])∗ and adjoint states

pλ ∈W (0, T ) and qλ ∈ L2(0, T, V ) such that:

−(ϕ, pλ,t)Q + (∇ϕ,∇pλ)Q = (ȳλ − yd + µλ,b − µλ,a, ϕ)Q ∀ϕ ∈ L2(0, T, V )
pλ(T, ·) = 0,

(3.7)

−(qλ, ϕt)Q + (∇qλ,∇ϕ)Q = (BB∗(νz̄λ + pλ), ϕ)Q + 〈B∗ϕ, η〉 ∀ϕ ∈W (0, T )
qλ(0, ·) = 0,

(3.8)

(µλ,a, ya − λv̄λ + ȳλ)Q = 0, µλ,a ≥ 0 (3.9)

(µλ,b, λv̄λ + ȳλ − yb)Q = 0, µλ,b ≥ 0 (3.10)

〈(B∗z̄λ)(t)− ub(t), η〉 = 0, η ≥ 0 (3.11)

εv̄λ + qλ + λµλ,b − λµλ,a = 0. (3.12)

Proof. The proof follows along the lines of the regularized boundary control setting in
[33], taking into account the presence of the transformed control constraints. First, we
express F ′ in terms of fε and v̄λ. With F (w̄) = fε(Kw̄), gw(w̄) = g(v), K de�ned by
(3.4), using the chain rule yields

F ′(w̄)w = f ′ε(Kw̄)K ′(w̄)w = f ′ε(Kw̄)Kw,

g′w(w̄)w = g′(Kw̄)K ′(w̄)w = g′(Kw̄)Kw.
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This makes equation (3.5) equivalent to

f ′ε(Kw̄)Kw + ((g′(w̄))∗η,Kw)Q + (µλ,b − µλ,a, w)Q = 0 ∀ w ∈ L2(Q).

If we now substitute v = Kw and v̄λ = Kw̄, we obtain

f ′ε(v̄λ)v +
(
(g′(v̄λ))∗η, v

)
Q

+ (µλ,b − µλ,a, (λI + SS∗)v)Q = 0. (3.13)

The �rst and third term can be treated exactly along the lines of [33]. We know that

f ′ε(v̄λ)v = (SS∗v̄λ − yd, SS∗v)Q + ν(S∗v̄λ, S
∗v)I + ε(v̄λ, v)Q

= (SS∗(ȳλ − yd) + νSS∗v̄λ + εv̄λ, v)Q = (SB∗p1 + νSB∗z̄λ + εv̄, v)Q

= (S(B∗p1 + νB∗z̄λ) + εv̄λ, v)Q = (q1 + εv̄λ, v)Q,

where z̄λ = S∗v̄λ, and p1, q1 are the solutions of

− (ϕ, p1,t)Q + (∇ϕ,∇p1)Q = (ȳλ − yd, ϕ)Q ∀ϕ ∈ L2(0, T, V ), p1(T, ·) = 0, (3.14)

(q1,t, ϕ)Q + (∇q1,∇ϕ)Q = (BB∗(p1 + νz̄λ), ϕ)Q ∀ϕ ∈ L2(0, T, V ), q1(0, ·) = 0, (3.15)

respectively, according to the de�nitions of S and S∗. We further see that

(µλ,b − µλ,a, (λI + SS∗) v)Q = λ(µλ,b − µλ,a, v)Q + (µλ,b − µλ,a, SS∗v)Q

= λ(µλ,b − µλ,a, v)Q + (SS∗(µλ,b − µλ,a), v)Q

= λ(µλ,b − µλ,a, v)Q + (SB∗p2, v)Q

= λ(µλ,b − µλ,a, v)Q + (q2, v)Q,

where p2 = S∗(µλ,b − µλ,a) and q2 = SB∗p2 solve

− (ϕ, p2,t)Q + (∇ϕ,∇p2)Q = (µλ,b − µλ,a, ϕ)Q ∀ϕ ∈ L2(0, T, V ) p2(T, ·) = 0, (3.16)

(q2,t, ϕ)Q + (∇q2,∇ϕ)Q = (BB∗p2, ϕ)Q ∀ϕ ∈ L2(0, T, V ), q2(0, ·) = 0. (3.17)

It remains to discuss the second term in (3.13). Observe again that (g′(v̄λ))∗ maps
continuously from C([0, T ])∗ into L2(I, V ), hence there is q3 ∈ L2(Q) such that

(q3, v)Q = ((g′(v̄λ))∗η, v)Q = 〈η, g′(v̄λ)v〉 = 〈η,B∗Av〉.

Similarly to the setting with unregularized state constraints in Q, we �nd that q3 ful�lls

−(ϕt, q3)Q + (∇ϕ,∇q3)Q = 〈B(ϕ), η〉 ∀ϕ ∈W (0, T ).

The adjoint variables p1, p2 and q1, q2, q3 are functions in W (0, T ). It is clear that
p := p1 + p2 and q := q1 + q2 + q3 solve the adjoint systems (3.7) and (3.8), respec-
tively, and that the gradient equation (3.12) is ful�lled. The conditions (3.9) and (3.10)
follow immediately from (3.6) and the de�nition of µλ,b. Likewise, the conditions (3.11)
follow immediately from the complementary slackness conditions in Lemma 3.2 and the
de�nition of gw. By convexity of the problem, these necessary conditions are also su�-
cient for optimality.
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3.3 Further aspects

From the optimality conditions obtained in the last section, we can now obtain additional
regularity for the optimal control v̄λ by typical bootstrapping arguments. It is known
that the conditions (3.9) and (3.10) are equivalent to

µλ,a = max (0, µλ,b − µλ,a + c(λv̄λ + ȳλ − yb))
µλ,b = max (0, µλ,b − µλ,a + c(ya − λv̄λ + ȳλ))

for any c > 0. Choosing c = ε
λ2 and employing the gradient equation (3.12) we arrive at

µλ,a = max

(
0,− 1

λ
qλ +

ε

λ2
(ya − ȳλ)

)
, µλ,b = max

(
0,− 1

λ
qλ +

ε

λ2
(ȳλ − yb)

)
.

We know that ȳλ, qλ ∈ L2(0, T, V ). If ya, yb ∈ L2(0, T, V ), the same regularity holds for
µλ,a, µλ,b due to the H1 stability of the max-operator. In turn, the gradient equation
(3.12) directly yields the same regularity for the optimal control v̄λ.

When comparing this to the regularity discussion in [27], we observe that there addi-
tional L∞(I,H)-regularity of the control is required for the numerical analysis. In this
work, this is immediately obtained due to the presence of control bounds in L∞(Q). In
our setting this regularity is not immediately obvious since the adjoint qλ ∈ L2(0, T, V )
appears in the gradient equation, whose regularity is limited by the measure η in the
right-hand-side. However, the bilateral (mixed) state constraints

ya ≤ λv + y ≤ yb

lead to w̄ := λv̄λ + ȳλ ∈ L∞(Q). Moreover, we have L∞(0, T,H)-regularity of ȳλ,
therefore v̄λ = 1

λ(w̄− ȳ) is an element of L∞(0, T,H). We summarize this in the following

Corollary 3.4. Under the assumptions of Theorem 3.3, the optimal control v̄λ ∈ L2(Q)
admits the additional regularity

v̄λ ∈ L2(0, T,H1(Ω)) ∩ L∞(0, T,H),

provided that the bounds ful�ll ya, yb ∈ L2(0, T, V ).

With this result at hand, the problem is now feasible for numerical analysis along the
lines of [27].

Let us end this discussion with a short comment on convergence results for λ → 0.
The proof of Theorem 3.3 and the preceding discussions in [33] need to be amended by
a feasibility discussion with respect to the control constraints. First, once a minimizing
sequence {vn} of (Pλ) is given, it is rather straight forward to show that the weak limit of
{un} := {S∗vn} ful�lls the control bounds L2-a.e., since all un ful�ll the bounds even in a
pointwise manner. It is more di�cult to prove that the sequence ṽ0

k constructed with the
help of a Slater point ṽ ∈ C(Q̄) by ṽk = vk + 2c

kδ ṽ is feasible with respect to the pointwise

13



transformed constraints on z of the regularized problem. This step is necessary to show
that the weak limit of S∗vn is actually optimal. Looking into the proof of Theorem 3.3
in [33], vk ∈ C(Q̄) is chosen such that ‖S∗vk− ū‖Q ≤ 1

k , hence this results in convergence
and thus feasibility in L2(0, T ). The way out seems to be an approximability assumption
as in [37]. If there is vk ∈ C(Q̄) such that ‖B∗A∗vk − ū|C (̄[0,T ]) ≤ 1

k , then convergence
can be expected if ε is chosen appropriately depending on λ, cf. [33, Theorem 3.3]. We
will not discuss convergence in detail here.

4 An elliptic model problem with �nitely many control

parameters

To end this manuscript, we comment very brie�y on the elliptic problem

min J(y, u) =
1

2
‖y − yd‖2 +

ν

2
u2 (4.1)

subject to
−∆y = ue(x) in Ω

y = 0 on Γ
(4.2)

and for simplicity unilateral constraints on the state as well as the control

y ≤ yb in Ω, u ≤ ub. (4.3)

Here, the control u is a control parameter and e ∈ H is a given shape function as in
the previous sections. Also here, it is possible to consider more than one control, i.e. a
control vector u ∈ Rm for m > given shape functions ei : Ω→ R. It is well known by the
Lax-Milgram lemma that for every f ∈ V ∗ there is a unique solution of Poisson's equation
y ∈ V . Under our assumptions, y admits improved regularity y ∈ H2(Ω) ↪→ C(Ω̄), see
e.g. [14], where the embedding into the space of continuous functions holds up to spatial
dimension n = 3. Hence, the unregularized optimal control problem can be analyzed with
respect to existence of Lagrange multipliers without further assumptions other than a
Slater condition, see for instance [12] or e.g. [29, 30]. In the latter works, slightly higher
regularity of the shape function is assumed, but only needed for the numerical analysis.

This problem belongs to the class of semi-in�nite optimization problems and its anal-
ysis is speci�cally interesting due the often observed structure of having �nitely many
points where the state constraints become active. The Lagrange multipliers will then in
fact be Dirac measures, and a regularization for numerical treatment seems appropriate.
On the other side, despite this low regularity comparibly high rates of convergence of
�nite element error estimates can be obtained under certain conditions, cf. [29, 30].

For the analysis of the regularized problem, we will not need continuity results for the
state, in contrast to the parabolic problem, where we needed at least continuity with
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respect to time. Rede�ning the previous solution and control-to-state operators to their
elliptic counterparts, observe

G : H → V ∩ C(Ω̄), f 7→ y
B : R→ H, Bu = ue(x)
G : H → V ∩ C(Ω̄), G = GB,

and similar to before denote by S and S the operators G and G with range in H,
respectively. Note that S is self adjoint. Clearly, B∗ : H → R is given by B∗ϕ =∫

Ω ϕ(x)e(x)dx. Repeating the principal steps from Sections 3.1 to 3.2, we see that it
su�ces to work with the operators S and S∗ instead of e.g. G, see also [37, 38] for source
term representation. Observing that S : R → H, hence S∗ : H → R, we can directly
insert the ansatz u = S∗v, y = SS∗v in the objective function, amend it by a cost term
for v, and replace the state constraints by mixed constraints λv + SS∗v ≤ yb in H as
before. Now, the control bound u ≤ ub ∈ R becomes S∗v ≤ ub, hence the constraint
function g is a function mapping H into the real numbers, g : H → R, g(v) := S∗v − ub.
Since R has nonempty interior, Slater type assumptions are reasonable. We can directly
analyse the transformed problem

min fε(v) :=
1

2
‖SS∗v − yd‖2 +

ν

2
|S∗v|+ ε

2
‖v‖2 (Peλ)

subject to the constraints

λv + SS∗v ≤ yb a. e. in Ω, g(v) ≤ 0. (4.4)

Now the discussion of existence of solutions and Lagrange multipliers is straightforward
by adjusting the arguments shown in the previous sections. Eventually, assuming exis-
tence of a Slater point ṽ ∈ H such that λṽ + ỹ ≤ yb, z̃ ≤ ub − δ for some δ > 0, the
following optimality system is obtained:

Corollary 4.1. A control v̄λ ∈ H is the optimal control for (Peλ) with associated states

ȳλ, z̄λ ∈ V ful�lling

(∇ȳλ,∇ϕ) = (BB ∗ z̄λ, ϕ) ∀ϕ ∈ V (4.5)

(∇z̄λ,∇ϕ) = (v, ϕ) + (Bη, ϕ) ∀ϕ ∈ V, (4.6)

if and only if g(v̄λ) ≤ 0, λv̄ + ȳ ≤ yb and there exist nonnegative Lagrange multipliers

µλ,b ∈ H, η ∈ R and adjoint states pλ, qλ ∈ V such that:

(∇ϕ,∇pλ) = (ȳλ − yd + µλ,b, ϕ) ∀ϕ ∈ V (4.7)

(∇qλ,∇ϕ) = (BB∗(νz̄λ + pλ), ϕ) + (Bη, ϕ) ∀ϕ ∈ V (4.8)

(µλ,b, λv̄λ + ȳλ − yb)Q = 0, µλ,b ≥ 0 (4.9)

η(B∗z̄λ − ub) = 0, η ≥ 0 (4.10)

εv̄λ + qλ + λµλ,b = 0. (4.11)
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Note that v̄λ ∈ H implies z̄λ ∈ V ∩H2(Ω), hence ȳλ and µb,λ ∈ H as well as Bη ∈ H
imply pλ, qλ ∈ V ∩H2. With the same arguments as in the parabolic setting we further
observe

µb,λ = max(0,− 1

λ
qλ +

ε

λ2
(ȳλ − yb)),

and due to H1-stability of the max-operator we obtain µb,λ ∈ H1(Ω), provided yb ∈
H1(Ω). In turn, the gradient equation implies v̄λ ∈ H1(Ω). If boundedness of v̄λ is
required, this can be obtained for bilateral mixed constraints in L∞(Ω), since then λ̄v̄λ+
ȳλ is an L∞ function, and so is ȳλ due to the embedding H2(Ω ∈ C(Ω̄)) for n ≤ 3.
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