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Abstract. The incorporation of intrinsic point defects into a growing crystal and their subsequent agglomeration into 
larger defects are controlled by the solidification and subsequent cooling process. The evolution of intrinsic point 
defects in Silicon can generally be described by a system of reaction-diffusion equations for the concentration of self-
interstitials and vacancies. The main difficulty in quantitative intrinsic point defect prediction with such an approach is 
the uncertainty of the temperature-dependent material properties. These properties are generally unknown. This is due 
to the difficulty to measure them experimentally at high temperatures. To circumvent this problem these properties can 
be computed by an underlying microscopic model by means of molecular dynamics simulations. A potential due to 
Stillinger and Weber or, alternatively, a many-body potential due to Tersoff is applied for this purpose. The calculated 
material data for these potentials as well as intrinsic defect concentrations during the Czochralski growth of silicon are 
presented. A transient process simulation with varying process conditions is performed and the influence on the 
intrinsic defect concentrations in the crystal is shown. 

Introduction 

 The quality of crystalline silicon highly influences the quality of semiconductor devices fabricated on it. Grown-in 
defects, such as octahedral voids or networks of large dislocation loops can be detrimental to the functionality of 
devices [1]. Both type of defects result from the interaction of intrinsic point defects, vacancies and self-interstitials, 
during growth and subsequent annealing of the crystal. In order to qualitatively describe the formation of microdefects 
in crystalline silicon a detailed understanding of intrinsic point defects is necessary.  
 Modeling of defect dynamics in silicon crystals during growth requires the description of physical phenomena on 
different length and time scales. Continuum balance equations are used to describe the distribution, transport and 
kinetic interactions of point defects, either vacancies or self-interstitials, throughout the crystal as a function of the local 
temperature. These equations are written in terms of kinetic expressions for the solid-state reactions between species, 
transport expressions for Fickian diffusion and thermodiffusion and equilibrium concentrations for the point defects. 
Each of these expressions contains highly temperature-dependent material properties, which describe atomistic events, 
such as the diffusion of a self-interstitial through the silicon lattice or the recombination of a vacancy with a self-
interstitial to form a perfect crystal.  
 The temperature distribution throughout the crystal during the growth process can be computed by a macroscopic 
heat transfer model in the entire crystal growth system, taking into account heat conduction in all components, heat 
radiation between surfaces, internal radiation as well as convection in the melt [2,3,4]. With such transient heat transfer 
models the temperature distribution in the crystal can be related to design and operating conditions of the crystal 
growth system.  
 The absence of direct experimental measurements of intrinsic point defect properties at high temperatures make it 
necessary to compute these properties from atomistic simulations based on empirical or semiempirical atomic models. 
Here, the microscopic quality of the crystal is given by the intrinsic point defect concentration. Thus, in order to 
directly relate these quantities to crystal growth conditions, macroscopic process simulations in the entire crystal 
growth furnace as well as atomistic calculations of silicon are necessary, Fig. 1. 
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Figure 1. Multiscale model for defect dynamics: macroscopic process simulation in a Czochralski furnace provides the 
temperature distribution in the crystal, an atomistic model provides the temperature-dependent material parameter for 
the defect dynamics.  

 The aim of this paper is to provide this information from large scale molecular dynamic simulations based on the 
potentials of Stillinger-Weber and Tersoff. The macroscopic process simulation is discussed elsewhere [5], the focus of 
this paper lies on the microscopic and atomistic models.          

Reaction-diffusion equations of point defects 

 The evolution of intrinsic point defects in Silicon on the macroscopic level can generally be described by a system 
of reaction-diffusion equations for the concentration of self-interstitials and vacancies, Ci and Cv, respectively, [15]. 
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 Here Di and Dv denote diffusion coefficients, Qi and Qv denote activation enthalpies for thermal diffusion, Ci

eq and 
Cv

eq denote equilibrium concentrations, T denotes temperature, kB is the Boltzmann constant and krec is the reaction 
coefficient for recombination. Equation (1) and (2), along with initial and boundary conditions 
 

0,ii CC = ,  at t = 0 in the crystal        (3) 0,vv CC =
eq
ii CC = ,  at the crystal surface        (4) eq

vv CC =
 
describe the evolution of self-interstitials and vacancies. 
 The system is solved by a finite element method in a rotational symmetric setting. It is coupled to a transient global 
heat transfer model in the entire crystal growth system [5]. 
 

Atomistic description of material properties 

 All material properties involved in the reaction-diffusion equations are highly dependent on temperature. These 
properties can only be measured indirectly in experiments and thus cannot be provided for high temperatures within the 
needed accuracy for quantitative point defect simulation. Although some calculations using quantum mechanical 
principles have been made in the recent years, such approaches cannot handle the larger length and time scales, which 
are required for the statistical averages to compute material parameters like the diffusion of intrinsic point defects. 
Atomistic simulations, using empirical interatomic potentials, can be used to circumvent this problem. First attempts in 
this direction were made in [6]. Monte Carlo simulations where used in the isothermal-isobaric (NpT)-ensemble in a 
periodic supercell of 216 atoms with a single vacancy or self-interstitial. Furthermore a Stillinger-Weber interatomic 



 

potential was employed. The focus of this paper is the use of molecular dynamics in order to compute the diffusion 
coefficients Di,v using Stillinger-Weber [7] and Tersoff [8,9,10] interatomic potentials. 
 
Description of Potentials  

 Simple pair potentials like the Lennard-Jones interaction, which is typically used for liquified noble gases, are not 
sufficient for the simulation of covalent systems. Stillinger and Weber [7] proposed an empirical potential, which 
consists of a two- and a three-body term for the condensed phases of silicon. The incorporated parameters were chosen 
to stabilize the diamond structure at low pressure and to give good agreement with experimental data for the melting 
point and the liquid structure. Tersoff [8,9] derived a different form of potential also including two- and three-body 
terms. He fitted the parameters to correctly reproduce cohesive energies, the bulk modulus and the bond length in the 
diamond structure. In [10] the set of parameters was improved to give better results for the elastic properties of silicon. 
In our simulations we use both potentials for molecular dynamics in the (NVT)-ensemble to compute diffusion 
coefficients of self-interstitials and vacancies.   
 
Computing the diffusion coefficients 

 We perform molecular dynamics simulations in a canonical ensemble to compute the diffusion coefficients. 
Macroscopic values can be measured in this ensemble by averaging the microscopic values with the Boltzmann factor.  
In this sense the diffusion coefficient is directly related to the spatial motion of the particles. Einstein first derived that 
the diffusion coefficient D can be written as 
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where x(t) is the position of a particle (interstitial or vacancy) at time t and < >  denotes averaging with the probability 
function. Since we cannot compute the average without knowing the probability function, we use the alternative 
formulation 
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 For t large enough this gives a good approximation to the diffusion coefficient. The procedure is now as follows: 
We start with a perfect crystal in a periodic box and insert one self-interstitial or remove one atom in order to create one 
point defect. Then we perform a molecular dynamics run of several nanoseconds at a given temperature and track the 
position of the point defect over time. The coupling to a heat bath is simulated using the Nosé thermostat [14]. The 
identification of the point defect in the crystal is done by checking the local environment of every particle for defects. 
In the perfect tetrahedral structure each particle has four nearest neighbors within a distance of about 0.29 nm. Any 
particle with a variation of more than one in the number of nearest neighbors is defined as interstitial. Due to thermal 
fluctuations in the crystal this criterion is sometimes also satisfied for particles of the crystal lattice. These situations are 
handled by a comparison with detected interstitials of past time steps. Fig. 2 (left) shows an example of a trajectory for 
a self-interstitial. In order to apply equation (6) we have to correct the trajectory with respect to the periodic boundary 
conditions. The corrected and smoothed trajectory is also shown in Fig. 2 (left). The smoothing removes local 
fluctuations and is done by a low-pass filter. From this data the function r(t) = (x(t0) –x(t))2 is computed, Fig. 2 (right). 
Linear regression results in an approximation of  the diffusion coefficient at this temperature according to equation (6). 
As one can see in Fig. 2 (right), large fluctuations of r(t) imply the necessity for molecular dynamic runs with long time 
intervals in order to minimize the error. The choice of  the simulation parameters is therefore a compromise between 
large system sizes to reduce finite size effects and an acceptable computation time for the necessary physical simulation 
time. Most of  the calculations in the literature were performed within a periodic supercell containing 216 atoms 
[6,11,12] and with simulation times up to 200 ps [12]. We decided to increase the system size to 1000 particles in a 
periodic box of length 2.67 nm. This leads to a density of 2.44 g/cm3, which is in agreement with the specifications 
given in [7]. Table 1 shows the temperatures, time lengths and computed diffusion coefficients for a self-interstitial of 
our simulations. The simulations at temperatures over the experimental melting point were performed in an overheated 
crystal. 
 Experimental data suggests that the temperature dependence on the diffusion coefficient exhibits  an Arrhenius 
behavior . Hence we fit the logarithm of the measured data by means of the method of 
least squares to a straight line. 
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ure 2. Left: The x-coordinate of the trajectory (points) of a self-interstitial and the x-coordinate of the periodically 

rrected trajectory (dashed line). Right: Function r(t) (solid line) and resulting linear fit (dashed line). 

 
 
 
 
 
 

 [K] ]s/cm10[ 25−
iD (SW) ]s/cm10[ 25−

iD (TF) 

10.7 4.278 (0.6ns) 0.046  (0.9ns) 

73.6 3.889 (0.8ns) - 

36.8 1.525 (3.8ns) 0.610 (1.5ns) 

62.4 6.006 (2.9ns) 1.038 (1.2ns) 

88.3 35.771 (1.6ns) 0.4933 (1.6ns) 

Table 1. Temperatures, diffusion coefficients and 
time lengths for simulations with one self-interstitial 
using either Stillinger-Weber (SW) or Tersoff (TF) 
potential.  

. 3 (left) shows the data and fitted lines for both potentials. The resulting migration energies Em are 1.35 eV and 1.58 
, and the diffusivity prefactors are calculated as  0.72 cm2/s and 0.19 cm2/s for the Stillinger-Weber and Tersoff 
tential, respectively. As shown in Fig. 3 (right), the results are in good agreement with the calculations published in 
 literature [6,11,12]. Due to the small number of data points, more simulations have to be performed to stabilize the 
ults. The uncertainty of each data point itself can only be minimized by increasing the simulations time.   

 

ure 3. Left: Diffusion coefficients for interstitials computed with Stillinger-Weber and Tersoff potential and linear 
. Right: Functions Di(T),  comparison of the results of this work with the results of M. Tang [12], T. Sinno [11]  and 

 Maroudas [6]. 



 

Results 

 We now are able to provide the temperature dependent diffusion coefficients in the reaction-diffusion equation 
(1)-(2). This data can now be used in order to link the macroscopic process simulation [5], providing the temperature 
distribution in the crystal, and the point-defect dynamics. To this end, we consider the Czochralski growth process in an 
industrial furnace. It is used by Wacker Siltronic AG, Burghausen to grow crystals with 200 mm diameter. We simulate 
the transient global heat transfer in the whole furnace together with the concentration of interstitials and vacancy 
densities. For the pulling velocities we use the data of the real production process of Wacker Siltronic AG which are 
given in Fig. 4 (left). The simulation starts with an initial quasi steady state computation for an initial crystal. Then the 
crystal is pulled according to the velocities of Fig. 4 (left) and the temperature distribution, the free boundary and point 
defect concentrations are computed step by step over time.  

 

Figure 4. Left: Pulling velocity of growing crystal in mm/min over crystal length in mm (experimental data). Right: 
Simulated free boundary deflection in cm over crystal length in mm. The deflection is measured in the crystal center. 

 
 The results show an influence of the varying pull rate on the interface shape, see Fig. 4 (right). We see that the 
deflection of the interface is directly related to the pulling velocity. The temperature profiles for various time steps 
(crystal length) in the crystal as well as scaled differences of point defect distributions are shown in Fig. 5 and Fig. 6, 
respectively. The upper part of the crystal continuously cools down during the growth process. The axial temperature 
gradient is larger close to the phase boundary and decreases with increasing crystal length. Due to the sensitivity of the 
temperature gradients at the interface the variations of its shape strongly affect the temperature and point defect 
distribution and should therefore not be neglected as is usually done in other quasi-static simulations. 

 
Figure 5. Temperature in crystal at various time steps.  

 The scaled differences of interstitial and vacancy concentrations show that vacancies dominate at the beginning of 
the growth process as a result of the high pull rate. This leads to a vacancy-rich upper part of the crystal. When we 
decrease the pull rate (crystal length < 500) the concentration of self-interstitials increases and starts to dominate. When 
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we then increase the pull rate (crystal length > 500) the concentration of vacancies increases again and the interstitial 
reservoir moves upwards with the pull rate. 

 
Figure 6. Difference of point defect concentration in crystal at various time steps; red is indicating an excess of self-
interstitials, whereas green indicates vacancy dominated regions. A scaled difference of Ci and Cv is shown.  

 

 Due to the faster diffusion of interstitials than vacancies the interstitial reservoir spreads into the vacancy-rich 
regions. This effect cannot be modeled by a quasi-steady assumption. The phenomenological v/G law [14], which 
relates the quotient of the pulling velocity v and the temperature gradient at the interface G to the surviving point defect 
species in the cooled crystal, is based on a quasi-steady assumption and can therefore not be applied, if strong 
variations in the pulling velocity occur. The high interstitial concentrations at the crystal boundary result from the 
specified equilibrium concentrations and are probably overestimated in these results. 

Acknowledgments 

 We would like to thank Wacker Siltronic AG, Burghausen for providing the experimental data. Furthermore, we 
thank J. Hamaekers and R. Wildenhues, who are involved in the development of our molecular dynamics package and 
C. Weichmann for his assistance in the Finite Element simulations. This work was partially supported by DFG through 
SFB 611. 

References 

[1] J. Park: Solid State Phenomena Vol. 47-48 (1996), p. 327. 
[2] F. Dupret,  N. van den Bogaert: in Hurle, D. T. J. ed. Handbook of Crystal Growth, 2b, Elsevier, 1994. 
[3]  H. Zhang, L.L. Zheng, V. Prasad, D.J. Larson, Jr.: J. Heat Transfer  Vol. 120 (1998), p. 874. 
[4] A. Voigt, K.-H. Hoffmann: Int. Ser. Num. Math. Vol. 139 (2001) p. 259. 
[5] A. Voigt, C. Weichmann, J. Nitschkowski, E. Dornberger, R. Hölzl: Crys. Res. Technol. Vol. 38-6 (2003), p. 

499. 
[6] D. Maroudas, R.A. Brown: Appl. Phys. Lett. Vol 62-2 (1993), p. 172. 
[7] F.H. Stillinger, T.A. Weber: Phys. Rev. B Vol. 35 (1985), p. 5262. 
[8] J. Tersoff: Phys. Rev. Lett. Vol. 56-6 (1986), p. 632. 
[9] J. Tersoff: Phys. Rev. B Vol. 37-12 (1988), p. 6991. 
[10] J. Tersoff: Phys. Rev. B Vol. 38-14 (1988), p. 9902. 
[11] T. Sinno, R.A. Brown, W. v. Ammon, E. Dornberger:  J. Electrochem. Soc. Vol. 145 (1998), p 302. 
[12] M. Tang, L. Colombo, J. Zhu, T. D. de la Rubia : Phys. Rev. B Vol. 55-21 (1997), p. 14281. 
[13] V. Voronkov:  J. Crystal Growth Vol. 59 (1982), p. 625. 
[14] S. Nosé, M. L. Klein: J. Mol. Phys. Vol. 50 (1983), p. 1055. 
[15]E. Dornberger, W. von Ammon, J. Virbulis, B. Hanna, T. Sinno: J. Crys. Growth. Vol 230 1-2 (2001) p. 291 


