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Abstract 
Stricter legal requirements in crash safety lead to more complex development processes in computer-
aided engineering and result in an increasing number of simulations. Both, the construction of the 
simulation models as well as their evaluation are costly and time-consuming. Therefore, an automated 
workflow is required that significantly facilitates the analysis of the results by the engineer and 
increases the quality of the evaluation. 
In this study an automated evaluation process is proposed that detects anomalous crash behavior in a 
bundle of crash simulations. The individual states from the simulation are analyzed separately from 
each other and an outlier score is calculated using a kth-nearest-neighbor approach. Subsequently, 
these results are averaged into one score for each simulation. With the help of different statistical 
methods a threshold value is calculated, from which a simulation can be identified as an outlier. The 
evaluation is carried out on 5 datasets. On average, the precision and recall of the presented method 
are 1.0 and 0.91, respectively. 
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1 Introduction 

 
When developing vehicles, a large number of different load cases, covering a range of crash scenarios, 
are taken into account. The load cases result from legal requirements and the evaluation criteria of 
consumer protection organizations such as US-NCAP and Euro-NCAP [1]. It is not possible to cover 
all of these load cases with hardware tests of prototypes during vehicle development. For this reason, 
the development of crash structures has been based on the results of explicit finite element 
calculations for decades [2]. Tests are only used to verify the simulation models and for the final 
evaluation shortly before the start of production (SOP). 
 
In the conventional, simulation-driven development process, the results of a calculation are used for 
new design ideas with regard to the position and arrangement, shape and dimensioning of the 
structural components. These ideas are integrated in Computer Aided Design (CAD) or directly in 
the finite element preprocessor and the new structure is calculated again. This is the process to get 
better and better designs over weeks and months. Nevertheless, the following properties of crash 
structures are hardly taken into account in this process: 

• numerical and physical bifurcation points, 
• non-smooth structural responses, 
• mesh dependent results. 

Therefore, the developed crash structures can be very unrobust. Various simulations differ in their 
crash behavior. Deformations, rigid body movements and failures can vary significantly. Often, a few 
simulations stand out as outliers with their crash behavior. If these outliers are misinterpreted or 
overlooked in the evaluation, this can lead to incorrectly taken measures. Extensive development 
loops can result and the development process is unnecessarily prolonged. 
 
Nowadays, engineers are no longer able to evaluate all simulations for all quantities of interest on 
hundreds of components in detail. Standardized analysis tools support them in their work, but they 
are static and only evaluate certain predefined measurements. The large number of simulations and 
the complexity of the vehicle models require a more sophisticated evaluation of the results. Overall, 
there is growing need for an intelligent automated evaluation that analyzes the entire vehicle and all 
existing quantities of interest and provides the results to the engineer in a clear manner. 
 
In this work, we present a method for the automated detection of anomalies in crash behavior. First 
an overview of the state of the art is given. Subsequently, we introduce a method for automated 
detection of outliers in crash simulations. In the fourth section, the method is investigated in various 
experiments. The last section summarizes the results and gives an outlook on further research. 
 

 
Figure 1: Front-end vehicle section model: The longitudinal beam colored in red is investigated in this study 
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2 State of the Art 

2.1 Preparation of the Finite Element Data 

 
Currently, different approaches for a more intelligent, comprehensive and automated evaluation of 
crash simulations are being investigated. All of them have the problem of the representation of the 
FE data in common. Different FE meshes of the different simulations make the direct processing with 
further algorithms difficult. In the literature, there are several approaches to prepare the data 
accordingly and thus make them comparable. 
In [3], the geometric center of gravity is determined along the longitudinal axis of the component and 
the information of the surrounding elements is projected onto this axis. This procedure is suitable for 
profile-shaped components, but it is difficult to transfer it to planar components. 
In [4] and [5], the finite elements are projected onto a spherical surface. This spherical surface is then 
discretized and the previously three-dimensional data are now available as a two-dimensional image. 
A disadvantage of this method is that a distortion of the data occurs due to the spherical projection. 
In [5], the components are discretized by voxels. This preserves the three-dimensional structure. The 
quality of this approach depends on the discretization. For a fine discretization, it must be taken into 
account that this approach requires more memory than the previous approaches due to its three-
dimensional structure. A coarse discretization, on the other hand, is accompanied by a greater loss of 
information. 
In [6], one simulation is used as the reference. Its finite element mesh defines the data representation 
for all other simulations. The FE meshes of other simulations are mapped to the chosen reference 
mesh. While the full resolution of the original data is preserved, larger changes in the mesh can result 
in artefacts in later analysis steps if not suitably addressed, see [7], [8], [9]. 
 

2.2 Outlier detection 

 
According to Hawkins [10], an outlier can be defined as follows: 

“An outlier is an observation which deviates so much from the other observations as to arouse 

suspicions that it was generated by a different mechanism.” 

Thus, outliers are not only phenomena that occur rarely, but are significantly differentiated from the 

other data primarily by their characteristics. The other data are referred here accordingly as inliers. In 

the context of crash simulations, there is no other work specifically addressing the automatic detection 

of outliers that we are aware of. Outlier analysis is implicitly present in data analysis using 

dimensionality reduction, see e.g. [5], [11], [7], [8], [9]. 

However, there has been long-standing research on algorithms and data representations for outlier 

detection in other application areas. On the one hand, since outliers can negatively affect the 

performance, outlier detection is an often-used step in preprocessing before machine learning models 

are trained [12]. On the other hand, it is important to know about existing outliers as they could be an 

indication of an unusual event or a defect in a system. 

For example, in [13], outlier detection is used to detect unusual energy consumption in buildings. 

[14] analyzes abnormalities in credit card payment transactions to detect credit card fraud. 
 
Regardless of the use case, outlier detection must distinguish between supervised, semi-supervised 
and unsupervised learning methods [12]. In the first two variants, prior knowledge about the data is 
assumed. An algorithm is trained by receiving both the data and the associated classes as information. 
In the context of outlier detection, the associated classes mean whether a data point is an inlier or an 
outlier. In unsupervised algorithms, this prior knowledge is not assumed. The algorithm must 
independently identify the outliers in the raw data. Since prior knowledge about inliers and outliers 
for hundreds of components cannot be assumed in the context of crash simulations, an unsupervised 
learning method is used in this work. 
 
  



There are many algorithms for unsupervised outlier detection [12]. The proposed workflow is based 
on an outlier score, that estimates how severe the anomaly is. A simple, basic approach is using the 
distance to the kth nearest neighbor (KNND)  [15] as the outlier score. This method depends only on 
a single hyperparameter k, which determines the kth neighbor used in the calculation of the outlier 
score. Typically, more complex models with many hyperparameters can achieve better results than 
simple algorithms. However, selecting these hyperparameters is a laborious process that can depend 
heavily on the used dataset. In particular, transferability to other data is not always feasible. 
 
Once for each component of the simulations the outlier score has been calculated, the next step is to 
decide which instances are selected as outliers and are reported to the engineer. Since no prior 
knowledge of the underlying data can be assumed, no fixed threshold value can a-priori be defined 
for all components. However, there are various statistical methods for this problem. 
 
A well-known statistical method for the identification of outliers involves the calculation of z-scores 
[16]. Their use is based on the assumption of normally distributed data. From each dataset, the mean 
and standard deviation can be calculated. Data that are more than n times the standard deviation away 
from the mean are marked as outliers. The choice depends on how sensitively the procedure should 
detect extreme values. For example, 99.7% of the normally distributed data are within three times the 
standard deviation (n=3). Within the 1.65 standard deviation 80% of the data lie (n=1.65). Depending 
on the expected proportion of outliers, the value of n can be selected from statistics tables. In the 
following, this method is referred to as the STD method. One disadvantage of STD is that the 
calculation of the threshold itself is dependent on outliers in the dataset [17]. 
Another well-known method, which is more robust towards outliers, stems from the visualization by 
box plots [18], [19]. The basis for this is the interquartile range. First, the data are sorted in ascending 
order by their value. The first and third quartiles are determined within which 25% and 75% of the 
data lie, respectively. In the next step, the middle 50% of the data is selected and the difference 
between the largest and smallest of these values is calculated. The result is called the interquartile 
range (IQR). In a boxplot, these two values mark the position of the box. Data points that are more 
than 1.5 times the IQR away from the third quartile of the data are marked as outliers. At this distance, 
the so-called whiskers are drawn in the boxplot. In the following, this method will be referred to as 
the IQR method. If more than 25% of the data consist of outliers the calculation of the threshold is 
affected. 
Furthermore, the robust z-score [20], [17] & [21] is often used. Unlike quartiles, means and standard 
deviation, using the median of a dataset is more robust in detecting outliers. First, the median of the 
dataset X is calculated. Then, the median of the absolute deviation from the median is calculated and 
multiplied by the factor b, see equation (1). In the literature, normally distributed data is often 
assumed, which is why b is chosen to be 1.48 [21]. The resulting value is called the median absolute 
deviation: 
 
 𝑴𝑨𝑫 = 𝒃 ∗ 𝑴𝒆𝒅𝒊𝒂𝒏(|𝑿 − 𝑴𝒆𝒅𝒊𝒂𝒏(𝑿)|) (1) 

Similar to the standard deviation, the MAD is a measure of the dispersion of the data, but now with 
respect to the median. To calculate the threshold for outlier detection, the MAD is multiplied by the 
value a and added to the median. Typical values for a from the literature are 3, 2.5 and 2 [22]. All 
data exceeding the resulting threshold are marked as outliers. In the following, this procedure is called 
the MAD method.  



3 Method for automated detection of outliers in crash behavior 

 
In this chapter, a method for automated detection of outliers in crash simulations is proposed. The 
workflow is visualized in Figure 2. Once a new simulation has been calculated, the outlier detection 
is automatically started. The new simulation is compared to the existing ones in the simulation 
database. Note that a vehicle consists of hundreds of construction parts. In order to provide detailed 
information where in the car outlying crash behavior is detected, an outlier score is calculated 
individually for each component. Based on the computed outlier scores a threshold is calculated, 
which indicates whether a component shows a suspicious crash behavior or not. As a result of the 
procedure, the components with the most anomalous crash behavior are presented to the analyst. In 
the following sections, this workflow is described in detail. 
 

 

 
Figure 2: Procedure of the automated Outlier Detection for Crash. Each component of a new simulation is analyzed individually and 

compared to the existing database. The engineer gets warned if an anomalous behavior occurs in the new simulation. 

 

3.1 Preparation of the crash simulation data 

Before the FE data can be analyzed in an automated process, the meshes have to be prepared 
accordingly. 
In the case of robustness analyses, in which parameters such as the wall thicknesses of individual 
components are scattered, the finite element meshes of the individual simulations are identical in each 
case. Here, the information of the element data can be compared directly. In the case that the finite 
element meshes of the individual simulations and components differ, for example due to geometric 
differences, the data must be preprocessed accordingly by mapping [6] or discretization [5] 
approaches so that the information of the elements becomes comparable. The number of elements of 
a component is denoted by nel in the following. For each of these elements, different evaluation 
quantities are available, such as displacement, acceleration or plastic strain. Depending on which 
evaluation quantity is used, statements can be made about the deformation, failure or kinematic 
behavior during the analysis. 
Since crash simulation is a dynamic process, the data does not only have spatial characteristics but 
also comes as a time series. Here, the temporal behavior has to be considered appropriately as well. 
The points in time where information is stored in the simulation output are usually called states. 
Note that there can be situations, where simulations must be aligned in time (due to time shifts and 
offsets) as a preprocessing step in order to make them comparable. If, for example, the initial distance 
between the vehicle and the barrier differs in one simulation compared to all other simulations, but 
the same crash behavior is present in all variants, the one simulation will be interpreted as an outlier 
if no corresponding temporal correction of the signals has taken place. This would not be a desired 
result of the outlier detection. In this case, a cross-correlation could be used to automatically calculate 
the time offset and correct it accordingly, so that a fair comparison between the state-based analysis 
is possible and the real outliers can be found. 
 
 
 



3.2 Calculation of the Outlier Scores 

 
The individual steps for the calculation of a single outlier score and the decision whether a component 
shows a conspicuous crash behavior are summarized in Figure 3. In the following, the procedure is 
described in detail. 

 
Figure 3: Procedure of the automated Outlier Detection for Crash. Outlier scores are calculated for every state. In order to get one 

score for the whole simulation, scores are standardized and summarized over time by mean calculation. This procedure is repeated 

for different hyperparameters of the outlier detection algorithm. The scores of different hyperparameters are combined to build an 

ensemble method and increase robustness. A threshold is used to decide whether a component shows anomalous crash behavior. 

 
Since the focus in this report is on the approach for detecting outliers in crash simulations rather than 
comparing different algorithms, a simple and robust method is selected for this study. Therefore, a 
kth-nearest-neighbor method is used to determine the outlier score. Here, it corresponds to the chosen 
distance between a simulation and its kth neighbor. We calculate the distance between two 
simulations using the Euclidean distance of their respective data representations consisting of the 
individual component elements and the corresponding evaluation variable (e.g. plastic strain). The 
calculation of the Euclidean distance between two simulations x and y is given by 
 
 𝒅(𝒙, 𝒚) =  √((𝒙𝟏 − 𝒚𝟏)𝟐 + (𝒙𝟐 − 𝒚𝟐)𝟐 + . . + (𝒙𝒏𝒆𝒍 − 𝒚𝒏𝒆𝒍)𝟐 (2) 

The procedure is exemplary shown in Figure 4. State 25 of four simulations and a virtual component 

consisting of 3 finite elements are considered. The individual simulations are shown in the rows, 

while the plastic strains of the respective element of the component to be analyzed are displayed in 

the columns. 

 
 

 Plastic Strain   Distance Matrix 

State25 el1 el2 el3  k=2 Sim1 Sim2 Sim3 Sim4 

Sim1 1 3 2  Sim1 0 1 2 6 

Sim2 2 3 2  Sim2 1 0 2,24 6,08 

Sim3 1 5 2  Sim3 2 2,24 0 6,33 

Sim4 1 3 8  Sim4 6 6,08 6,33 0 

 

Figure 4: Left: plastic strains of the individual elements of four simulations exemplary for state 25. Right: Euclidean distance between 

the simulations.  In blue the second nearest neighbors (k=2) are colored exemplarily per row and correspond to the outlier scores of 

the corresponding simulation. The k-nearest neighbor relation is not symmetric in general. 



If the values of the elements are considered across the simulations, it is noticeable that the fourth 
simulation stands out as an outlier due to an increased value in the third element. The results of the 
distances of all simulations to each other are summarized in the distance matrix in Figure 4.  
The next step is to decide which value for the hyperparameter k should be used in the analysis. In this 
example, k=2 is chosen as an example. The corresponding kth neighbors are highlighted in the figure. 
Thus, the outlier scores of the simulations for state 25 are available and it becomes obvious that the 
fourth simulation seems to be an outlier. This procedure is repeated for all states. 
 
For each time step and each simulation, the outlier scores for the considered component are calculated 
separately and stored in the matrix S. In order to make a final evaluation of whether an entire 
simulation is an outlier, the evaluations from the individual states must be summarized. For this 
purpose, the mean value is calculated across the states. Since the distance based KNND method is 
used in this study, it is important that the scores of the states are scaled appropriately in each case 
before summation. In early states, where only small deformations and correspondingly small plastic 
strains are present, the distances between the individual simulations are also small, resulting in a low 
outlier score. In the later states where the deformations and plastic strains become larger, the distances 
to the nearest neighbors and as a result the corresponding scores are larger. If the scores of the 
individual states were averaged without prior scaling, this would lead to a larger weighting of the 
later states. This could cause simulations with true outlier crash behavior to be missed in the early 
stages of the crash. Therefore, the values must be scaled appropriately before summation [12]. In this 
study, the characteristic values of the states are standardized separately. The columns of matrix S 
contain the information about the individual states. For every column of S (denoted by Scol), its mean 
μ is subtracted and the result is divided by its standard deviation σ according to 
 
 𝒁 =

𝑺𝒄𝒐𝒍 − 𝝁(𝑺𝒄𝒐𝒍)

𝝈(𝑺𝒄𝒐𝒍)
    . (3) 

After this step, a value is available for each simulation and component, which tells how much this 
simulation shows an outlier behavior (see Figure 4). 
The results of the KNND method are strongly dependent on the choice of the parameter k. The ideal 
value of this parameter in turn depends on the nature of the data and the composition of inliers and 
outliers. It is only possible to determine a suitable value by having prior knowledge about the data. 
In general, however, there is no prior knowledge about the crash simulations at hand, so it is not 
known if and how many outliers are included. Accordingly, the ideal value for k cannot be determined 
in advance. In practice, however, the procedure should be fully automated and work without prior 
knowledge about the individual components. 
Therefore, a so-called ensemble model is used, which increases stability of the predictions and leads 
to more robust results [12]. It consists of several individual models whose outlier scores are averaged. 
First, a selection of appropriate hyperparameters is made. Then, the procedure described up to this 
point is repeated for the selected values of k. For each state, models are trained, their results 
standardized and averaged over the states. Finally, the results of the different models with different 
values of the hyperparameter k are averaged. 
Next, it must be decided at which value a simulation is classified as an outlier and a warning is 
displayed to the engineer. Since the vehicle consists of hundreds of components and outlier detection 
is supposed to make the evaluating engineer's job easier, it is desirable that warnings are only 
displayed when something out of the ordinary happens. Any misclassification distracts the engineer, 
costs time and reduces confidence in the system. 
However, it is not possible to define a fixed threshold value, since this depends on the algorithm, the 
available data and the component under consideration. Instead, the earlier described statistical 
methods such as the median absolute deviation can be used to calculate this threshold value. The 
result of the outlier detection method are warnings of components that show a conspicuous crash 
behavior. The results can be visualized in a post-processing tool. Conspicuous components, for 
example, are highlighted in color so that the engineer's focus is placed on the relevant points in the 
vehicle. 
 

  



4 Experiments 

4.1 Description of the data from a longitudinal beam 

 
To evaluate the methodology, data from a robustness study with 51 simulations were used, see  [5] 
&  [23]. A front car section model collides with a deformable barrier at 64 km/h in the Offset 
Deformable Barrier (ODB) load case [1]. The individual simulations differ in the scattered wall 
thicknesses of 36 components. This results in instabilities and highly scattered crash behavior, 
especially in the lower load plane. In this study, the axially loaded longitudinal beam, colored in red 
in Figure 1 is examined as an example. The plastic strains of the finite elements are used as the data. 
Since the finite element meshes of the individual simulations do not differ, the information of the 
2286 finite elements can be used without a preprocessing step. Furthermore, it is not necessary to 
correct any time shifts between the simulations, since the distance between the vehicle and the barrier 
stays constant. 
 
In order to validate the outlier detection results, each simulation for this study was classified 
manually. For this purpose, a Principle Component Analysis (PCA) [24] was first used to reduce the 
dimension of the data in order to obtain a quick overview of the different deformation behavior of the 
individual simulations. Analogous to [5], the temporal behavior as well as the spatial information is 
reduced in dimension, so that one point in the data matrix corresponds to one simulation. Figure 5 
shows the results of the dimension reduction in 2D. This kind of data exploration is suitable to get a 
quick overview of the deformation behavior of the 51 simulations [7], [8], [9]. 
 

   
Figure 5: The results of PCA show three different deformation behaviors. Simulations in cluster 2 show folding from the front, in 

cluster 1 show folding from the back and in cluster 0 show a mixed behavior. 

 
On closer inspection, three behavioral modes can be identified. In most of the simulations (26), the 
initial deformation starts at the front and propagates to the rear. In 12 simulations, the initial 
deformation starts at the rear of the component and propagates forward over time. This behavior is 
undesirable because it introduces instabilities into the load path and is therefore defined as a strong 
outlier. In the remaining 13 simulations, a mixed behavior occurs in which the component starts to 
deform from the front and the back simultaneously. These simulations will be referred to as weak 
outliers in the following. At selected time steps, the deformation behavior of these three categories is 
visualized in Figure 6. 
 



 
Figure 6: The Screenshots of simulations of the three different clusters are exemplarily shown. First row corresponds to state 24, 

second row to state 32. 

In chapter 3.2 it was described that the outlier detection is automatically executed as soon as a new 
simulation is calculated. The database is extended step by step with new simulations, so that the 
context in which a new simulation is evaluated changes continuously. For the analyses in this chapter, 
artificially generated datasets with different amounts of outliers are used to evaluate the presented 
method on different difficult examples (see Table 1). The datasets correspond to artificial 
configurations (total number of simulations and amount of outliers), which can occur in the database 
during the development process. Although this procedure does not reproduce the process presented, 
it does allow a clear and comprehensive analysis of the outlier detection. The general validity and 
transferability of the results to the process explained in chapter 3.2 are not limited by this, rather the 
difficulty to detect outliers is increased, which makes the detection of suspicious crash behavior even 
more challenging in the analysis part. 
Anomalies should be detected especially if they occur rarely. Therefore, dataset 1 consists of all 
existing inlier simulations and one strong outlier simulation. Even if the proportion of outliers 
increases, the algorithm should detect them reliably. Accordingly, datasets 2 and 3 consist of 26 
inliers and five and 12 strong outliers, respectively. The distinction between inliers and strong outliers 
is also easy for humans in these datasets. It is more difficult when the weak outliers are additionally 
considered. Therefore, the fourth dataset was composed of all 26 inliers, all weak outliers and 5 strong 
outliers. Thus, this dataset poses the biggest challenge for the presented method. Since the engineer 
should not be disturbed by false warnings, the fifth dataset consists only of all 26 inlier simulations 
and does not contain any outliers. The method should be able to classify all existing simulations in 
this dataset as inliers. 
 

Table 1: The 5 different datasets used for the analysis in this study are described. The amount of inliers and outliers is shown 

together with the computation time needed for the KNND Outlier detection. 

 Inliers Weak 
Outliers 

Strong 
Outliers 

Contamination [%] 

Dataset 1 (DS1) 26 0 1 3.70 
Dataset 2 (DS2) 26 0 5 16.13 
Dataset 3 (DS3) 26 0 12 31.58 
Dataset 4 (DS4) 26 13 5 40.91 
Dataset 5 (DS5) 26 0 0 0.00 

 
 

  



4.2 Calculation of the outlier scores 

 
Before we examine the influence of the hyperparameters and the contamination, this chapter gives an 
overview of the results of the KNND procedure and the resulting outlier score, before and after 
standardization. For this purpose, the second data set with k=10 is used as an example. We perform 
the outlier detection for each state. For this the package pyod [25] with the option "method=largest" 
is used. This option specifies that the distance to the kth neighbor is used as the outlier score. The 
results are shown on the left of Figure 7. 
 

   
Figure 7: Visualization of the outlier scores. Each row represents a simulation. Each column corresponds to the temporal 

information from the states. Left: Values from KNND. Right: Column-wise standardized values from KNND. 

Each row represents a simulation. The first 26 rows correspond to the 26 inlier simulations, the last 5 
rows to the 5 strong outliers. The time is represented by each column. It can be seen that up to state 
22, no deviations are observed in the data. Between state 22 and 28, the last 5 simulations stand out 
with higher scores. Here, the different crash behavior in the different simulations is clearly visible. 
Also, for the later states the last 5 simulations stand out from the other 26. It can be seen for each 
simulation that the scores of the simulations tend to increase with advancing time. This is related to 
the KNND algorithm, where the scores are directly proportional to the distance to the kth neighbor. 
The larger the deformation at the later states, the larger the distances between the simulations due to 
the different deformation behavior. For the early states, all simulations seem to have the same 
distances. This representation of the results leads to incorrect interpretations of the available data. 
Due to the time dependence of the plastic strains and thus of the scores, the individual states are not 
directly comparable with each other. Therefore, the scores should be standardized as shown in Figure 
7 on the right. The plot shows that differences between the simulations already appear from the 6th 
state on. Only the first 6 states seem to be identical. If the simulation results are inspected, it turns out 
that in the first 6 states no deformation occurs in the component and therefore the simulations cannot 
differ yet. 
In states 20 and 21, the 15th simulation clearly stands out. At this time of the crash, the longitudinal 
member is hit laterally by the radiator. To investigate why the 15th simulation is identified as an 
outlier, we compare it in detail with the 16th and 17th simulations, these simulations have low outlier 
score. The plastic strain results for state 21 are shown in Figure 8 for these three simulations. Note 
that the lateral deformation of the component caused by the radiator can be seen in all three 
simulations. The 15th simulation, however, shows an additional deformation in the upper area, which 
cannot be observed in the other two simulations. This is caused by the collision with another 
component at that time. For the other simulations the collision with that component occurs with a 
slight delay at state 22. That is the reason why the anomaly score of the 15th simulation reduces for 
that state, because all simulations again show the same crash behavior in that location. Furthermore, 
from state 22 on, the last five simulations are clearly different from the other simulations. 
This example shows that even small differences in the deformation behavior can be detected by the 
presented method. The plot in Figure 8 is suitable to determine in which time range the anomalous 
behavior occurs. Thus, the presented method shows not only if and in which component, but also 
when an outlier behavior occurs in a simulation. 
 



 
Figure 8: Longitudinal Member in state 21 with the strains variable mapped on the surface. Left: simulation 15, Middle: simulation 

16, Right: simulation 17 

If the engineer is interested in one outlier score summarizing the whole temporal behavior, the results 
of the individual states can be averaged to a single score after the standardization step explained in 
section 3.2. As a result, one value is obtained for each simulation, as shown in Figure 9. The 31 
simulations considered are shown on the horizontal axis, while the cumulative outlier score is given 
on the vertical axis. In the next chapter the influence of the hyperparameters and the different datasets 
on the outlier scores will be considered. 
 

  
Figure 9: The Outlier scores of dataset 2 are displayed as blue points. For every simulation (horizontal axis), one score is shown on 

the vertical axis. The values are calculated as the mean of the time dependent outlier scores from Figure 7. The blue points 

correspond to inlier simulations, whereas the red crosses represent the outliers. 

4.3 Hyperparameter study based on the 5 datasets 

 
As described in chapter 3, the accuracy of the KNND algorithm in detecting anomalies depends on 
the choice of the hyperparameter k. Depending on how many outliers are present in the dataset, the 
hyperparameter k must also be chosen accordingly. Figure 10 shows the calculated scores for different 
values of k (2, 5, 10, 20) and the 5 datasets presented. The inliers and the outlier simulations to be 
detected are marked accordingly. Inliers are represented by blue dots, strong outliers by red crosses 
and weak outliers by yellow squares. For high accuracy in outlier detection, inliers should receive a 
low score and outliers a high one. 
In the first data set, regardless of k, the outlier simulation clearly stands out with a significantly higher 
outlier score compared to the inlier simulations. In the fifth data set, in which no outliers are present, 
no simulation with an increased outlier score occurs, as desired.  
In the data sets DS2 to DS4, for too small values of k, the outlier simulations cannot be clearly 
distinguished from the inliers. Especially in the third data set, the conspicuous simulations for k=2 
and k=5 cannot be clearly identified. The scores of the outliers hardly stand out from those of the 
inliers. This is due to the fact that three clusters are formed for the three different deformation 
behaviors as shown in Figure 5. For outliers to be reliably detected by the KNND algorithm, k should 
be larger than the cluster size of the outliers. Accordingly, it can be seen from the figure that with 
increasing values of k, significantly better results can be obtained. 



 
Since there is generally no prior knowledge about the data, an ensemble model is trained as described 
in Chapter 3 by averaging the results of the individual models with different k. The result from this 
approach is shown in the last row in Figure 10. Individual hyperparameters that give very poor results 
(e.g., k=2) are balanced by models with good hyperparameters (e.g., 20). The results show that the 
outliers in datasets 1-3 clearly stand out from the inliers. In the fourth dataset, it is difficult to 
distinguish all weak outliers from inliers. The fifth dataset doesn´t contain any outliers and no 
simulations stand out from the plot due to an extreme value. 
Humans can make these distinctions from the plot in Figure 10. However, since the detection of 
outliers should be done without an intervention, this step must be automated. Statistical methods can 
be used to calculate a threshold value that distinguishes the outliers from the inliers. For the following 
investigations, the models for k=10, 15, 20, 25 are exemplarily combined and only their mean value 
is examined. 
 

 
Figure 10: Influence of the parameter K and its ensemble average for the different datasets and different hyperparameters k of the 

KNND approach. On the horizontal axis, the single simulations of the respective dataset are displayed. The outlier scores are shown 

on the vertical axis. Blue points correspond to inlier simulations, red crosses to strong outliers and yellow squares to weak outliers. 

4.4 Definition of the threshold 

 
Up to now, outlier scores for each component of each simulation are available as a result of the 
method. In order to warn the engineer automatically in case of conspicuous crash behavior, it is 
necessary to calculate a threshold value and, based on this, to identify the conspicuous components 
automatically. As described in Section 2, this paper compares three well-known statistical methods 
for threshold definition. If an outlier score is above the threshold, it is an outlier. All simulations with 
smaller scores are classified as inliers. 
All three methods require the definition of parameters that have a significant effect on the results. 
Their choice is application specific and strongly depends on the distribution and the outlier fraction 
in the data. Parameter values are used, which are common in the literature. For the parameter in the 
IQR method, the value 1.5 is chosen. For the method based on the standard deviation, the values 3 
and 1.68 are used for the parameter n, within which 99.7 and 90% of the data of a normal distribution 
lie, respectively. Accordingly, these two variants are abbreviated STD99 and STD90 in the following. 
For the calculation of the MAD-based threshold, b is chosen to be 1.48 and a is chosen to be 2.5, as 
is common in the literature. This variant is abbreviated as MAD25. 
The goal of calculating the threshold is to identify all outliers (high recall) and at the same time not 
to misclassify any inliers as outliers (high precision). Figure 11 shows the already known outlier 
scores of the five different datasets for the averaged KNND algorithm.  



Additionally, the four different threshold values are shown in this figure, which are used for the 
classification into inlier and outlier. Furthermore, Table 2 shows the classification accuracies by the 
values Precision and Recall for the different datasets. 

 
Figure 11: The outlier scores of the 5 different datasets for the respective simulations are shown. The horizontal lines correspond to 

the calculated thresholds for the standard deviation based methods STD99 and STD90, the IQR method and the MAD25 method. 

In the first dataset, all thresholds correctly separate the outlier simulation from the rest. At the same 
time, there are no misclassified inliers. Accordingly, Precision and Recall are both 1 for all four 
methods. Also, for the second dataset, except for the standard deviation based method STD99, all 
others are able to detect the outliers. These two datasets are easy cases for outlier detection, since the 
behavior of the outlier simulations differs strongly from the inliers and anomalies occur very rarely 
(according to Table 1: 3.70% and 16.13%). Since the contamination in this dataset is below 25%, the 
thresholds of IQR and MAD25 are not influenced by outliers and therefore deliver a recall of 1. At 
the same time, however, it is also evident that the 3-fold standard deviation, within which 99.7% of 
the data of a normal distribution lie, defines the threshold too strong for the second dataset. This 
procedure is strongly dependent on the presence of anomalies (see section 2.2), since mean and 
standard deviation of the data must be determined, which are themselves influenced by anomalies. 
Accordingly, the recall for STD99 is 0.  
Dataset three stands out from the previous two datasets due to an increased proportion of outliers 
(Table 1: 31.58 %). Accordingly, the 3-fold standard deviation STD99 fails to detect the anomalies 
here as well. The situation is similar for the IQR method. This method is also sensitive to an increasing 
proportion of outliers, especially from a proportion greater than 25%, as this affects the location of 
the third quartile used to determine the IQR. The recall for both methods is 0. The STD90 threshold 
still detects half of the existing outliers. Accordingly, the recall is 0.5. The MAD25 method performs 
best in comparison and detects 11 of 12 outlier simulations (recall = 0.92). This is because the 
contamination is less than 50% and therefore the calculation of the threshold is not affected by 
outliers. Still, one outlier is not detected by MAD25. This might be due to the fact, that the 
hyperparameter a=2.5, which was chosen from literature, is not optimal.  A lower value reduces the 
threshold so that all outliers are identified. 
 

Table 2: Representation of Precision and Recall for the different datasets and methods for threshold calculation. 

 
Precision Recall 

 
STD90 STD99 IQR MAD25 STD90 STD99 IQR MAD25 

Dataset 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Dataset 2 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 

Dataset 3 1.0 1.0 1.0 1.0 0.5 0.0 0.0 0.92 

Dataset 4 1.0 1.0 1.0 1.0 0.5 0.0 0.0 0.61 

Dataset 5 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Mean 0.8 1.0 1.0 1.0 0.8 0.4 0.6 0.91 

 
 
 



The most difficult dataset is the fourth one. On the one hand, this has the largest contamination 
(40.91%) and on the other hand, it includes the weak outliers, which are challenging to detect even 
for humans. Accordingly, the expectation is that no ideal results for recall can be obtained. As with 
the previous dataset, the STD99 and IQR methods fail to detect the outliers (recall=0). Again, only 
STD90 and MAD25 are able to identify some outlier simulations. STD90 detects 9 out of 18 outliers, 
while MAD25 finds 11 out of 18 outliers. Accordingly, the recall is 0.5 and 0.61, respectively.  
The fact that only just over half of the existing outliers are identified is not due to the methods used 
to calculate the threshold. The outlier scores from the KNND algorithm do not even allow the 
engineer to reliably separate the first 13 weak outliers from the following 26 inliers (see Figure 11). 
This is on the one hand due to the high proportion of outliers and on the other hand because the weak 
outliers correspond to a mixed behavior from the inlier and outlier simulations, making it even more 
difficult for the algorithm to distinguish between them.  
 
In the first four datasets, no inliers have been misclassified so far, so the precision for all methods is 
1 as shown in Table 2. In the last dataset, no outlier simulations are included at all. Accordingly, a 
good algorithm and threshold should not misclassify any simulations as outliers. While STD99 and 
IQR failed in most datasets, they provide good results here and do not detect any outliers. The MAD25 
method also does not yield any misclassifications. Only STD90 falsely detects 4 outliers. Thus, the 
precision at this threshold is 0. For STD90, the hyperparameter n is smaller than for STD99, resulting 
in a lower threshold. For the outlier scores in the fifth data set, this threshold is too low, so inliers are 
falsely detected as outliers. At the same time, however, it is possible to identify more outliers in 
datasets 2-4 compared to STD99.  This shows that the threshold calculation of the STD method is not 
only influenced by existing outliers, but the results are also sensitive to the hyperparameter n. 
Furthermore, the optimization of n faces a trade-off between high recall and high precision. 
 
In summary, MAD25 is the most robust method in comparison to the other ones in threshold 
calculation. In the standard deviation based procedure, the two parameters of the dataset mean and 
standard deviation are themselves strongly influenced by existing outliers. The same is true for the 
IQR method, whose third quartile is also influenced by outliers. This means, that in cases where more 
than 25% of the data consist of outliers, the IQR threshold is not reliable. In contrast, the median of 
the dataset is not influenced by existing outliers and thus represents the most robust method for 
threshold determination, especially in highly contaminated datasets. Across the different datasets, 
according to Table 2, the mean recall is 0.91 and the Precision is 1. This means that 91% of all outliers 
were found and no inliers were incorrectly identified as anomalies.  

5 Conclusion 

In this work, a method to detect outliers in crash simulations has been presented. The approach and 
application in crash simulations is novel and has successfully identified outlier crash behaviors in 
different datasets. 
Since in the standard evaluation process different simulations within the same load case category are 
compared, it is possible to analyze each state individually with the other simulations. The KNND 
algorithm was used to calculate the state-based outlier scores. Subsequently, the results were 
standardized and the mean was calculated to obtain a single value for the entire simulation. The work 
showed the dependence of the hyperparameter k in the KNND algorithm against different datasets 
with different proportions of outliers. While some values performed very well, others did not perform 
at all for outlier detection. Since, in general, no prior knowledge of the data can be assumed, that 
could be used to estimate a good value for k, several models were trained with appropriate values for 
k and finally the average was taken over the different models. This increases the quality and the 
robustness of the outlier detection.  
Following the calculation of the outlier scores, different methods for thresholding were compared. 
With the help of this value, an automated identification of anomalies is possible. The MAD25 method 
achieved the best results. 91% of all outliers were detected on average in the 5 different datasets. With 
increasing contamination in the datasets, the recall is getting reduced further. At the same time, there 
were no simulations incorrectly identified as outliers (Precision=1). This is especially important in 
whole vehicle analysis, since with hundreds of components, any misclassification distracts the 
engineer, costs him time and makes him lose his confidence in the system.  
 
 



The method presented for anomaly detection makes it possible to automatically examine all 
components and evaluation variables available from the simulation for conspicuous crash behavior. 
On the one hand, this increases the degree of automation of the evaluation. On the other hand, the 
completeness of the data analysis is increased, since more information can be evaluated. The results 
can be clearly displayed in post-processing software. Conspicuous crash behavior of individual 
components is highlighted in color accordingly, so that the engineer's focus is placed on the relevant 
points in the vehicle. This also increases the robustness of the evaluation. 
 
It remains to be said that the hyperparameter a for the MAD method must also be adapted to the 
underlying task. Experience in this regard must be gathered in a broad field test across different 
components and load cases. In addition, further algorithms for calculating the outlier score must be 
compared with the results of the KNND method. 
One disadvantage of the method is that the outlier scores are not normalized (e.g., in a fixed interval 
between 0 and 1). A continuous value would facilitate the interpretation of the results and increase 
the level of detail, since the user can estimate how anomalous the crash behavior is. In the future, the 
procedure will be extended regarding this issue. 
 

6 Geolocation 

Dr. Ing. h.c. F. Porsche AG 
Porschestraße 911 
71287 Weissach 
Germany 
 
 
 

7 References 

 
[1]  „euroncap,“ [Online]. Available: http ://www.euroncap.com/. [Zugriff am 13 02 2020]. 
[2]  J. A. Ambrósio, M. Pereira und F. da Silva, Crashworthiness of transportation systems: structural 

impact and occupant protection (Vol. 332), Springer Science & Business Media., 2012.  
[3]  C. Diez, L. Harzheim und A. Schumacher, „Effiziente Wissensgenerierung zur 

Robustheitsuntersuchung von Fahrzeugstrukturen mittels Modellreduktion und 
Ähnlichkeitsanalyse,“ VDI-Berichte, 2279, 2016.  

[4]  T. Spruegel, T. Schröppel und S. Wartzack, „Generic approach to plausibility checks for 
structural mechanics with deep learning,“ in Proceedings of the 21st International Conference 
on Engineering Design (ICED 17), Vol 1: Resource Sensitive Design, Design Research 
Applications and Case Studies, Vancouver, Canada, 21-25.08. 2017 (pp. 299-308).  

[5]  D. Kracker, J. Garcke, A. Schumacher und P. Schwanitz, „Automatic Analysis of Crash 
Simulations with Dimensionality Reduction Algorithms such as PCA and t-SNE“.  

[6]  J. Garcke , M. Pathare und N. Prabhakaran, „Scientific Computing and Algorithms in Industrial 
Simulations: Projects and Products of Fraunhofer SCAI,“ in ModelCompare, Springer 
International Publishing, 2017, pp. 199-205. 

[7]  J. Garcke und R. Iza-Teran, „Machine learning approaches for repositories of numerical 
simulation results,“ in 10th European LS-DYNA Conference (Vol. 2015), 2015, June.  



[8]  B. Bohn, J. Garcke, R. Iza-Teran, B. Paptrotny, U. Pehersdorfer, U. Schepsmeier und C.-A. Thole, 
„Analysis of Car Crash Simulation Data with Nonlinear Machine Learning Methods.,“ in 
Proceedings of the ICCS, Barcelona, 2013.  

[9]  R. Iza-Teran, „Enabling the analysis of finite element simulation bundles.,“ International Journal 
for Uncertainty Quantification, 2014.  

[10]  D. Hawkins, Identification of Outliers, Chapman and Hall, 1980.  
[11]  R. Iza-Teran und J. Garcke, „A geometrical method for low-dimensional representations of 

simulations,“ SIAM/ASA Journal on Uncertainty Quantification, Bd. 7(2), pp. 472-496, 2019.  
[12]  C. C. Aggarwal, „An introduction to outlier analysis. In Outlier analysis,“ Springer, Cham., 2017, 

pp. (pp. 1-34). 
[13]  M. Gaur, S. Makonin, I. Bajic und A. Majumdar, „Performance evaluation of techniques for 

identifying abnormal energy consumption in buildings,“ IEEE Access 7, pp. 62721-62733, 
2019.  

[14]  D. Huang, D. Mu, L. Yang und X. Cai, „CoDetect: financial fraud detection with anomaly feature 
detection,“ IEEE Access 6, pp. 19161-19174, 2018.  

[15]  S. Ramaswamy, R. Rastogi und K. Shim, „Efficient algorithms for mining outliers from large data 
sets,“ in Proceedings of the 2000 ACM SIGMOD international conference on Management of 
data (pp. 427-438), 2000, May.  

[16]  E. Kreyszig, in Advanced Engineering Mathematics, 4th Edition ISBN 0-471-02140-7, Wiley, 
1979, pp. p. 880, eq. 5. 

[17]  C. Leys, C. Ley, O. Klein, P. Bernard und L. Licata, „Detecting outliers: Do not use standard 
deviation around the mean, use absolute deviation around the median.,“ Journal of experimental 
social psychology, Bd. 49.4, pp. 764-766, 2013.  

[18]  J. W. Tukey, „Exploratory Data Analysis,“ Addison-Wesley, Reading, MA, 1977.  
[19]  R. McGill, J. W. Tukey und W. A. Larsen, „Variations of box plots,“ The American Statistician, Nr. 

12-16, p. 32(1), 1978.  
[20]  A. Leroy und P. Rousseeuw, Robust regression and outlier detection, New York: Wiley Series in 

Probability and Mathematical Statistics, 1987.  
[21]  P. J. Huber, Robust statistical procedures, New York: John Willey, 1989.  
[22]  J. Miller, „Reaction time analysis with outlier exclusion: Bias varies with sample size,“ The 

quarterly journal of experimental psychology, pp. 43(4), 907-912, 1991.  
[23]  N. Andricevic, Robustheitsbewertung crashbelasteter Fahrzeugstrukturen (Doctoral 

dissertation, Universität), 2016.  
[24]  S. Wold, K. Esbensen und P. Geladi, „Principal component analysis,“ Chemometrics and 

intelligent laboratory systems, Bde. %1 von %22(1-3), pp. 37-52, 1987.  
[25]  Y. Zhao, Z. Nasrullah und Z. Li, „Pyod: A python toolbox for scalable outlier detection,“ arXiv 

preprint arXiv:1901.01588, 2019.  
 
 
 



Aus: Submit to International Journal of Crashworthiness (tandfonline.com) 
 
“Biographical note. Please supply a short biographical note for each author. This could be adapted 
from your departmental website or academic networking profile and should be relatively brief (e.g. 
no more than 200 words).” 
 
 
David Kracker studied physics and electromobility at the University of Stuttgart. In his master thesis 
in cooperation with Robert Bosch GmbH, he specialized in the powertrain simulation of a hybrid 
electric vehicle. He is currently working on his doctorate at the University of Wuppertal in 
cooperation with Dr. Ing. h.c. F. Porsche AG on the topic of how crash simulations can be fully 
evaluated automatically using artificial intelligence in order to reduce the analysis effort of engineers, 
development time and costs. The focus of his work here is on methods for dimension reduction, 
outlier detection and automatic classification of crash behavior. 
 
 
Professor Dr.-Ing. Axel Schumacher studied mechanical engineering at the University of Duisburg 
and RWTH Aachen. He obtained his doctorate in the field of topology optimization at the University 
of Siegen. Subsequent research projects together with Airbus focused on the optimization of aircraft 
structures. As a project manager at Adam Opel AG, he introduced mathematical optimization at 
numerous points in the vehicle development process. At the Hamburg University of Applied Sciences, 
he started his research on the integration of highly non-linear analysis in the optimization of 
lightweight structures. Currently, he holds the chair for Optimization of Mechanical Structures at the 
University of Wuppertal. At the chair, intensive research is being conducted on new structural 
optimization methods. 
 
Aus: https://rd.springer.com/book/10.1007/978-3-662-60328-4#authorsandaffiliationsbook 
 
Jochen Garcke received the Diploma degree in mathematics and the Ph.D. degree in mathematics 
from the Universität Bonn, in 1999 and 2004, respectively.,He was a Postdoctoral Fellow at the 
Australian National University, from 2004 to 2006 and a Postdoctoral Researcher, from 2006 to 2008 
and a Junior Research Group Leader, from 2008 to 2011, at Technische Universität Berlin. Since 
2011, he has been Professor of numerics with the Universität Bonn and a Department Head with 
Fraunhofer SCAI, Sankt Augustin. His research interests include machine learning, scientific 
computing, reinforcement learning and high-dimensional approximation.,Prof. Garcke is also a 
member of DMV, GAMM and SIAM. He is also a Reviewer of the IEEE Transactions on Industrial 
Informatics, the IEEE Transactions on Neural Networks and the IEEE Transactions on Pattern 
Analysis and Machine Intelligence.(Based on document published on 24 February 2020). 
 
Aus: https://ieeexplore.ieee.org/author/37085372841 
 

https://www.tandfonline.com/action/authorSubmission?show=instructions&journalCode=tcrs20&
https://rd.springer.com/book/10.1007/978-3-662-60328-4#authorsandaffiliationsbook
https://ieeexplore.ieee.org/document/9007737
https://ieeexplore.ieee.org/author/37085372841

