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Partial differential equations can be solved efficiently by adaptive multigrid methods
on a parallel computer. We report on the concept of hash-table storage techniques to set
up such a code. The code requires substantial less amount of memory and is easier to
code in the sequential case. The parallelization takes place by a space filling curve domain
decomposition intimately connected to the hash table. The new data structure simplifies
the parallel version of the code substantially way and introduces a cheap way to solve the
load balancing and mapping problem.

1. INTRODUCTION

We consider partial differential equations, e.g. an elliptic scalar differential equation
on a two-dimensional domain. For reasons of efficiency, we use an optimal order solution
algorithm: The dicretized equation system is solved by a multigrid method. In order to
accelerate the solution procedure further, adaptivity is employed to achieve a given error
tolerance with less unknowns. The grid is adapted to the solution and is refined only
in regions of the domain where necessary. A third way to speed up the computation is
parallel computing. We partition the data and distribute it to several processors and we
assign the operations on that data preferably to the processor who owns the data. We
intend to put all three methods (multigrid, adaptivity, parallelism) efficiently together.
This requires some additional considerations.

While state-of-the-art computer codes use tree data structures to implement such a
method, we will propose hash tables instead. Hash table addressing gives more or less
direct access to the data stored (except of the collision cases), i.e. it is proven to possess
a O(1) complexity with a low constant if a statistical data distribution is assumed. Hash
tables allow to deal with locally adapted data in a simple way. Furthermore, they need no
additional storage overhead for logical connectivities like tree-type data structures which
are usually used in adaptive finite element codes. Finally, they are easy to program and
to handle and allow a straightforward implementation. We studied their efficiency and
compared it to that of other data structures like trees and linked list. It turned out
that the hash table technique was in all considered cases superior with respect to storage
requirements and with respect to computing time. Furthermore, and this is an additional
advantage of the hash table methodology, it allows relatively easy for parallelization with
simple load balancing.



2. DATA STRUCTURES FOR ADAPTIVE CODES

2.1. Adaptive Cycle

In order to adapt the grid to the solution without a priori knowledge, where to refine,
we use an iterative procedure: Solving the problem on one grid and employing an error
estimator gives information where a finer grid is needed to resolve the solution. We start
the iterative procedure with a very coarse grid. In each step we add new nodes. If a final
error tolerance is matched, we have obtained our solution on a fine adapted grid. This
basic approach to adaptivity is depicted in figure 1.

solve linear system

estimate local errors

flag nodes for refinement

create new nodes and
enforce geometric conditions

until global error < €

Figure 1. The adaptive algorithm.

The sequence of solving and refining the grid leads in a natural way to a sequence of
nested grids. We can use the solution on one grid as a starting guess for the iterative
solution on the refined grid. Furthermore, the sequence of grids can be used as differ-
ent levels inside a multigrid method. So, the two components, adaptive refinement and
iterative solution by a multigrid method fit nicely together.

2.2. Tree Data Structures

The efficient implementation of an adaptive multigrid code is not straightforward. Since
a multigrid solver has optimal O(n) complexity for n unknowns, the same complexity is
desirable for its implementation on refined grids and for the grid refinement procedure
itself. One way to construct such an optimal order algorithm is to use tree data structures.
This is described in more detail in [1,12,9]. Different trees represent the hierarchies of
nodes, edges and elements. All entities of a tree down to one level altogether represent
one grid. Refining the finest grid means adding new leaves to the tree. Moreover, to run
multigrid i1s actually to traverse the tree several times and to perform operations on all
nodes.

In order to administrate the nodes (unknowns), edges (stiffness matrix) and elements
(grid), the leaves of the trees have to be linked. This results in a number of pointers, both
for the tree and for the links between the trees. A typical value is 400 to 1000 bytes of
memory per unknown for a scalar two-dimensional problem (double precision, see [7,2]).
In three dimensions, even more memory per node is needed. Consequently, there is much
more memory required for the administration of the numerical data than for the data
itself; the storage overhead is substantial.

Now, performing numerical operations on one grid often requires a complete tree traver-
sal. But such a complete tree traversal for e.g. one daxpy operation adds a certain number
of index operations and administration operations to the few floating point operations we
are interested in, which degrades the overall floating point performance. Besides, this



also results in fragmented memory access, which degrades performance even further. Of
course 1t 1s possible to eliminate some of the tree traversals by establishing additional
data structures like linked lists or sparse matrices but only at the expense of additional
memory.

2.3. Hash Table Data Structures

Looking for a different way to manage adaptive grids, we propose to use hash storage
techniques. Hash tables are a well established method to store and retrieve large amounts
of data [6, chap. 6.4]. The idea is to map each entity of data to a hash-key, which is used
as an address in the hash table. The entity is stored and can be retrieved at that address
in the hash table, which is implemented as a linear array of cells (buckets). The mapping
is done by a (deterministic) hash function. Since there are many more possible different
entities than different hash keys, the hash function is not injective. Algorithms to resolve
collisions are needed. Furthermore it may also happen that some entries in the hash table
are left empty, because no present entity is mapped to that key.

In general, access to a specific entry in the hash table can be performed in constant
time. However, this is only true if the hash function scatters the entries broad enough
and there are enough different cells in the hash table. But altogether, using hash tables
in a statistical sense, access is cheaper than random access in a sorted list or a tree. The
basic principle of the hash table approach is illustrated in figure 2.
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Figure 2. Storing nodes in a hash table.

We presently use the hash table implementation of an extended version of the C++
standard template library (STL) [11], which provides automatic resizing. There, the
number of cells is kept proportional to the number of entries and we only have to bother
with a well suited hash function.

Iterating over the contents of a hash table is simpler than traversing trees of elements
or nodes. STL iterators simplify the coding even further. In a general statistical setting
the random access on some data in a hash table is constant, compared to logarithmically
in a tree structure [6]. In total an amount of 74 bytes (double precision) of memory per
unknown is used in our implementation, which is less than standard tree based codes
mentioned above use. This is due to the lack of pointers in the hash table code.

3. THE ADAPTIVE CODE

3.1. Adaptive Finite Differences
We take a strictly node-based approach. The nodes are stored in a hash table. Each
node represents one unknown. Neither elements nor edges are stored. We use a one-



irregular grid with ‘hanging’ nodes, see figure 3, who’s value is determined by interpola-
tion. This is equivalent to the property that there is at most one ‘hanging’ node per edge.
Additionally we consider only square shaped elements. The one-irregular condition is a
kind of a geometric condition for the adaptive grid.
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Figure 3. A one-irregular grid (left) and a grid containing several mistakes (right). Look
for the edge with multiple ‘hanging’ nodes and for the rectangular shaped element, indi-
cated by the labels.

The partial differential equation is discretizatized by finite differences. We set up the
operator as a set of difference stencils from one node to its neighboring nodes in the grid,
which can be easily determined: Given a node on a level, its neighbors can be only on the
same level, or one level up or down. The distance to the neighbor is determined by the
level they share.

So pure geometric information is sufficient to apply the finite difference operator to
some vector. We avoid the storage of the stiffness matrix or any related information. For
the iterative solution of the equation system, we have to implement matrix multiplication,
which is to apply the operator to a given vector. A loop over all nodes in the hash table
is required for this purpose.
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Figure 4. A Sequence of adaptively refined grids.

3.2. Multigrid Preconditioning

We use an additive version of the multigrid method for the solution of the equation
system, i.e. the so called BPX preconditioner [5]. This requires an outer Krylov iterative
solver. This approach has the advantage of an optimal O(1) condition number and there
are optimal order O(n) implementations available, even in the presence of degenerate
grids. The implementation is similar to the hierarchical basis transformation, requires
one auxiliary vector, but enjoys a much better condition number than the hierarchical
basis method. Two loops over all nodes are necessary, one for the restriction operation and
one for the prolongation operation. They can be both implemented as a tree traversal.
However, by ordering the nodes in the right way, two ordinary loops over all nodes in
the hash table are sufficient, one forward and one backward. Furthermore, the additive
version of multigrid is also easier to parallelize than multiplicative multigrid versions.



3.3. Error Estimation and Grid Refinement

In order to create adaptive grids, we have to locate areas, where to refine the grid.
Applying an error estimator or error indicator gives an error function defined on the grid.
With some threshold value, the error functions is converted into a flag field, determining
whether grid refinement is required in the neighborhood. Large error values result in
refinement. In the next step, new nodes are created. Finally a geometric grid has to
be constructed, which fulfills the additionally imposed geometric constraints, e.g. one-
irregularity.

The main question is the error indicator to be applied. There are lots of different
suggestions. We took a type of gradient based criterion for each node. The implementa-
tion is very similar to the implementation of a matrix multiply. The threshold value is
determined by a mixture of mean value of the local errors and some constraints on the
minimum number of nodes to create. The grid creation requires a tree traversal to check
the one-irregularity condition.

4. DISTRIBUTING ADAPTIVE GRIDS

Porting the adaptive multigrid code to a parallel computer requires a grid partitioning
strategy. The computational load and therefore the grid has to be decomposed into
several partitions, each one mapped to one processor. This partitioning has to be done
at run time since there is no a priori knowledge where the grid is going to be refined and
where load is created. Thus we extend our adaptive cycle algorithm by an additional load
balancing and partitioning step right after new nodes are created.

A good solution to the partitioning problem is a key point of the efficiency of adaptive
parallel codes. The computational load has to be equidistributed over the processors.
The volume of data to be transferred between processors during computation and during
mapping the partitions to processors should be low. Furthermore the load balancing and
mapping process should be cheaper than the actual computation. Often the last demand
is violated, so the balancing is applied less often, taking into account some load imbalance
and a harder mapping problem, since more load has to distributed in each mapping step.

4.1. Space-Filling Curves

For the solution of the partition and mapping problem, we choose a computational very
cheap method based on space-filling curves [13,4]. We use space-filling curves as a way to
enumerate and order nodes in the computational domain. Such a curve can be recursively
defined by substituting a straight line segment by a certain pattern of lines. Doing this
infinitely times covers the whole domain. Doing this recursion only a finite number of
times results in a coarser version of the curve. One can think of such a curve as passing
the nodes of a given grid, e.g. an adaptive grid. In order to reach all points, the curve
has to fine enough, it has to be aligned, and it has to cover the whole domain. Because
of the boundary nodes, it usually covers even a larger domain and is clipped, see figure
5. We assign the arc length of the curve to each node of the grid and define a total order
relation on the nodes. The curve defines a (continuous) mapping from an interval to the
whole domain.
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Figure 5. Hilbert’s space-filling curve at different levels of resolution. It covers the whole
domain, say Q = [~1,1]* (drawn shaded). The nodes are numbered binary from 0 to
4 — 1.

4.2. Data Distribution

Given an order of the nodes induced by a space-filling curve, it i1s simple to construct
a partitioning of the set of nodes and to map these partitions to processors: We cut the
linear list of nodes into p equally sized intervals and map them according to this order to
processors with increasing numbers. The computational load is balanced well, see [16,10].

Figure 6. A Sequence of adaptively refined grids mapped onto four processors.

5. THE PARALLEL ADAPTIVE CODE

For the parallelization of the sequential code, all its components such as solving a linear
system, estimating errors and creating nodes have to be done in parallel. Additionally
the data has to be distributed to the processors. This is done in a load balancing and
mapping step right after creating new node, a step which was not present in the sequential
version. The parallel algorithm is depicted in figure 7. We consider a distributed memory,
MIMD, message passing paradigm. This is much harder than parallelizing such a code
on a shared memory computer as considered in [7,3]. Parallelizing a tree based code is
quite complicated and time consuming. Here, algorithms must be implemented on sub-
trees. Furthermore, algorithms for moving and for joining sub-trees must be implemented.
Finally all this must be done in a consistent and transparent way, as indicated in [17,15,
2,14,8]. However, the parallelization of an adaptive code based on hash tables, which we
consider here, will turn out to be much easier.



solve linear system in parallel

estimate local errors in parallel

flag nodes for refinement in parallel

create new nodes and
enforce geometric conditions in parallel

redistribute nodes,
load balancing and mapping

until global error < €

Figure 7. The parallel adaptive algorithm.

5.1. Parallel Load Balancing

Using the space filling curve, the partitioning problem reduces to a sorting problem.
Running this in parallel requires a parallel sort algorithm with distributed input and
output. We employ a one-stage radiz sort algorithm [6, chap. 5.2.5]. In order to do this
we assume that the previous data distribution still guarantees good load-balancing for
the parallel sort.

The result is a new partition of the grid. The load is partitioned exactly, while the
volume of communication depends on the boundaries of the partitions. These boundaries
may sometimes be kinky, depending on the data, and are certainly not optimal, but are
of reasonable size. In total, the load balancing is very cheap, parallelizes very well and
thus can be applied in each step of the computation.

The index of a node induced by the space-filling curve is used for assigning it to a
processor and for addressing in the local hash table of the processor, see figure 8. In case
that a copy of a node is required on another processor, the index is also used for addressing
it in the hash table of this processor. Examining the index, it is easy to determine the
processor, the node belongs to.
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Figure 8. Computing the owner processor and the hash key of a node.

5.2. Parallel Krylov Iteration

The parallel iterative solution consists of several components. The Krylov iterative
solver requires matrix multiplications, scalar products and the application of the pre-
conditioner which is the additive multigrid method in our case. The scalar product can
be implemented as ordinary data reduction' operations offered by any message passing

IThe reduction operation “4” is defined as a global sum, one number from each processor, distributed
to all processors. A similar operation computes the global maximum.



library. Using the “owner computes”? paradigm, the matrix multiplication, requires the
update of auxiliary (ghost) values located at the boundary of the partition. The variables
of ghost nodes in this region are filled with actual values. Then, the local matrix multi-
plication can take place without any further communication, and only one local nearest
neighbor communication is sufficient.

5.3. Parallel Multigrid Preconditioning

The communication pattern of the additive multigrid is more expensive than for the
matrix multiplication: The local restriction operations can be performed in parallel with-
out any communication. The resulting values have to be reduced and distributed. Each
node sums up the values of all it’s distributed copies. This can be implemented by two
consecutive communication steps, fetching and distributing the values. Now the restricted
values are present on all nodes and ghost nodes. Finally, the reverse process of prolonga-
tion can take place as local operations again. Thus the result is valid on all nodes without
the ghost nodes.

The local restriction and prolongation operations are organized as ordinary restriction
and prolongation, just restricted to the local nodes and ghost nodes on a processor. They
can be implemented either as tree traversals or as a forward and a backward loops on
properly ordered nodes, i.e. on the hash table. The ghost nodes are determined as
set of ghost nodes of grids on all levels. Hence the communication takes place between
nearest neighbors, where neighbors at all grid levels have to be considered. In this sense
the communication pattern is a local one only. One fetch and one distribute step are
necessary to exchange all data.

Compared to multiplicative multigrid methods, where communication on each level
takes place separately in the smoothing process, the hierarchical nearest neighbor commu-
nication is a great advantage [17]. However, the total volume of data to be communicated
in the additive and the multiplicative multigrid method are of the same order (depending
on the number of smoothing steps). This means that for high communication latency
computers the additive multigrid has an advantage, while for low latency computers the
number of communication steps is less important.

5.4. Adaptive Refinement

The estimation of errors in parallel is structurally very similar to the iterative solution
of the equation system, so a nearest neighbor communication pattern applies. Flagging
nodes for refinement and creating nodes can also be done easily with some nearest neigh-
bor communication. A global threshold for flagging nodes requires a global reduction
operations.

The tricky part of adaptive refinement is the enforcement of a one-irregular grid con-
dition, see section 3.1. This means fulfilling some geometric constraint on the grid. A
refinement in one area theoretically may spread out to the whole domain. Instead of
weakening the constraint in the presence of partition boundaries, we change the paral-
lel programming paradigm here: We employ some parallel tree traversal, breadth first,
which leads to a data driven execution model. The tree traversal fills lists of requests for

2Each variable belongs to one processor. Any write operation to the variable is done by that processor,
along with all computations, which lead to the value to be written: “Owner computes”



neighbor processors, which are blocked and transferred. The algorithm terminates when
all lists have been consumed, implemented by some token ring mechanism.

6. NUMERICAL EXPERIMENTS

We consider the two dimensional model problem

—Au = 0 onQ=[-1,1)
v = 0 ondQ\[-1,0
u = 1 on rest of O}

and run our adaptive multilevel finite difference code to solve it. The solution develops
two singularities located at the jumps in the boundary data (—1,0) and (0,—1). All
numbers reported are scaled CPU times measured on a cluster of SGI O2 workstations,
running the MPI message passing protocol on a fast ethernet network.

We choose the simple Poisson problem, because the ratio of computational work to
communication is low compared to more complicated equations like the Navier-Stokes
equations. In this sense the Poisson problem is a very hard test problem for parallelization.

6.1. Uniform Example

In the first test we consider regular grids (uniform refinement). Table 1 shows wall
clock times for the solution of the equation system on a regular grid of different levels.
The program ran on different numbers of processors.

. processors
time 1 9 4 8
6 | 0.0580 0.0326 0.0198 0.0473
% 7102345 0.1238 0.0665 0.1861
& 8(1.0000 0.4914 0.2519 0.2350
Table 1 9 1.1297 0.6282

Uniform refinement example, timing, levels 6 to 9, 1 to 8 processors.

We observe a scaling of a factor of 4 from one level to the next finer level which
corresponds to 4 times more unknowns on that level. The computing times decay, if we
increase the number of processor from one to two and four. However, the 8 processor
perform efficiently only for sufficiently large problems, i.e. problems with more than 8
levels. We observe perfect scalability of the algorithm.

6.2. Adaptive Example

In the next test we consider adaptive refined grids. The grids are refined towards
the two singularities. Table 2 depicts times in the adaptive case. These times give the
wall clock times for the solution of the equation system again, now on different levels of
adaptive grids and on different numbers of processors.

We obtain a scaling of about a factor 4 from one level to the next finer level, which
means 4 times more unknowns on the next finer level, an almost uniform refinement of a
grid already adapted on previous levels. Increasing the number of processors speeds up
the computation accordingly. Again we observe scalability of the algorithm. In order to
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processors
1 2 4 7

71 0.0578 0.0321 0.0187 0.0229

81 0.2291 0.1197 0.0645 0.0572

Table 2 9 | 1.0000 0.5039 0.2554 0.1711

Adaptive refinement example, timing, levels 7 to 9, 1 to 7 processors.

time

levels

use seven processor efficiently, the grid has to be fine enough, i.e it has to have more than
8 levels.

6.3. Load Balancing

Now we compare the time for solving the equation system with the time required for
sorting the nodes and mapping them to processors. The ratio indicates how expensive the
load balancing and mapping task is in comparison to the rest of the code. We give the
values in table 3 for the previous uniform and adaptive refinement examples for different
numbers of processors.

sort time ‘ processors
solve time 1 9 4 7/8
uniform | 0 0.0028 0.0079 0.0141
Table 3 adaptive | 0 0.0066 0.0149 0.2367

Ratio sorting nodes to solving the equation system, level 8, 1 to 8 processors.

In the single processor case, no load balancing is needed, so the sort time to solve time
ratio is zero. In the uniform grid case the numbers stay below two percent. In the adaptive
grid case, load balancing generally is more expensive. But note that load balancing still is
much cheaper than solving the equation systems. However, higher number of processors
make the mapping relatively slower.

In the case of uniform refinement, for a refined grid, there are only few nodes located at
processor boundaries which may have to be moved during the mapping. Hence our load
balancing is very cheap in this case. Mapping data for adaptive refinement requires the
movement of a large amount of data, even if most of the nodes stay on the processor.

All load balancing methods also have to face the problem of large data to move, espe-
cially for larger processor numbers, see [2]. Moving data can make up a substantial part
of the overall computing time, even if incremental load balancing methods are employed.
Hence it is very important to have a cheap method at hand, such as our space filling curve
procedure.

7. CONCLUSION

We have introduced hash storage techniques for the solution of partial differential equa-
tions by a parallel adaptive multigrid method. Hash tables lead to a substantial reduction
of memory requirements to store sequences of adaptive grids compared to standard tree
based implementations. Furthermore, the implementation of an adaptive code based on
hash tables proved to be simpler than the tree counterpart. Both properties, low amount
of memory and especially the simple programming, carried over to the parallelization of
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the code. Here space filling curves were used for data partitioning and at the same time
for providing a proper hash function.

The results of our numerical experiments showed that load balancing based on space
filling curves is indeed cheap compared to other more complex graph based heuristics.
Hence we can in fact afford to use it in each grid refinement step. Thus our algorithm
operates on load balanced data at any time. This is in contrary to other procedures, which
have to be used often in connection with more expensive load balancing mechanisms,
where load imbalance is accumulated for several steps.
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