Dynamic loadbalancing in a
lightweight adaptive parallel multigrid PDE solver.

Gerhard W. Zumbusch*

Abstract

A parallel version of an adaptive multigrid solver for partial differential equations
is considered. The main emphasis is put on the load balancing algorithm to distribute
the adaptive grids at runtime. The background and some applications of space-filling
curves are discussed, which are later on used as the basic principle of the load-balancing
heuristic. A tight integration of space-filling curves as a memory addressing scheme
into the numerical algorithm is proposed. Some experiments on a cluster of PCs
demonstrates the parallel efficiency and scalability of the approach.

1 An adaptive multigrid solver

Our goal is to solve a partial differential equation as fast as possible. We consider a multigrid
solver, adaptive grid refinement and their efficient parallelization. We have to develop a
parallel multigrid code that is almost identical to the sequential implementation. The
computational workload has to be distributed into similar sized partitions and, at the same
time, the communication between the processors has to be small. The underlying computer
model takes into account the local processor execution time and the communication time.
The first term is proportional to the number of operations and the second one depends on
the amount of data to be transferred between processors.

The PDE is discretized by finite differences. We set up the operator as a set of difference
stencils from one node to its neighboring nodes in the grid, which can be easily determined:
Given a node, its neighbors can be only on a limited number of level, or one level up or
down. The distance to the neighbor is determined by the level they share.

So pure geometric information is sufficient to apply the finite difference operator to
some vector. We avoid the storage of the stiffness matrix or any related information. For
the iterative solution of the equation system, we have to implement matrix multiplication,
which is to apply the operator to a given vector. A loop over all nodes in the hash table is
required for this purpose.

We take a strictly node-based approach. The nodes are stored in a hash table. Each
interior node represents one unknown. Neither elements nor edges are stored. We use
a one-irregular grid with ‘hanging’ nodes whose values are determined by interpolation.
This is equivalent to the property that there is at most one ‘hanging’ node per edge. The
one-irregular condition is a kind of a geometric smoothness condition for the adaptive grid.
Additionally we consider only square shaped elements.

We use an additive version of the multigrid method for the solution of the equation
system, i.e. the so called BPX preconditioner [10]. This requires an outer Krylov iterative

*Department for Applied Mathematics, University Bonn, Germany.
1

solver. The BPX preconditioner has the advantage of an optimal O(1) condition number
and an implementation of order O(n), which is optimal, even in the presence of degenerate
grids. Furthermore, this additive version of multigrid is also easier to parallelize than
multiplicative multigrid versions.

The straightforward implementation is similar to the implementation of a multigrid V-
cycle. However, the implementation with optimal order is similar to the hierarchical basis
transformation and requires one auxiliary vector. Two loops over all nodes are necessary,
one for the restriction operation and one for the prolongation operation. They can be both
implemented as a tree traversal. However, by iterating over the nodes in the right order,
two ordinary loops over all nodes in the hash table are sufficient, one forward and one
backward.

2 The load-balancing problem

Parallel multigrid methods on a sequence of unstructured grids require some grid parti-
tioning algorithms. The grid partition problem can be equivalently formulated as a graph
partitioning problem. However, the general graph partitioning problem is NP-hard. Even
the problem to find asymptotically optimal partitions for unstructured grids is NP-hard
[12]. Several heuristic algorithms have been developed in the area of parallel computing:
There are bisection algorithms based on the coordinates of nodes and elements and there
are many algorithms based on the graph of the stiffness matrix, such as recursive spectral
bisection, and multilevel versions of other heuristics. Some PDE codes also use data diffu-
sion [29] or some specific heuristics [6, 9, 4]. For a survey on grid partitioning methods we
refer to [25].

Graph partitioning can be expensive. However, in the framework of adaptive, element-
wise refinement, partitions and mappings have to be computed quickly and during runtime.
On a shared memory parallel computer, the serial representation of the grid hierarchy in
memory and coloring of the elements along with dynamic scheduling of lists of elements can
be used. This has been proposed for a code based on triangles and the additive hierarchical
bases preconditioner [18].

On a distributed memory computer, the grid hierarchy has to be partitioned and
maintained, which requires a substantial amount of bookkeeping. In [13] a multiplicative
multigrid method or a finite volume discretization on a grid with quadrilaterals and hanging
nodes is proposed. The elements are partitioned by a hierarchical recursive coordinate
bisection. Test indicated that the repartitioning of coarser levels, when new elements were
created, did not pay off. Adaptive conforming grids consisting of triangles, which are refined
by a bisection strategy, were employed in the parallel multigrid codes of [4, 29, 19]. Here,
different repartitioning strategies for refined grids were used.

The parallelization of an adaptive code usually is non-trivial and requires a substantial
amount of code for the parallelization only. Hierarchies of refined grids, where neighbor
elements may reside on different processors, have to be managed [8]. That is appropriate
ghost nodes and elements have to be created and updated, when the parallel algorithm
performs a communication operation. This happens both in the numerical part, where an
equation system is set up and solved, and in the non-numerical part, where grids are refined
and partitioned, see also [4, 17].

The key point of any dynamic data partition method is efficiency. We look for a cheap,
linear time heuristic for the solution of the partition problem. Furthermore the heuristic
should parallelize well. Here, parallel graph coarsening is popular. It results in a coarser

graph on which then a more expensive heuristic on a single processor can be employed.
However, graph coarsening is at least a linear time algorithm itself and lowers the quality
of the heuristic further. This is why we look for even cheaper partition methods. They are
provided by the concept of space-filling curves.

3 Space filling curves

First we have to define curves. The term curve shall denote the image of a continuous
mapping of the unit interval to the R%. A curve is space-filling if and only if the image of
the mapping does have a classical positive d-dimensional measure. For reasons of simplicity
we restrict our attention to a simple domain, namely the unit square. We are interested in
a mapping

f:[0,1]=1 —Q:=10,1]% f continuous and surjective

One of the oldest and most prominent space-filling curve, the Hilbert curve can be defined
geometrically [16], see also [27]. If the interval I can be mapped to) by a space-filling
curve, then this must be true also for the mapping of four quarters of I to the four quadrants
of @, see Figure 1. Iterating this sub-division process, while maintaining the neighborhood
relationships between the intervals leads to the Hilbert curve in the limit case. The mapping
is defined by the recursive sub-division of the interval I and the square Q.

anllnn | |
2 3

] |_] EJ

mnllinm = m

1 Y4 T I

Fia. 1. Construction of a Hilbert space-filling curve. The open and the closed curve.

Often some curves as intermediate results of iterative construction procedure are more
interesting than the final Hilbert curve itself. The construction begins with a generator,
which defines the order in which the four quadrants are visited. The generator is applied
in every quadrant and their sub-quadrants. By affine mappings and connections between
the loose ends of the pieces of curves, the Hilbert curve is obtained.

There are basically two different Hilbert curves for the square, modulo symmetries, see
Figure 1. An open and a closed space-filling curve can be constructed by the Hilbert curve
generator maintaining both neighborhood relations and the sub-division procedure. The
resulting curve is indeed continuous and space-filling. Although each curve of the iterative
construction is injective and does not cross itself, the resulting Hilbert curve is not injective.
This can be demonstrated easily by looking at the point (1/2,1/2) € @, which is contained
in the image of all four quadrants. Hence several points on I are mapped to this point of
Q. In three dimensions, there are 1536 versions of Hilbert curves for the unit cube [1].

The Hilbert curve may be the most prominent curve. However it is not the oldest one.
The discovery of ‘topological monsters’, as they were called initially started when Cantor in
1878 proved the existence of a bijective mapping between two smooth, arbitrary manifolds
of arbitrary, but finite dimension. A year later Netto proved that such mappings are non-
continuous. This means that they are not curves in our previous definition. However,
without the property of an injective mapping, Peano was construct a space-filling curve

4

in 1890, see Figure 2. Later on several other curves were constructed by Hilbert, Moore,
Lebesgue and Sierpinski and many others.

3 4l 40 0.01 0.}1 A A
2 5 8 |
1 6 7 0.00 0.10 \

Fi1Gc. 2. The construction of a Peano (left) Lebesgue curve (middle and right).

There are two basic differences of the Lebesgue space-filling curve compared to
the previous curves: The curve is differentiable almost everywhere, while the previous
mentioned curves are not differentiable anywhere. The Hilbert and Peano curves are self-
similar, a feature they share with Fractals: Sub-intervals of the unit interval I are mapped
to curves of similar structure than the original curve. However, the Lebesgue curve is not
self-similar. It can be defined on the Cantor set C'. This set is defined by the remainder
of the interval I, after successively one third (1/3,2/3] has been removed. Any element
x € C of the Cantor set can be represented as a number in base-3 expansion, 03.t1fot3. ..
where all digits ¢; are zeros and twos t; € {0,2}, because the one’s have been removed by
the construction of the Cantor set. The mapping of the Lebesgue curve is defined by

(02.d1d3d5 e

F(05.(2d1) (2d3) (2ds) ..) 0y.dydads . ..

) with binary digits d; € {0,1} .

The function f defined on the Cantor set C' is extended to the unit interval I by linear
interpolation. The generator of the Lebesgue curve looks like in Figure 2. Although
constructed by digit shuffling, the curve is continuous and a space-filling curve. The order
of the quadrants imposed by the generator of the curve can be found in the depth-first
traversal of oct-trees and related algorithms.

4 Applications of space filling curves

Space-filling curves had been created for purely mathematical purposes. However, nowadays
there is a number of applications of space-filling curves. Basically, multi-dimensional data is
mapped to a one-dimensional sequence. This mapping is useful for load-balancing of parallel
simulations on a computer, for data locality of memory or disc accesses inside a computer
in geographic information systems [2, 11], for finding shortest paths in optimization [3, 7]
and ordering data in computer graphics [23, 32, 30] and in other applications [5].

Fia. 3. A traveling salesman tour defined by a closed Hilbert space-filling curve.

Particle or n-body problems are defined by the interaction of n entities by some
interaction forces. This model describes different phenomena like the movement of planets
or dust under gravitational forces in astrophysics and the dynamics of atoms or groups of
atoms in molecular dynamics. The number of particles of interest easily reaches the range of
106 — 10°. The model leads to a system of n ordinary differential equations. The right hand
side of each equation consists of the n — 1 forces of particles, which interact with the particle
under consideration. Usual model forces decay with the distance of the particles, which can
be exploited by efficient approximation algorithms like the fast-multipole and the Barnes-
Hut algorithm. However, there is still a global coupling of the particles, which cannot
be neglected. Furthermore, particle can be distributed randomly and can form clusters.
Hence a parallel particle simulation code requires efficient load-balancing strategies for the
enormous amount of data. The particle move in space due to the acceleration imposed
by the interaction-forces. This means, that a re-balancing or a dynamic load-balancing is
needed for parallel computing, which can be done by space-filling curves [31, 28, 22].

A slightly different situation can be found in adaptive discretizations of partial
differential equations. Now a grid consisting of n nodes and elements or volumes has
to be distributed to a parallel computer. The nodes and elements can be found at arbitrary
positions (completely unstructured grids) or at fixed positions, which are a priori known
(structured grids) or at least computable by grid-refinement rules from a coarse grid
(adapted grids). The degrees of freedom are coupled locally, usually between neighboring
nodes. However, algorithms for the solution of the resulting equation systems couple all
degrees of freedom together, which imposes difficulties on the parallelization of the solver.
For the solution of stationary problems, no nodes are moved in general. However, due to
adaptive grid refinement, new nodes are created during the computation. This requires
dynamic load-balancing, which can also be done by space-filling curves [20, 22, 15, 26].

5 A parallel solver based on space filling curves

How can space-filling curves contribute to the efficient parallelization of the introduced
applications? The basic idea is to map the nodes or entities in space to points on one
iterate of a space-filling curve. The points can be mapped to the unit interval by the
inverse mapping of the space-filling. The points, which now lay on the unit interval, can be
sorted. The points can be partitioned and the sets of points can be mapped to processors,
which defines a partition of the original problem in space.

There are different ways to implement the first step of our partitioning procedure, which
depend on the type of space-filling curve in use. We have to map a node or some other
geometric entity onto an iterate of a space-filling curve in space. We look for a point on
the curve in the vicinity and compute its position on the space-filling curve.

This can be done easily for Lebesgue-type of curves: We round the coordinates of the
node (z,y) (inside the unit square) to a finite binary representation of &k digits. This results
in a point which is on the kth iterate of Lebesgue curve and all further iterates

z 02.212023. .. 2
— — O2.z1y122Y2 - . . TLYE -
Yy 02.91Y2Y3 - - - Yk

This procedure can be equivalently described as: Compute the address of the quad-tree cell
of the kth level where the node resides in.

Other type of space-filling curves require slightly more involved procedures to find a
point on the curve next to the node and do the inverse mapping. However, the procedure

related to the Hilbert curve can be described as a post-processing step of the Lebesgue
procedure above. In a single loop from 1 to k the tuples (z;,y;) can be transformed into
tuples (Z;, §;) of the corresponding Hilbert curve, which is a similar process as the recursive
construction of the Hilbert curve. The same is true for space-filling curves in R

The space-filling discussed so far define a continuous mapping of a line segment [0,1] C R
to a polygonal area [0,1]2 C R% Such curves can also be used for the inverse mapping from
a domain © C R? to an interval [0,1] C R. This means that we can map geometric entities
in R? to the one dimensional interval. Entities, which are neighbors on the interval, are
also neighbors in the volume R? Unfortunately the reverse cannot be true and neighbors
in the volume may be separated through the mapping. However, we know how to solve
a one-dimensional partition problem: We cut the interval into equal sized pieces, which
gives perfect load-balance and small separators of size one. The partition of the volume R¢
induced by the space-filling curve, see Figure 4, still gives perfect load-balance. However,
the separators usually are larger than the optimal separators. As a technical detail, we
consider the partition and mapping of nodes of the grid and we choose a space-filling curve
which is aligned to the grids. Hence a sufficiently fine, finite representation of the space-
filling curve contains all nodes and covers a larger domain than the domain of interest

Q.

Fia. 4. A sequence of adaptively refined grids mapped to 8 processors, partition is color coded.

Partitioning by space-filling curves has been employed for finite element computations
in [21, 20] and has been compared to other heuristics in [24]. The main advantage of space-
filling curves in this context is their simplicity: If we want to bisect a set S of points z; € Q
on a space-filling curve, we can do this by a single number s and the inverse space-filling
curve mapping f~!

S ={ail f7 (@) < s}U{ailf7 (i) > s}

Each point is either left or right of the reference s on the space-filling curve. We we take
s as the median of f~!(S), both subsets are of the same size. In the same way we can
partition the set of points S into p different subsets, if we partition f~1(S) C [0,1] by p—1
separators s; like {z;|s; < f~'(z;) < s;31}. There is almost no bookkeeping necessary,
because the partition is deterministic and can be computed on the fly from the separators.
Each sub-set is assigned to one processor. Only the p — 1 separators have to be stored on
each processor.

We have to compute the separators such that the partitions contains the same number
of nodes. This can be accomplished on a list of nodes sorted by their position on the

-
{

space-filling curve f~!(z;). The list is cut into equal-sized pieces and each piece is mapped
to one processor. Hence the partition of nodes can be done with an ordinary sorting
algorithm. Given a set of nodes z; with their keys f=1(z;), we first create a sorted list of
keys. However, we need to perform the partition algorithm on a parallel computer. Given a
set of nodes with their keys, which are distributed over the processors, we look for a parallel
sort algorithm, which results in a partition where each partition resides on the appropriate
processor. There is no need to gather all keys on a master processor, but a pure scalable
parallel algorithm performs better with respect to communication volume, memory usage
and scalability. Currently we employ single step radix sort, where the previous separators
serve as an initial guess for the sorting. For uniform grid refinement f.e., two steps of local
neighbor communication are required only.

The remaining question is about the quality of this simple heuristic because it is cheap
and scalable. The workload is partitioned evenly. Hence the communication volume cannot
be optimal for d > 1. However, we can formulate

Theorem (Separator sizes for Hilbert curve partitionings). Suppose that we
partition a uniform grid which covers the cube [0,1]% by a Hilbert curve, then for any sub-

domain €; with n nodes obtained this way
d—1

the number of boundary edges s is s &~ n 4 with constants dependent only on d and the
discretization stencil.

Hence the separator sizes for uniform grids obtained by space-filling curve partitionings
are optimal up to a constant, if we neglect effects of the boundary 9€2. This indicates, that
the partitioning algorithm performs well in this case. In more general cases of adaptive
refined grids, numerical experiments indicate that the graph separators of space-filling curve

partitions are of sufficient quality, see [24].

6 Experiments

Instead of linked lists or trees, we propose to use hash storage techniques. First we describe
a key based addressing scheme. An implementation of a key based scheme with hash tables
is described later. Each entity of the grid is assigned to a unique key, which is an integer
number. The entity is stored in an abstract vector, where it can be retrieved by its key.
Furthermore it is possible to decide, whether a given key is stored in the table or not, and
it is possible to loop over all keys stored in the vector. In order to reduce the amount of
storage of the grid, we omit any pointers and use keys instead. For a (hyper-) cube shaped
domain Q = [0,1]¢, we can use the coordinates of a node for addressing purposes. The
coordinates of hierarchical son nodes and father nodes can be computed from the node’s
coordinates easily. Hence, the keys of the nodes are available and the nodes can be looked
up in the vector, if they exist. Nodes on the finest refinement level can be determined by the
fact, that they do not have son nodes. The computation of neighbor nodes requires special
care, because it is not immediately clear, where to look for the node. Given a one-irregular
grid with hanging nodes, for example, a neighbor node can be located in the distance of h or
2h from the node with a local step-size h. In the worst case this results in two vector lookup
operations, one in distance h along a coordinate direction and, if it was unsuccessful, one
lookup in distance 2h, see [15]. Similar key based addressing schemes can be obtained for
other grid refinement procedures and for different domains, see [29, 26]. For example the
element of a general triangulation or tetrahedrization 7y of a polygonal domain €2 can be
enumerated. Along with a numbering scheme based on local coordinates in each element,
a general key addressing scheme can be established. Also quad- or octree-tree techniques

can be used, see [31].

Key based addressing does simplify the implementation of a sequential, adaptive code.
Now, we generalize the concept of key addressing and hash tables to the parallel case. The
idea is to store the data in a hash table located on the local processor. However, we use
global keys, so a ghost copy of the node may also reside in the hash table of a neighbor
processor. Furthermore we base the code on space-filling curve partitions of the previous
section. The position of a node on the space-filling curve, along with the known partition,
defines the home processor of a node. Given a node on a processor, it is easy to determine
to which processor the node belongs to. If a node occurs, which does not belong to the
processor, it must be a ghost copy, and it is computable where to find its original.

The next idea is to combine the position on the space-filling curve with the hash key
[31, 22]. The computation of the position on the curve can be computed for any given
coordinate tuple. It is a unique mapping [0,1]% — [0, 1] similar to mapping required for
hash keys. The position can be used as a key. Furthermore, for the construction of the hash
table, we need a hash function. This can be any mapping [0, 1] — [0, m] with a large integer
number m, preferably prime. Many cheap functions related to pseudo-random numbers will
do here. Modifications of the hash function can improve the cash performance of the code:
Space-filling curves introduce locality in the key addressing scheme, which is used for the
parallelization of the code. Exploiting the data locality once again on the local processor,
one can optimize the usage of secondary disk storage and of the memory hierarchy of cashes,
which is difficult otherwise [14].

As a test case for our approach, we consider a problem of linear elasticity, the Lamé
equation in the displacement approach. We use a finite difference discretization, where the
degrees of freedom are associated with the nodes, and the differential operator is defined o
the edges connecting the nodes. In a similar fashion the additive multigrid can be defined.

All numbers reported are scaled CPU times measured on our parallel computing cluster
‘Parnass2’. It consists of dual processor Pentium I 400MHz boards with at least 256 Mbytes
of main memory, interconnected by a Myrinet network in a fat-tree configuration. The
MPI message passing protocol implementation Mpich-PM showed a bandwidth between
each two boards of 850 Mbit/s, see also [33]. Furthermore we compare the execution time
of the load-balancing step with the execution time of the linear solver and compute their

ratio o := tbalancing/tsolving-

time processors
nodes dof 1 2 4 8 16 32 64
450 1350 | 1.44 0.99 0.80 1.35 0.50 0.39 1.05
1155 3465 | 4.14 2.48 1.71 1.32 1.00 0.70 2.74
4412 13236 | 19.0 10.3 6.09 5.23 3.07 1.89 1.21
18890 56670 | 98.6 50.3 28.1 20.6 11.6 6.35 3.70
93021 | 279063 | 582 294 157 102 54.8 28.2 15.1
506620 | 1519860 556 306 155 78.1
3178218 | 9534654 494

TABLE 1

Adaptive refinement example, elasticity 3D, timing, 1 to 64 processors.

In the single processor case, no load balancing is needed, so the partitioning and
mapping time and their ratio « is zero. Otherwise, the nodes have to be partitioned and

ratio a processors
nodes | 1 2 4 8 16 32 64
18890 | 0 3.5e-4 3.4e4 3.9e-4 6.0e-4 1.15e-3 2.73e-3
93021 | 0 3.6e-4 3.5e-4 4.0e-4 4.9¢e-4 6.9e-4 1.43e-3
506620 | 0 — — 4.2¢e-4 4.6e-4 6.3e-4 9.le4

TABLE 2

Ratio a of execution times of partitioning and mapping nodes to solving the equation system.

mapped by a parallel (partial) sort algorithm. The relative cost of partitioning nodes « is of
the order le-3. Hence our load balancing is also very cheap in this case. In the adaptive grid

case, dynamic load balancing generally is required. Note that in all cases load balancing

is much cheaper than solving the equation system. However, higher number of processors
make the mapping and partitioning relatively slower. Mapping data for adaptive refinement
requires the movement of a large amount of data, even if most of the nodes stay on the

processor. Other load balancing strategies can be quite expensive for adaptive refinement
procedures, see [4, 29].

References

[1]

[2]

J. Alber and R. Niedermeier, On multi-dimensional Hilbert indexings, in Proc. of the Fourth
Annual International Computing and Combinatorics Conference (COCOON’98), Taipei 1998,
Lecture Notes in Computer Science, Springer, 1998.

T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer, Space filling curves and their use
in the design of geometric data structures, Theoretical Computer Science, 181 (1997), pp. 3—
15. also as Proc. Second Latin American Symposium on Theoretical Informatics, LATIN ’95,
Valparaiso, Chile, Springer, Lecture Notes in Computer Science 911, p. 36ff.

J. Bartholdi and L. K. Platzman, Heuristics based on space-filling curves for combinatorial
optimization problems., Management Science, 34 (1988), pp. 291-305.

P. Bastian, Load balancing for adaptive multigrid methods, STAM J. Sci. Comput., 19 (1998),
pp. 1303-1321.

I. Beichl and F. Sullivan, Interleave in peace, or interleave in pieces, IEEE Computational
Science & Engineering, 5 (1998), pp. 92-96.

M. J. Berger and S. Bokhari, A partitioning strategy for nonuniform problems on multiproces-
sors, IEEE Trans. Comput., C-36 (1987), pp. 570-580.

D. Bertsimas and M. Grigni, On the spacefilling curve heuristic for the Euclidean traveling
salesman problem, tech. rep., Massachusetts Institute of Technology, Cambridge, MA, 1988.
K. Birken and C. Helf, A dynamic data model for parallel adaptive PDFE solvers, in Proceedings
of HPCN Europe 1995, B. Hertzberger and G. Serazzi, eds., vol. 919 of Lecture Notes in
Computer Science, Milan, Italy, 1995, Springer.

S. H. Bokhari, T. W. Crockett, and D. N. Nicol, Parametric binary dissection, Tech. Rep.
93-39, ICASE, 1993.

J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comp., 55
(1990), pp. 1-22.

E. Bugnion, T. Roos, R. Wattenhofer, and P. Widmayer, Space filling curves versus random
walks, in Proc. Algorithmic Foundations of Geographic Information Systems, vol. 1340 of
Lecture Notes in Computer Science, Springer, 1997.

T. N. Bui and C. Jones, Finding good approximate vertex and edge partitions is NP-hard, Inf.
Process. Letters, 42 (1992), pp. 153-159.

[13]

[14]

[15]

10

J. De Keyser and D. Roose, Partitioning and mapping adaptive multigrid hierarchies on
distributed memory computers, Tech. Rep. TW 166, Univ. Leuven, Dept. Computer Science,
1992.

C. C. Douglas, Caching in with multigrid algorithms: problems in two dimensions, Paral. Alg.
Appl., 9 (1996), pp. 195-204.

M. Griebel and G. Zumbusch, Hash-storage techniques for adaptive multilevel solvers and their
domain decomposition parallelization, in Proc. Domain Decomposition Methods 10, J. Mandel,
C. Farhat, and X.-C. Cai, eds., vol. 218 of Contemporary Mathematics, Providence, Rhode
Island, 1998, AMS, pp. 279-286.

D. Hilbert, Uber die stetige Abbildung einer Linie auf ein Fldchenstiick, Mathematische
Annalen, 38 (1891), pp. 459-460.

M. T. Jones and P. E. Plassmann, Parallel algorithms for adaptive mesh refinement, STAM J.
Sientific Computing, 18 (1997), pp. 686-708.

P. Leinen, FEin schneller adaptiver Léser fir elliptische Randwertprobleme auf Seriell- und
Parallelrechnern, PhD thesis, Universitat Dortmund, 1990.

W. F. Mitchell, A parallel multigrid method using the full domain partition, Electronic
Transactions on Numerical Analysis, (97). Special issue for proceedings of the 8th Copper
Mountain Conference on Multigrid Methods.

J. T. Oden, A. Patra, and Y. Feng, Domain decomposition for adaptive hp finite element
methods, in Proc. Domain Decomposition 7, vol. 180 of Contemporary Mathematics, AMS,
1994, pp. 295-301.

C.-W. Ou, S. Ranka, and G. Fox, Fast and parallel mapping algorithms for irreqular and
adaptive problems, in Proceedings of International Conference on Parallel and Distributed
Systems, 1993.

M. Parashar and J. C. Browne, On partitioning dynamic adaptive grid hierarchies, in
Proceedings of the 29th Annual Hawai International Conference on System Sciences, 1996.
A. Pérez, S. Kamata, and E. Kawaguchi, Peano scanning of arbitrary size images, in Proc. Int.
Conf. Pattern Recognition, 1992, pp. 565-568.

J. R. Pilkington and S. B. Baden, Partitioning with spacefilling curves, Tech. Rep. CS94-349,
UCSD, Dept. Computer Science, 1994.

A. Pothen, Graph partitioning algorithms with applications to scientific computing, in Parallel
Numerical Algorithms, D. E. Keyes, A. Sameh, and V. Venkatakrishnan, eds., Kluwer, 1997,
pp. 323-368.

S. Roberts, S. Kalyanasundaram, M. Cardew-Hall, and W. Clarke, A key based parallel
adaptive refinement technique for finite element methods, in Proc. Computational Techniques
and Applications: CTAC 97, World Scientific, 1998. to appear.

H. Sagan, Space-Filling Curves, Springer, New York, 1994.

J. K. Salmon, M. S. Warren, and G. Winckelmans, Fast parallel tree codes for gravitational
and fluid dynamical n-body problems, International Journal of Supercomputer Applications, 8.
L. Stals, Parallel Implementation of Multigrid Methods, PhD thesis, Australian National Univ.,
Dept. of Mathematics, 1995.

D. Voorhies, Space-filling curves and a measure of coherence, in Graphics Gems II, J. Arvo,
ed., Academic Press, 1994, pp. 26-30.

M. Warren and J. Salmon, A portable parallel particle program, Comput. Phys. Comm., 87
(1995), pp. 266-290.

R. E. Webber and Y. Zhang, Space diffusion: An improved parallel halfoning technique using
space-filling curves, in Proc. ACM Comput. Graphics Ann. Conf. Series, 1993, p. 305ff.

G. Zumbusch, Parnass2: A cluster of PCs. http://wwwwissrech.iam.uni-bonn.de/ re-
search/projects/parnass2/, 1998.

