1

A Sparse Grid PDE Solver;
Discretization, Adaptivity,
Software Design and
Parallelization

G. W. Zumbusch'

ABSTRACT Sparse grids are an efficient approximation method for func-
tions, especially in higher dimensions d > 3. Compared to regular, uniform
grids of a mesh parameter h, which contain h~¢ points in d dimensions,
sparse grids require only h™'|log h|d_1 points due to a truncated, tensor-
product multi-scale basis representation. The purpose of this paper is to
survey some activities for the solution of partial differential equations with
methods based sparse grid. Furthermore some aspects of sparse grids are
discussed such as adaptive grid refinement, parallel computing, a space-
time discretization scheme and the structure of a code to implement these
methods.

1.1 Introduction

Quite lot of phenomena in science and engineering can be modeled by
boundary value problems of ordinary differential equation or partial differ-
ential equation type. Further assumptions to simplify the model like axis-
and radial-symmetries often give rise to a PDE in one or two dimensions
(d = 1,2), which can be treated numerically more easily. However, the ac-
curate solution of similar problems in three dimensions, or time-dependent
problems in two or three space dimensions requires more computational
power. Fortunately, most phenomena in physics live in a three-dimensional
space, plus one time dimension. Higher-dimensional problems, which would
be extremely expensive or simply impossible to solve numerically, referred
to as the ‘curse of dimension’, due not occur in literature often. How-
ever, there are a lot of higher-dimensional problems d > 3 around, but
due to their complexity only few approaches address these problems di-

!Institute for Applied Mathematics, University Bonn, Germany,
Email: zumbusch@iam.uni-bonn.de,
URL: http://wwwwissrech.iam.uni-bonn.de/people/zumbusch.html

This is page 1
Printer: Opaque this

2 G. W. Zumbusch

rectly. We mention higher-dimensional problems in financial engineering,
in quantum physics, in statistical physics and even the four-dimensional
problems in general relativity. Hence there is a need for the solution of
higher-dimensional problems, but due to the fact that standard methods
fail or are extremely expensive, such problems are usually not considered.

1.2 Sparse grids

Sparse grids are a multi-dimensional approximation scheme, which is known
under several names such as ‘hyperbolic crosspoints’, ‘splitting extrapola-
tion” or as a boolean sum of grids. Probably Smolyak [Smo63] was the
historically first reference. Directly related to the boolean construction of
the grids was the construction of a multi-dimensional quadrature formula.
Both quadrature formulae and the approximation properties of such tensor
product spaces were subject to further research, see Temlyakov [Tem8&9]
and others. The curse of dimension was also subject to general research on
the theoretical complexity of higher-dimensional problems. For such theo-
retical reasons, sparse grids play an important role for higher-dimensional
problems. Besides the application to quadrature problems, sparse grids are
now also used for the solution of PDEs.

Sparse grids were introduced for the solution of elliptic partial differential
equations by Zenger [Zen91], where a Galerkin method, adaptive sparse
grids and tree data structures were discussed. At the same time a different
discretization scheme based on the extrapolation of solutions on several
related, regular grids was proposed, see [GSZ92].

To T
1]\ 1
) 1 X 1 X
T, T,
1]\ 1
A d 17X A . . =

FIGURE 1.1. The hierarchical basis.

The multi-dimensional approximation scheme of sparse grids can be con-
structed as a subspace of the tensor-products of one-dimensional spaces
represented by a hierarchical multi-resolution scheme, such as the hierar-
chical basis see Figure 1.1 and the historical reference [Fab09], or generally
any basis system of pre-wavelets or wavelet [Har95]. Each one-dimensional
basis function can be derived from a model function ¢ by a scaling of 27!

1. A Sparse Grid PDE Solver 3

(also called level [) and a translation by a multiple of 27!, In the case of
the hierarchical basis, the model function ¢ is a hat function.

Let us consider piecewise linear functions. The space of functions on the
interval [0, 1] of dyadic level [is based on a mesh with mesh parameter
h = 271, There are 2"t + 1 nodes. In nodal basis, there are 2:*1 — 1
interior hat functions of support 2h and two boundary functions of support
h, each associated with one node (or grid point). In the hierarchical basis,
there are two boundary functions (75) and one global function (71) of
support 1, see figure 1.1, two functions of support 1/2 (73), four functions
of support 1/4 (T5) and so on. All hierarchical basis functions of support
2h and larger span the function space of level [.

Based on the one-dimensional case, now we construct spaces piecewise
linear interpolants on a d-dimensional unit hyper-cube. The space of func-
tions on the regular grid of dyadic level [has a mesh parameter h = 27/~ 1,
Tt can be represented by the space of all tensor-products (also referred to
as direct products) of one-dimensional nodal or hierarchical basis functions
of level [, i.e. support larger than 27/=1. On level [, the two-dimensional
space e.g. can be written as

Ty =(T; ® T)ij<i-

In contrast to the regular grid, the corresponding sparse grid space con-
sists of products of hierarchical basis functions with support larger than
a d-dimensional volume of size 27!=1, see Figure 1.2. On level [, the two-
dimensional space e.g. can be written as

Ty =(T; @ Tj)itj<t -

This is a subset of the regular grid space. A regular grid has about 2%!
nodes, which is substantially more than the 2! - 19~ nodes of the sparse
grid.

The major advantage of sparse grids compared to regular grids is their
smaller number of nodes (or grid points) for the same level / and resolution
27!, which means a smaller number of basis functions (shape functions in
FEM) and therefore a smaller dimension of the function space and fewer
degrees of freedom in a discretization. This is especially true in higher
dimensions d > 1.

However, the question whether sparse grids have an advantage compared
to regular grids does also depend on the discretization accuracy of a so-
lution obtained on a grid. We are interested in a comparison of accuracy
versus number of nodes for both types of grids, a regular and a sparse one.
We define the storage e-complexity of an approximation method by the ac-
curacy €, which can be achieved with a storage of /N nodes. The accuracy
depends on the smallest mesh parameter A and an approximation order
p like ¢ = O(hP) for smooth data. For regular grids the number of nodes
depends on the space dimension d as Nstorage = h_d, which results in ¢ =

4 G. W. Zumbusch

=1 1=2 1=3
D
. .
.
11 T12 Tl3 [
o | o
ol e o | o
o | o
T21 T22 T23 [[
R olee]e
olole oefe]e
o[e|efe
T31 T32 * T33 [ILIEIE)

=1 - = -
[
L]
[
° L
Tll T12 ® T13 [
L]
L] []
T21 T22 ®
LA K BN
T31

FIGURE 1.2. Tableau of supports of the hierarchical basis functions spanning
a two-dimensional regular space (left) and the corresponding sparse grid space.
The space T;; is defined by the tensor product T; ® 7.

FIGURE 1.3. A sparse grid on the unit square. Depicted are the nodes associated
to the hierarchic basis functions.

1. A Sparse Grid PDE Solver 5

|d:1 d=2 d:3|d:1 d=2 d=3

first order N-1 N-1I72 N-1/3 [N-1 N-1+7 N-1+v

second order | N~2 N-? N=2/3 | N=2 N-27 N2y
third order | N=3 N—3/2 N-1 | N73 N7 N3ty

TABLE 1.1. Storage-complexity of a regular (left) and a sparse grid discretization.
Terms printed in bold face indicate linear e-complexity, terms below indicate
better complexity.

O(N_p/d). In the case of sparse grids, the dependence on the dimension
d is much weaker and we denote ¢ = O(N~P*7) for every v > 0 and an
approximation order p. The sparse grid approximation is said to break the
curse of dimensionality.

Let us assume that a sparse grid approximation is of first order p = 1,
which of course depends on the discretization order, the error norm, the
smoothness of the solution and the sparse grid approximation itself. Then
the sparse grid is competitive to a second-order method in two dimensions
and to a third-order method in three dimensions, which is usually much
more expensive and harder to construct, see Table 1.1.

Furthermore the number-of-operations complexity is of interest, because
it is an estimate for the computing time a specific algorithm needs. In some
cases the work count is proportional to the number of nodes. This is true
for a single time-step of a standard explicit finite difference code. We will
see that this is also true for the corresponding sparse grid code. However,
the work count usually is higher than the number of nodes for implicit
discretizations of time-dependent problems and for stationary problems
involving the solution of (non-) linear equation systems, and for time-
dependent problems in total. The number of time-steps for an evolution
problem of a fixed time interval depends on the spatial resolution A e.g. due
to a CFL stability condition, which leads to a higher work count complexity
in N. On regular grids we obtain Nyex = O(h~%"1), which is equivalent
to the storage complexity in d + 1 space dimensions. This means that any
reduction in storage Nstorage, €.g. through sparse grids, may reduce the
number of operations even further.

We still have to check the assumption on the approximation order p = 1
(or some other constant) of a sparse grid discretization. Up to now such
orders had been verified for the extrapolation method, for the interpolation
error, for the energy error of the Galerkin method, and for the consistency
of the finite difference method. However, either quite strong regularity as-
sumptions or model problems were considered. Furthermore, numerical ex-
periments indicate that in more general cases and in connection with adap-
tive sparse grids the approximation orders obtained for model situations

hold.

6 G. W. Zumbusch
1.3 Discretization of a PDE

There are several, completely different ways to discretize a partial differ-
ential equation. Many methods provide grid-based discretization schemes
and can be generalized to sparse grids. Very popular are the Finite Element
Method (FEM) based on the Galerkin approach, Finite Differences, the Fi-
nite Volume Method and spectral methods. Sparse grid discretizations have
been so far constructed by the Galerkin method [Zen91, BDZ96], finite dif-
ferences [Gri98, Sch98], by extrapolation based on finite differences [GSZ92]
and finite volumes [Hem95], and by a spectral method [Kup97] based on a
fast Fourier transform defined on sparse grids.

1.8.1 The extrapolation method

Probably the simplest way to solve a PDE on a sparse grid is to use the
extrapolation method, also called the ‘combination’ [GSZ92] or ‘splitting
extrapolation’-technique [L.LS95]. The idea is to combine solutions com-
puted on several different regular grids to a more accurate sparse grid
solution. The approach uses the extrapolation idea of numerical analysis to
cancel out some low order error terms by the combination of solutions and
to achieve a smaller discretization error.

Let us assume that we have a standard PDE solver for regular grids of
ni - ny---ng nodes. This can be any software capable of uniform grids on
rectangular shaped domains or anisotropic grids on the unit square respec-
tively. Let us denote such an anisotropic grid as Gj, p,,...,n,- Furthermore
the mesh parameters h; will always be of the form h; = 277¢ with a multi-
index j. A sparse grid of level [can be decomposed into the sum of several
regular grids

Glsparse — U GJ ’
HE
see also figure 1.4. The idea is now to use this decomposition and the nu-
merical solution of the PDE and to decompose the solution u into solutions
u; on regular grids. This can be done as

sparse

. = ZUj — Z u;, (L.1)

l71=l l7l=l-1

u

which is an extrapolation formula with weights +1 and —1. If we depict
the grid points of a grid G, each node is associated with a shape func-
tion in a FEM discretization. The solution originally obtained only in the
nodes is extended by the shape functions of a linear FEM discretization to
a piecewise linear function on the whole domain. Now we can sum up func-
tions from several grids e.g. G20, G1,1 and Gg 2. The union of the nodes
gives the nodes of the corresponding sparse grid, compare Figures 1.3 and
1.4. Computationally, the combination of the grids requires interpolation

1. A Sparse Grid PDE Solver 7

on each grid, or the evaluation of the shape functions on the sparse grid
points, because the sparse grid contains always a superset of nodes of each
of the regular grids. The remaining nodes are determined by interpolation.
For the correct extrapolation we also need to subtract several coarse grids,
which can be done in the same way.

+1

FIGURE 1.4. The sparse grid combination technique. Several solutions of the
PDE obtained on different regular grids by standard PDE codes are summed up
to form a sparse grid solution of higher accuracy. The weights of +1 and —1 are
depicted next to the grids. The grids are arranged analogous to the tableau in
Figure 1.2. The union of nodes of all regular grids results in the nodes of the
corresponding sparse grid, see Figure 1.3.

The fact that the extrapolation solution equals the solution of the PDE
on the sparse grid can be proven by an error expansion of the regular grid
solutions and the cancelation of the lower order error terms, see [GSZ92].
The quality of an extrapolation formula, i.e. the sum of the remaining
error terms, depends on higher derivatives of the solution u and can be
measured in higher order Sobolev norms (e.g. H24(Q)). Given sufficient
smoothness, it is possible to combine solutions obtained by Finite Elements,
Finite Volumes or Finite Differences. The latter two require an appropri-
ate, order-preserving interpolation scheme for the nodal values obtained on
single grids. The FEM provides a natural extension of the solution from
the nodes to the whole domain through the shape functions used. Error
bounds in different norm are available and the error usually compares to
the regular grid error, with a logarithmic deterioration |log h|.

Besides its simplicity, there are several advantages with this method:
The solution can be computed concurrently, that is on different processors
of a parallel computer (almost embarrassingly parallel, see [Gri92]) or one
after the other requiring only little computer memory. Multiple instances
of a standard PDE code can be used and only little coding is necessary to
implement the method. Furthermore such a code may be a very efficient

8 G. W. Zumbusch

code optimized and tuned for structured grids on a specific computer. The
prerequisites of such a code are an interpolation procedure, which defines
the solution in the whole domain, and a standard solver, which is able to
deal with anisotropic discretizations i.e. a grid of ny - ny - --ng nodes with
different n;. Direct solvers and several types of iterative solvers can be used
here, for example the semi-coarsening version of a multigrid solver.

+1

+1

I
[N
esescee

+1 +1

FIGURE 1.5. Sparse grid extrapolation schemes: splitting extrapolation (left),
‘semi’-sparse grid (right). A smaller number of solutions than for the sparse grid
extrapolation technique are combined to form a higher accuracy solution. Again,
each solution on a regular grid can be obtained by any suitable software package

or PDE solver.

Here is where the first problems occur. Think of a fluid flow problem or
some convection problem discretized on an anisotropic grid with 3x2/=141
nodes. A discretization may have problems with stability, or at least the
numerical linear algebra is difficult. The extrapolation does work as long
as there is a suitable error-expansion, which depends on the problem and
the discretization. If the solution of extremely anisotropic refined grid is
useless for some larger convection terms, the extrapolation does not work
properly. A possible fix is to restrict the aspect ratios of the grids under
consideration and to remove these from the extrapolation. This can be done
by some additional restriction to the index j

sparse ,__ .)
Ul = UJ — UJ

7=, ji<i lil=l—1, <+l

with some parameter v < 1. For three-dimensional fluid flow problems this
is heavily used by Hemker [Hem95], see figure 1.5. Further modifications of
the extrapolation method consists in a piecewise constant interpolation for
some finite volume discretizations [Hem95] and in the combination of few

grids [LLS95]:

sparse

d
Y = E :uj+(l—|j|)€k U
k=1

1. A Sparse Grid PDE Solver 9

The idea is to refine the grid in each coordinate direction only once. Of
coarse this gives a slightly different solution than the originally proposed
method, see figure 1.5, but we will see the relation in chapter 1.4.1 on
adaptive grids.

We have mentioned the stability problem for anisotropic discretizations.
But there are more possible pitfalls: The solution of time-dependent prob-
lems and of non-linear problems can be done in several ways. The cheapest
way would be to extrapolate the solution of the last time-step or the fi-
nal non-linear iterate. Under some circumstances this is a legal approach.
However, in the presence of phenomena not resolved on some grids, the ex-
trapolation might cause a disaster. The error expansion of the discretiza-
tion scheme is not accurate enough on such coarse scales and the final
result is polluted by higher-order terms. A more expensive version of the
extrapolation methods is to combine the solution at every time-step or ev-
ery non-linear iteration steps. This requires more CPU-time, some more
changes in the code and does not parallelize so well. However, it definitely
more accurate. Further difficulties may arise with the resolution of coef-
ficients, boundary conditions and the source terms on every grid, with
non-linearities, and transport terms and singularities.

Adaptive grids are more difficult to incorporate into the extrapolation
scheme, because the grid refinement of the single grids has to match. An
adaptive refinement procedure has to use a complicated collaborative grid
refinement, which is why this has not yet been implemented.

1.3.2 The Galerkin method

The standard approach to discretize an elliptic differential equation on
a sparse grid or even on an adapted sparse grid is the Galerkin method
(FEM). Given a sparse grid along with the functions on that grid, it is
straightforward to apply a Galerkin scheme with test and trial functions
¢;. These functions are defined by the hierarchical basis and some other
multi-scale resolution, each one related to a node. The equation system is
derived from the variational form af(.,.) of the differential equation:

a(u,v) = f(v) Yv e H

ai i = a(qﬁi, (f)J) (12)
fi = 1(9)
Z aijui =f; Vj
This method can be applied to any set of linear independent shape functions

in a finite-dimensional setting and furthermore for a complete basis in the
case of infinite-dimensional function spaces like H'. The idea now is to

10 G. W. Zumbusch

use shape functions of the sparse grid, which are direct products of one-
dimensional functions of the hierarchical basis or some other (pre-) wavelet
basis. At a coordinate z in space

6i(w) = I 61, (=)

hold. In the case of the hierarchical basis, the functions ¢; are the stan-
dard multi-dimensional hat functions also used in FEM. This discretization
is symmetric as long as the bilinear form a(.,.) is self-adjoint. The dis-
cretization error can be estimated by the interpolation error of the sparse
grid. Error bounds for the energy norm of the Laplacian are available and
compare to the regular grid error, with a logarithmic deterioration |log h|.
However, sharp Ly norm estimates are not known yet for the Galerkin so-
lution, while pure best approximation results in Ly norm do not give the
logarithmic deterioration |logh|, see [Osw98]. However, computationally
some logarithmic deterioration is observed also in Ly norm, see [Bun92].

There are two main drawbacks with a naive implementation of this ap-
proach: The stiffness-matrix a; ; is not sparse, unlike the FEM case, and the
computation of f; is quite expensive. As a consequence, the performance of
the sparse grid degrades to the performance of a full A=% grid. This is basi-
cally due to the fact that a lot of shape functions do have a large support.
For the FEM discretization, these supports are small and only a limited
number of shape functions might interact in the computation of a(¢;, ¢;).

The fix is not to assemble the stiffness matrix, but to use an algorithm
for a matrix multiply or Gauss-Seidel step on the fly. This algorithm can
be formulated in terms of tree traversals and has indeed linear complexity
[Zen91]. This means that if the number of matrix multiplies and a Gauss-
Seidel iterations is limited, for example by some suitable preconditioner or
accelerator, the equation system can be solved in optimal complexity. Ex-
tensions of this algorithm to several dimensions and to certain types of vari-
able coefficients have been developed, see [BDZ96] and references therein.
The main difficulty with this respect is the symmetry of the discretiza-
tion. The optimal order algorithms are usually based on the assumptions
of constant coefficients. The treatment of the variable coefficients case is
complicated. In order to maintain optimal complexity, the coefficient func-
tion is approximated on the sparse grid. This approximation can cause
asymmetries in the operator for a naive implementation. Further difficul-
ties come from jumping coefficients not aligned to a grid axis and from
more complicated differential operators.

1.8.8 The finite difference method

A different way of a sparse grid discretization is a finite difference scheme
[Gri98, Sch98], which we will employ further on in this paper. It is simpler

1. A Sparse Grid PDE Solver 11

to implement and to apply to different types of equations, but there is not
that much known analytically.

We define the hierarchical transformation H as the hierarchical basis
transformation on the regular grid from nodal values to hierarchical values,
which are restricted to the sparse grid nodes. Both, the nodal basis and
the hierarchical basis span the space of piecewise linear functions. Hence
any function of the space is uniquely represented as linear combination
of basis function, and such a representation can be uniquely converted
to the representation of another basis. However, computationally such a
transformation has to be fast in order for the transformation to be useful.
All wavelet-type of basis functions provide such fast O(n) transformation
to and from the nodal basis representation. The transformation is especially
simple for the one-dimensional hierarchical basis: Given the nodal values
u; with j =0,1,..., 241 the hierarchical representation for interior points
can be obtained by

j = Ui — 5 (uleft father + Uright father) (13)

and the boundary nodes ug and u9i+1 remain unchanged. The nodal values
are replace by their hierarchical excess or deterioration, compared to the
value obtained by interpolation between on the next coarser level grid. The
inverse transformation can be implemented similarly.

1
u; = uj + 5 (uleft father + Uright father) (14)

However, the coarse nodes have to be computed before the finer grid nodes.
Furthermore, the transformation can be implemented in place, without an
auxiliary vector. The hierarchical basis transformation H is also abbrevi-
ated by the stencil [1/211/2].

Based on the hierarchical basis transformation H, we define the action of
a one-dimensional finite difference operator for the discretization of a differ-
ential operator, see Figure 1.6: We apply the associated standard difference
stencil D; along the z;-axis to values located on the sparse grid nodes in a
specific basis representation. To this end the values are given in nodal basis
in direction 7 and in hierarchical basis representation in all other directions
I'\ {i}. The associated transformation is denoted by Hp\y;3. The stencil
D, for each node itself is chosen as the narrowest finite difference stencil
available on the sparse grid. It is equivalent to the corresponding stencil
on a regular, anisotropic refined grid. The finite difference stencil can by a
3-point Laplacian h%[l — 2 1], an upwind-stabilized convection term aixl’
some variable coefficient operators and so on. In nodal values the finite
difference operator reads

0 -

12 G. W. Zumbusch

FIGURE 1.6. Scheme for a finite difference operator in x-direction.

A general difference operator is then obtained by dimensional splitting. A
linear convection-diffusion equation, as a simple example, can be discretized
in nodal basis representation as usual as

a

V-u =~ EHI_\I{Z} ODiOHI\{i}Ua (16)
i=1

where the one-dimensional difference operators D; may be chosen as a

—1 — -[~11 0] (convection term) or plus the
three point centered Laplacian a - m[l — 2 1] (diffusion term).

On adaptively refined grids, the nearest neighbor nodes are chosen, which

two-point upwind stencil ¢ -

may lead to asymmetric stencils, i.e. non-uniform one-dimensional stencils.
Further higher order modifications of the stencils have been tested, too.
In the presence of a transport term in the equation, the unsymmetry is
believed to be no problem. There are many ways to create discretizations
of all kind of equations, e.g. for the Navier-Stokes equations [Sch98] or some
hyperbolic conservation laws [GZ98a].

There is not that much of theory known for the finite difference dis-
cretizations. However, the consistency error has been analyzed for some
model problems. It behaves like the consistency of regular grids. The sec-
ond ingredient of a convergence analysis about the stability is still missing,
but numerical experiments indicate that the stability deteriorates by a log-
arithmic factor, which results in similar convergence results as the Galerkin
method on sparse grids.

The algorithmic part of the finite difference discretization is much simpler
than for the Galerkin method if one accepts the fact that the discretization
is unsymmetric. As usual only the matrix multiply is implemented and
the matrix is not assembled for complexity reasons. The sparsity pattern,
see Figure 1.7 shows that the matrix is not really sparse and a matrix
assembly would deteriorate the overall complexity. Analytically it is known
that the average number of non-zero entries per row in the stiffness matrix
with N & 2! - 19~ unknowns is roughly 2'/ for the Galerkin method, i.e.
the matrix is almost dense, see [Bal94]. The finite difference discretization
results in a lower average of [9~1 entries, which is still too much to be stored
in a matrix. Due to to unsymmetric finite difference discretization, any
iterative solver for the equation solvers has to deal with the unsymmetry

1. A Sparse Grid PDE Solver 13

and methods like BiCGstab and GMRES are quite popular.
Basically three steps have to be implemented:

e transform a vector of nodal values to hierarchical basis: Hp\ 5}
e apply a one-dimensional finite difference stencil along the coordinate
axis z;: D;
e transform the vector back to nodal basis HI_\I{Z.}
The basis transformation can be implemented as a sequence of one-dimensionalll
transformations H; and Hi_l, each along one coordinate axis z;. Further-
more, we have to be able to sum up the resulting vectors. A complete PDE

solver furthermore includes at least one iterative solver, some output or
post-processing features and a treatment of different boundary conditions.

0 100 200 300 400 500

FIGURE 1.7. Sparsity pattern of a 2D finite difference discretization.

1.4 Adaptivity

The quality of the approximation of a function on sparse grids depends
on the smoothness on the function. The smoother the function is, i.e.
the smaller several higher order mixed derivatives are, the better is the
sparse grid representation. Often functions are of interest, which violate
this smoothness condition. The solution of a PDE may develop singularities
at the boundary of the domain. Also some steep gradients and boundary
layers are not efficiently represented on a sparse grid. In order to use the
nice multi-dimensional properties of sparse grids also in conjunction with
such functions and solutions, adaptive grid refinement can be employed.

14 G. W. Zumbusch

The grid is not longer a regular one, but it is specially adapted to the
function, which has to be represented. This can be done in several ways.
However, the general approach is to insert additional nodes or to remove
present ones to adapt the grid. Both approaches, adding nodes or removing
nodes, can be used to define the term of an ‘adaptive sparse grid’.
However, such general definitions of sparse grids include all types of
regular grids their adaptively refined versions. A regular grid of level [can
be obtained from a sparse grid, either by inserting nodes into a sparse
grid of level [, or by removing nodes from a sparse grid of level dl, which
contains the regular grid already. A more precise definition of adaptivity
can be obtained if one describes the adaptive refinement algorithm instead

of the grid.

1.4.1 A priori adapted spaces

An a priori way of grid adaptivity is to optimize sparse grids towards spe-
cial classes of functions. Classes of interest are space with special smooth-
ness properties. Either a general higher-order smoothness is required, or a
smoothness appropriate to the tensor product structure of the grid. This
can be done by spaces like H?¢, where special smoothness restrictions are
imposed on mixed derivatives of the function. Further optimization can
be geared towards different error norms. Form a best approximation point
of view, the sparse grids are optimal in an L, sense. However, another
norm like the energy norm or equivalently the H' norm gives rise to other
grids of sparse grid constructed in [Bun92]. Here emphasis is put on strong
anisotropic grids, while some of the isotropic grids can be removed. This
results in an overall number of nodes of A~! and breaks the curse of dimen-
sion completely. Any other positive and negative Sobolev norm leads to a
different sparse grid, which can be constructed systematically, see [GK98].
An extreme case is the splitting extrapolation grid of [LLS95].

1.4.2 Adaptive grid refinement

A completely different type of adaptivity is the a posteriori approach: The
sparse grid is refined locally in space, to resolve jumps, singularities and
related features of a specific solution. The grid refinement is done during
computation. The general approach to adaptive grid refinement consists
of an error indicator or estimator, a selection procedure and a geometric
grid refinement procedure. Along with a solution method for the equation
system, this forms the ingredients of an iterative refinement cycle. This
works very well for other types of grid such as unstructured grids based
on triangles or tetrahedra, based on composite grids as an overlapping
system of regular grids, and for more complicated unstructured grids with
mixed element types. The theoretical foundation of error estimators is well
understood in the elliptic case, given some regularity of the solution, see

1. A Sparse Grid PDE Solver 15

[Ver96]. The grid refinement for a FEM scheme is also sound in the elliptic
case.

However, for global approximation schemes like sparse grids, or transport
equations, where a small error in one nodal point affects large parts of the
domain and many other nodes, this method has to be modified. In the
finite element case, an approximation is local and a change in one node does
only affect its neighbor nodes immediately. A sparse grid discretization uses
hierarchical basis transformations, which link whole lines of nodes. Hence,
many more nodes can be affected. The discretization scheme is said to be
non-local.

Let us take a closer look, why the adaptive refinement cycle usually
does work: Regular parts of the solution, say H? do not need adaptive
refinement. Additional refinement, which has been done accidently or due
to refinement nearby, does not hurt, on the other hand. So we have to take
care of the rough parts of the solution, in the elliptic case singularities
of H't® type. The precise knowledge of the one-dimensional case for z*
singularities along with their approximation by piecewise polynomials gives
rules for the optimal grading of a mesh. An optimal grid in d-dimensions
can be derived approximately from the 1D case. A point singularity requires
a graded radial to the point, while tangentially the grid can be arbitrary.
Line singularities require a mesh grading radial to the line, and so on. An
adaptive grid refinement procedure will try to mimic this grid grading.
This can be achieved by element bisection schemes, which do not refine
steep enough compared to an optimal grid, but sufficiently for the efficient
resolution of the singularity. An adaptive procedure, which bisects elements
with large errors for example, can produce such sub-optimal grids. It is
enough to refine all elements next to a node with a large error, because
the elements contribute to the error, and a refinement decreases the local
error. Accidental further refinement does not spoil the performance, loosely
speaking, as long as the number of unnecessary nodes does not exceed the
required nodes.

Let us return to sparse grids. They are a non-local approximation scheme.
Given a node of the grid with a large error, there are a lot of elements
and other neighbor nodes which contribute to the error. Their number is
proportional to the grid level and may be large. This is in contrast for the
FEM, where the number of neighbors is limited. Hence local refinement
is quite expensive. Furthermore, any change in one node does affect large
parts of the domain. It is not longer possible to localize the error and
to approximate the elliptic differential operator by its diagonal part (i.e.
the diagonal entries of the stiffness matrix). As a consequence, we cannot
expect that the (expensive) local grid refinement does actually reduce the
error of the node under consideration.

One way to improve the situation is to look at error estimators con-
structed for other global phenomena like transport equations. Here influ-
ence factors are computed instead of local errors, which describe the in-

16 G. W. Zumbusch

fluence of a node onto the (global) error, see [BR95]. Instead of the local
error, a number which indicates the influence of the respective node onto
the error is used for refinement. Such indicators can be obtained from the
solution of a dual problem based on the current solution of the original prob-
lem. An adaptive refinement procedure will refine the grid in the vicinity
of nodes with a large influence onto the global error. This coincides with
nodes of large errors in the elliptic case with a FEM discretization. How-
ever, for transport problems the location where the error occurs and where
the error originates differs, because the error is transported along with the
solution. Hence it is essential not to refine where the error is measured, but
to remove the source of the error.

A similar procedure can be used for global approximation schemes of
sparse grid type: Given some global error criterion such as the H' or L,
norm of the error, it is possible to compute the influence of each node onto
the global error [Bun98]. For efficiency reasons, the dual problem may be
solved on a coarser scale than the original problem. However, the problem
remains how to refine the sparse grid after selecting a set of nodes with a
large error contribution. Due to the global support of many of the shape
functions, it is not clear which nodes in the vicinity of the selected nodes
should be created. It is even unclear, what a vicinity in the presence of
global functions means. Hence we have to introduce a further extension
of the refinement procedure. The adaptive grid refinement procedure does
work for FEM, because the differential operator is spectrally similar to its
diagonal part. However, we are able to transform the equation system to
a basis where the sparse-grid operator is almost a diagonal operator: The
appropriate wavelet basis, where the condition number of the operator is a
constant independent from the mesh parameter i allows one to neglect the
global coupling of the operator. Hence the coefficients of the estimate error,
represented in this wavelet basis, lead to a better and provable refinement
criterion [Osw98]. The question of geometric grid refinement is therefore
partially solved. However, the algorithmically side is still open.

o8 . Lonnnnnnnn . 4

00 L L I L
00 0z 04 08 08 10

FIGURE 1.8. Adaptive sparse grids. ‘Standard’ refinement (left) and a ‘shield’
grid (right).

1. A Sparse Grid PDE Solver 17

Another approach to adaptive sparse grids are the shield grids [HBZ95].
The idea is to ‘shield’ the singularity by several boxes of nodes in order
to avoid the pollution outside the box. Standard sparse grids can be used
outside. The grid is constructed as the union of nodes of a standard sparse
grid and the boxes. Each quadratic box is aligned to the grid and con-
tains all nodes on the outline of the square. The nodes are located with
a distance hAmpin. The effect is that all nodes, whose shape functions sup-
port contains the singularity, are shielded, i.e. their next neighbors in all
coordinate directions are very close, hnin away.

Numerical experiments indicate the effectiveness of this approach for
certain point singularities caused by a singular source term. There are also
adaptive refinement procedures to construct such grids. However, the com-
plexity of the grid, that is the number of grid points, is higher than stan-
dard sparse grids: The largest box has a side length of 1/2 and a surface

of 'Zd%d_l (in several dimensions). This means that the nodes required to
cover the surface of the box with a mesh of nodes at a distance of h is
h=%1logh compared to hlog?~! h nodes of a regular sparse grid. As a
consequence the curse of dimension is present in this discretization and
one of the advantages of sparse grids for higher-dimensional problems is
lost. Furthermore, it does cause harm to add further nodes to a shield grid
accidently near the singularity, because a point-type singularity might not
be shielded by the box any longer. A conceptual difficulty lies in the global
parameter hpin of the boxes for a specific grid, because grid refinement is
often considered a local procedure. Think of a problem with several areas
of refinement, where the grid needs different strength of mesh grading. A
global parameter would be adjusted to the strongest refinement and would
therefore spend too much effort on weaker refinement regions.

1.5 Software abstractions

The goal for the development of our finite difference sparse grid code is
to be able to test and to verify different types of discretizations on sparse
grids and to tackle different types of partial differential equations. Hence a
flexible and modular design is a must.

Techniques such as abstract data types and object oriented programming
provide such a flexibility, see [BN94, ABL97]. However, they can easily
lead to slow and inefficient code due to an over-use of design features. For
example, overloading the arithmetic operators ‘+’ and ‘*’ for vectors in
C++ sounds attractive. However, it is usually less efficient than providing
directly a sazpy operation for expressions of av' + @ type with multiple
arguments. This is due to memory management for intermediate results
and due to a lack of compiler optimization.

Other approaches to implement numerical algorithms focused on data

18 G. W. Zumbusch

structures such as trees for the representation of a grid. They incorporated
the numerical algorithms into the algorithms which manipulate the data
structures, e.g.arithmetic operations are done during a tree traversal, i.e.
one addition at each leave of the tree for a global sazpy operation [Zen91].
This is of course much slower than an ordinary sazpy operation on vectors.
An ‘object-oriented’ programming style now leads to a separation of the
tree traversal (as an iterator) and the arithmetic operation, resulting in
additional overhead, see [R1id92]. Hence, splitting a large code into many
small functions and loops may lead to inefficiencies, which cannot be re-
solved by an optimizing compiler. A very careful code design is needed.
We have based our code on several fundamental higher-level abstractions,
which are well separated both in functionality and in implementation. Each
implementation of an abstraction itself is coded in a more classical style.
This guarantees that we do not loose efficiency in a substantial way due to
this separation. We have identified the following building blocks, see figure
1.9 (left). They are ordered from low-level, computationally expensive and
efficient, to high-level routines, where efficiency is achieved through call
of some efficient subroutines. Similar abstractions can be found in other
object oriented software packages for partial differential equations such as

Diffpack, see [BLI7].

e vector: a large container for real numbers, including Blas level 1 arith-
metic

e grid: geometric description of an adaptively refined sparse grid. It
provides 1/0, refinement and addressing, and even standard grids

e field: a (solution) function on a sparse grid. Tt provides a mapping
between a grid and a vector and gives and an interpretation of the
vector data as (collocated) scalar or vector field

e operator: the finite difference operators that are defined on a sparse
grid and operate on vectors, see figure 1.9 (right)

e solver: different iterative (Krylov) solvers, uses a differential operator

1.5.1 Numerical data: vectors

Large amounts of data are stored efficiently in vectors. We avoid its storage
inside some other data structures such as trees or hash maps which will
be explained in chapter 1.5.2. The declaration of a vector class, based on
a primitive C vector, which allows also for an efficient interface to Fortran
subroutines, see [BN94], reads as follows

class Vec {

protected:
real *r;
int n;

1. A Sparse Grid PDE Solver 19

abstractions
data
method

domain data storag
nodes = Blasl
loop, refine

function on a grid m

grid, vector

evaluate, interpolate, print

discretization
coefficients, field
apply(Vec&x, Vec& y,
. linear algebra m
has operator, paramete!

solve(Vec& x, Vec& y)

FIGURE 1.9. Abstractions used in the sparse grid code.

b
The member functions implement some management and the function-
ality of Blas level 1 operations such as the following vector plus vector

operation. These member functions can either be optimized by the com-
piler or used to call an optimized library.

void Vec:: add(const Vec& a, const Vec& b)

{

assert((a.n==n)&&(b.n==n));
for (int i=0; idn; i++)
r[i] = a.r[i] + b.r[il;

Additionally a short vector SVec is defined. It provides a memory effi-
cient way to handle e.g. coordinates. If the code is optimized for three-
dimensional applications for example, the underlying data structure is
real[3]. There are some administration member functions.

1.5.2 The sparse grid

One of the central abstractions is the grid, see figure 1.10. Along with stan-
dard grids and adaptive girds with hanging nodes [GZ98b], there are sparse
grids available. Grids represent the shape of the domain Q along with the
set of nodes, but without any numerical data such as a discretization or
a function. The sparse grid is represented by a description of the (hyper-)
cube shaped domain @ and a set of nodes in relative coordinates 2. The
methods provided for a sparse grid are different types of grid refinement,
where an indication what to refine is needed, and building blocks for loops

20 G. W. Zumbusch

over all nodes. Furthermore there are functions to convert different repre-
sentations of nodes and its coordinates.

grid,
domain, nodes, gricefinement

AdaptGrid

[RegGrid) [SpGrid) QGrid '

— derived from
""" has &

FIGURE 1.10. The abstractions for the geometric properties of a grid.

The approach to store adaptive sparse grids has been so far tree data
structures as described in [Zen91]. Each node contains one pointer to its
parent and two pointers to its children in each direction. This is in total
an amount of 3d pointers per node. Using the pointers, different types of
tree traversal can be implemented and many numerical algorithms devel-
oped for sparse grids are based on these algorithms. The large number
of pointers requires a lot of memory and a lot of operations to adminis-
ter them. For large scale problems however, one is especially interested in
a low operation count and low memory consumption implementation. Of
course there are modifications of the tree data structure to reduce these
requirements slightly, see [BDZ96]. Imagine that an algorithm accesses all
allocated memory in some random order, the algorithm will be faster if
one is able to reduce the amount of allocated memory. Furthermore, we
are interested in the parallelization of such a code. Each pointer poses a
potential problem, because the administration of a pointer pointing to data
on a distant processor is troublesome.

So there are two goals for us to chose a different data structure: We
want to get rid of pointers and we want to separate data storage from the
algorithm. The first goal is accomplished by a key-based addressing and for
the second one we choose a hash table, but there are of course alternatives,
see [Sam90].

Key-based addressing substitutes the memory address stored in a pointer
with an integer value uniquely describing the entity. In our case, each node
can be characterized by its position in space, that is the local coordinates.
Let us begin with a one-dimensional scheme. We number the nodes of a

1. A Sparse Grid PDE Solver 21

0 -1
0 1 -1
0 2 1 3 -1
0 4 2 5 1 6 3 7 -1
0 8 4 9 210 511 112 6 13 3 14 7 15 -1

FIGURE 1.11. Key values of the nodes in five levels of a one-dimensional grid

regular grid level by level. At each level the additional nodes are given a
number, while the other numbers stay the same. Depicted in Figure 1.11
are five levels of a one-dimensional grid. Any grid can be represented by
the set of its nodes which are stored as keys. The key of a node and its
coordinates can be uniquely converted into another. The nodes which are
actually present in a grid will later be numbered in the sparse grid. This
numbering can be very crude if the grid was created by adaptive refinement
and the nodes were numbered in the order of their creation.

-1

-1
11 -1

110 11 111 -1
1100 110 1101 11 1110 111 1111 -1

100 10 101

0

0

0 10

0

0 1000 100 1001 10 1010 101 1011

1
1
1
1

FIGURE 1.12. Key values of the nodes in binary representation

Looking at the binary representation of the keys in figure 1.12, we see
some more structure. Hence the level of a node can be computed by its
binary logarithm, the relative coordinate is counted from left to right.
Transformations from coordinate to key and backwards are available. In
the multi-dimensional case, a coordinate vector can be transformed into a
vector of numbers. The enumeration scheme, along with many others, can
be used to name nodes uniquely.

Furthermore we need some storage mechanism, where nodes can be ac-
cessed by their respective keys. We choose a hash map, where the key is
mapped to an address by a hash function. Hashing is a very general storage
concept in computer science, see [Knu75], often used in data base system,
but also in compilers or e.g. the Unix shell. It is used to store and retrieve
large amounts of data without relying on any special structure or distri-
bution of the data. A very general universe of all possible key values is
mapped to a finite number of cells in an ordinary vector in memory by a
hash function. The key and its related data is stored in that vector cell,
given that no other key occupies it, which is called a collision. In that case
some collision resolution mechanism assigns another storage location to the
key. The hash implementation of SGI’s version of the STL [Aus99] we use,
is based on a collision resolution scheme by chaining, see also Figure 1.13.
Keys mapped to the same address are stored in a linked list at that ad-
dress. The overall performance of the hash storage scheme depends on the

22 G. W. Zumbusch

data and the hash function. A nearly statistically random distribution of
the nodes to the hash table entries is the ideal case. Many heuristic hash
function work very well in this respect.

k1l + k4

ks k2-H>k7 |

k3

k8 --|» k6 |

FIGURE 1.13. Hash table, collision resolution with chaining. Each node of a grid
is mapped to an index in a vector by a hash function. The node and its node
number are stored in the vector.

We have mentioned PDE solvers where the numerical data is stored in a
tree data structure. There has also been an approach to store the numerical
data directly in a hash table, see figure 1.14 (top) and [Sch98]. This means
that all numerical algorithms are tied to the hash table. Even operations
which are independent of any geometric information of the grid or the nodes
such as the saxpy operation have to loop trough the hash table. This means
unnecessary overhead and a performance penalty for this type of operation.
Furthermore, for software design reasons one is interested to separate the
geometric information from the algebraic data, i.e. the sparse grid from the
vectors. A fixed amount of storage related to each hash table entry limits
the implementation of numerical algorithms such as a BiCGstab solver or
the solution of systems of PDEs.

Assume that we want to run a conjugate gradient iteration. In addition
to the solution vector and the right hand side, five auxiliary vectors are re-
quired. We have to reserve five scalar variable in each hash table entry for
this purpose, if we actually store data in the hash table. Assume further-
more that there are auxiliary fields for grid refinement, for the differential
operator, for coefficients and so on. It is quite difficult to know in advance,
how much auxiliary memory is needed in each hash table entry. Hence
standard vectors separate from the hash table, which can be allocated and
deleted easily, increase the flexibility of the overall code, see figure 1.14
(right). The hash table maps the node to a number, which serves as an
index for all vectors. Hence floating point vectors, bit-fields and integer
vectors can be addressed in the same way, without the danger of memory

1. A Sparse Grid PDE Solver 23

alignment problems.

Hash Také Levd Index Coord Values

Hash Mag
Index X y f

FIGURE 1.14. Numerical data storage within a hash table (upper half) and
indexing of a hash table into standard vectors of different types located elsewhere.
In the first case all numerical algorithms have to access the hash table in order to
manipulate the data. In the second case however, numerical data is separate and
some algorithms such as saxpy do not have to touch the hash table. Geometric
(grid) and algebraic data (vectors) are separate.

1.5.8 Data on a grid: field

The solution of the partial differential equation, the right hand side and
other functions represented on the sparse grid are stored as fields. The nu-
merical data is contained in a vector, while the geometry is stored in a grid.
The field abstraction glues both together and gives an interpretation of the
vector as a continuous function. There are scalar fields and vector fields,
both aligned to the grid (collocated) and in a staggered grid configuration,
see figure 1.15. The field abstraction contains an interpolation procedure
and it can perform I/0. Several output formats for different graphics pack-
ages are implemented for several types of fields. An input procedure is given
below, which evaluates a scalar function on all nodes of a grid and stores
the values at the appropriate locations in the numerical vector. The sparse
grid is represented as a hash map, where each key is mapped to its node
number. The STL implementation provides an iterator (SpGrid::iterator)
to loop through all nodes in the hash table. The iterator points to a tuple
of values, the coordinate vector and the node number, which can be ac-
cessed as first and second. The coordinate vector is transformed from local
to global coordinate system by the reference point z0 and the side lengths
of the domain h and the key to coordinate conversion procedure indezl.

24 G. W. Zumbusch

The scalar function fis evaluated at that point and the value is stored in
the vector wvee, which is glued to the sparse grid by this instance of a field
SpField.

void SpField:: readSF(ScalFunction& f)
{
int d = grid->dimQ);
SVec c(d);
SpGrid: :iterator i; // STL iterator
for (i = grid->hash.begin (); i !'= grid->hash.end (); i++) {
for (int j=0; j<d; j++)
c[j] = grid->x0[j] + grid->h[j] * grid->index1((*i).first[j]);
(*vec) [(*i).second] = f(c); // data vector
}
}

field, function on a gd,
interpolation, 1D

scalar field RegField SpField
vector field VRegField VSpField VQField

SpFieldTime

FIGURE 1.15. The abstractions for the functions defined on a grid.

The finite difference discretization on sparse grids is defined by hier-
archical basis transformations H of a vector, one-dimensional finite differ-
ence stencils Dy and back-transforms H™!, see formula 1.5. The vectors are
stored as instances of the class Vec, the transformations defined on a sparse
grid are implemented in the field class and the difference stencils are located
in the operator classes. The hierarchical basis transformation H and its in-
verse H™! are coded within the field classes, because they depend heavily
on the type of function representation encoded there. Furthermore, they
are used in other parts of the code besides the finite difference operators.
The transformation H is heavily used for the definition of finite difference
operators. The implementation of the one-dimensional transformation of
the nodal to hierarchical basis representation is given as an example and
follows formula 1.3. The vector x contains the nodal representation and
the hierarchical representation is stored in y. The transformation is done
along coordinate axis dir.

void SpField:: node2hierDir(const Vec& x, Vec& y, int dir) comnst

{

assert(x.dim() == y.dim());

1. A Sparse Grid PDE Solver 25

for (SpGrid::iterator i = grid->begin(); i !'= grid->end(); i++)
y[(*#i).second] = x[(*i).second] - interpolDir(x, dir, (*i).first);
}

real SpField:: interpolDir(const Vec& x, int n, SIVec p) const
if ((p[n] !'= 0)&&(p[n] !'= -1)) { // boundary node?

int il, ir;
grid->neighbour(p[n], il, ir); // compute neighbour keys

pln] = il;
SpGrid::const_iterator 1 = grid->find(p); // STL lookup
plnl = ir;

SpGrid::const_iterator r = grid->find(p);
return .5 * (x[(*1).second] + x[(#r).second]); // interpolation

}

return O.;

}

1.5.4 Differential operators

The heart of the sparse grid research code are the partial differential oper-
ators. The straightforward representation of a discretized operator is a ma-
trix, which is one implementation (a dense and a sparse matrix). Of course
this matrix has to be initialized (or assembled). However, the number of
non-zero entries for large sparse grids is prohibitively large and mainly the
apply method of the operator is needed (i.e. matrix multiply). Hence an-
other implementation of the operator is the finite difference sparse grid
operator which implements ‘apply’ on the fly. The sparse grid finite differ-
ences are implemented as defined in formula 1.5, i.e. by the hierarchical
basis transformation H and back-transform H~! coded within the SpField
classes and the one-dimensional finite difference stencils D; which are im-
plemented in the various operator classes. Further implementations of op-
erators include finite differences and finite elements on regular grids.

The operator classes are based on a certain type of function representa-
tions, given as a field class. Furthermore the hierarchical basis transform of
the field is used. The operator abstraction contains some parameter data,
such as the coefficient functions and references to a field and the underlying
sparse grid. The class provides a method for applying the operator to some
vector. This matrix multiplication is implemented here, calling the nec-
essary basis transforms and applying finite difference stencils. Each PDE
results in its own operator class.

We chose here that an operator works on vectors instead of fields both
for several reasons: We are using the operator abstraction in a pure lin-
ear algebra context in a linear solver, where a field does not make sense.
Furthermore, operating directly on vectors improves the performance of
the code and we do not want to implement operators, where source and
target field are represented on different types of grids. However, it would

26 G. W. Zumbusch

operators,
discretization,
PDE, coefficients
finite difference

MatOp ' RegOp '[SpOp)

ScalSpOg) [VecSpOr)

SpMass ' SpConvDif‘f' SpLame '

FIGURE 1.16. The discretized differential operators. The abstract Operator class
is implemented as a matrix based operator, a finite element discretization on a
regular grid, the sparse grid finite difference methods SpOp, a block grid version of
sparse grids SpBOp, and a general finite difference discretization on adaptive grids
QOp. There are scalar equations ScalSpOp and systems of equations VecSpOp and
model problems like the Laplacian, convection-diffusion or the Lamé equation.

Operatol

SpLaplace

be possible to create a grid independent operator class, which operates on
arbitrary fields. This would lead to more general concepts of algorithms.

1.5.5 Linear algebra

The goal of the linear algebra abstraction of an iterative Krylov solver is to
provide a collection of algorithms, see figure 1.17. The abstraction is based
on vectors and operators.

iterative linear egation systensolvers

LinSolver I

Jacobi ' ConjGrad \l Gmres I
Richardsor ' { Bicgstah) { Cgs)

FIGURE 1.17. The iterative equation solvers.

We present the implementation of a conjugate gradient method to demon-|i
strate that the code looks pretty much like a pseudo-code of a numerical
analysis text book. A reference to the operator is stored as op and the
vectors are fed as arguments b and z.

1. A Sparse Grid PDE Solver

void ConjGrad:: solve(const Vec& b, Vec& x)
{
assert(b.dim()==x.dim());
int n = x.dim();
Vec r(n), p(n), ap(n);
iter = 0;
real beta, alpha, rtr, rtrold;
op->apply(x, ap); // ap = A * x
p.sub(b, ap); //'p =b - ap
r.copy(p); // r =p
rtr = r.prod(r); // rtr = <r,r>
while (rtr>tol) {
op->apply(p, ap); // ap = A *p
alpha = rtr / p.prod(ap); // alpha = rtr / <p, ap>
x.add(x, alpha, p); // x = x + alpha * p
r.add(r, -alpha, ap); // r =r - alpha * ap
rtrold = rtr;
rtr = r.prod(r); // rtr = <r,r>
beta = rtr / rtrold;
p.add(r, beta, p); // p=r1 + beta *x p
iter++;
printIter("ConjGradit ", " res= ", rtr);
if ((iter>=maxiter)||(error>=HUGE)) break;
}
error = rtr;
}

Of course there are also preconditioned versions of the iterative Krylov
solver. They look very similar to the un-preconditioned counterparts and

take a preconditioning operator as argument.

1.5.6 Putting it together

27

Finally we print a short, but complete main program for the solution of a

Poison equation on a sparse grid. We combine instances of all abstractions
discussed above and hope that this type of coding is comprehensible and

does not require further comments.

main() {
int dim = 2;
SVec x0(dim), x1(dim);
x0.set(-1.0);
x1.set(1.0);
SpGrid grid(dim, x0, x1);
grid.refineAll();
uint n = grid.nodes();
Vec x(n), f(n);
x.set(0.0);
f.set(1.0);
SpField field(x, grid);
SpLaplace lap(field, 1.0);
Bicgstab j;

// lower left and upper right corner

// sparse grid on the square

// scalar solution field
// differential operator, coefficient
// iterative solver

28 G. W. Zumbusch

.attach(lap);

.setTol(1e-8);

.setMaxIter(10000) ;

.setVerbose(1);

j.solve(f, x); // solve equation system
cout<<j<<endl; // write statistics

ofstream of ("lap.vtk");

field.print(of, Grid::vtk); // dump solution in Vtk format

1.6 Parallel algorithms

The parallelization of an adaptive code usually is non-trivial and requires a
substantial amount of code for the parallelization only. In this respect the
parallelization of the sparse grid extrapolation method has a big advantage.
If we are interested in a parallel version for adaptive sparse grids, however,
we have to consider a more complicated approach to be described now.

Hierarchies of refined grids, where neighbor elements may reside on dif-
ferent processors, have to be managed [BH95]. That is, appropriate ghost
nodes and elements have to be created and updated, when the parallel al-
gorithm performs a communication operation. This happens both in the
numerical part, where an equation system is set up and solved, and in
the non-numerical part, where grids are refined and partitioned, see also
[Bas98, JPIT].

The key point of any dynamic data partition method is efficiency. We
look for a cheap, linear time heuristic for the solution of the partition prob-
lem. Furthermore the heuristic should parallelize well. Here, parallel graph
coarsening is popular. It results in a coarser graph on which then a more
expensive heuristic on a single processor can be employed. However, graph
coarsening is at least a linear time algorithm itself and lowers the quality
of the heuristic further. This is why we look for even cheaper partition
methods. They are provided by the concept of space-filling curves.

1.6.1 Space-filling curves

First we have to define curves. The term curve shall denote the image of a
continuous mapping of the unit interval to the R% Mathematically, a curve
is space-filling if and only if the image of the mapping does have a classical
positive d-dimensional measure. The curve fills up a whole domain. For
reasons of simplicity we restrict our attention to a simple domain, namely
the unit square. We are interested in a mapping

f:[0,1]=1 —Q:=10,1]% f continuous and surjective

One of the oldest and most prominent space-filling curve, the Hilbert curve
can be defined geometrically [Hil91], see also [Sag94]. If the interval I can

1. A Sparse Grid PDE Solver 29

be mapped to @ by a space-filling curve, then this must be true also for the
mapping of four quarters of I to the four quadrants of @), see Figure 1.18.
Iterating this sub-division process, while maintaining the neighborhood re-
lationships between the intervals leads to the Hilbert curve in the limit
case. The mapping is defined by the recursive sub-division of the interval
I and the square Q.

|] | |
2 3

NN |_] [J

1 \A muEE r |

EERN [R

FIGURE 1.18. Construction of a Hilbert space-filling curve. The open and the
closed curve.

Often some curves as intermediate results of iterative construction pro-
cedure are more interesting than the final Hilbert curve itself. The con-
struction begins with a generator, which defines the order in which the
four quadrants are visited. The generator is applied in every quadrant and
their sub-quadrants. By affine mappings and connections between the loose
ends of the pieces of curves, the Hilbert curve is obtained.

There are basically two different Hilbert curves for the square, modulo
symmetries, see Figure 1.18. An open and a closed space-filling curve can
be constructed by the Hilbert curve generator maintaining both neigh-
borhood relations and the sub-division procedure. The resulting curve is
indeed continuous and space-filling. Although each curve of the iterative
construction is injective and does not cross itself, the resulting Hilbert curve
is not injective. This can be demonstrated easily by looking at the point
(1/2,1/2) € @, which is contained in the image of all four quadrants. Hence
several points on I are mapped to this point of @). In three dimensions, there
are 1536 versions of Hilbert curves for the unit cube [AN98].

The Hilbert curve may be the most prominent curve. However it is not
the oldest one. The discovery of ‘topological monsters’, as they were called
initially started when Cantor in 1878 proved the existence of a bijective
mapping between two smooth, arbitrary manifolds of arbitrary, but fi-
nite dimension. A year later Netto proved that such mappings are non-
continuous. This means that they are not curves in our previous definition.
However, without the property of an injective mapping, Peano constructed
a space-filling curve in 1890, see Figure 1.19. Later on several other curves
were constructed by Hilbert, Moore, Lebesgue and Sierpinski and many
others.

The Peano space-filling curve can be constructed by a sub-division schemell
of the square @ into nine squares of side length 1/3. The generator can be
given by the order of the nine squares. In contrary to the Hilbert curve
there are 273 different curves, which maintain neighborhood relations. The

30 G. W. Zumbusch

original construction of the Peano curve was based on a triangulation of
the domain and a bisection scheme for triangles, which defines the order in
which the sub-triangles are visited. We will use this scheme later on.

ar——al 49 001 | 011 \ A
2| |5 8
1 6 7 0.00 0.10 [\

FIGURE 1.19. The construction of a Peano (left) and Lebesgue curve (middle
and right).

There are two basic differences of the Lebesgue space-filling curve com-
pared to the previous curves: The curve is differentiable almost everywhere,
while the previous mentioned curves are not differentiable anywhere. The
Hilbert and Peano curves are self-similar, a feature they share with Frac-
tals: Sub-intervals of the unit interval I are mapped to curves of similar
structure than the original curve. However, the Lebesgue curve is not self-
similar. It can be defined on the Cantor set C. This set is defined by the
remainder of the interval I, after successively one third (1/3,2/3] has been
removed. Any element z € C' of the Cantor set can be represented as a
number in base-3 expansion, 03.t1f2t3 ... where all digits ¢; are zeros and
twos t; € {0,2}, because the one’s have been removed by the construction
of the Cantor set. The mapping of the Lebesgue curve is defined by

0g.dydads . . .
£(03.(2d1)(2d2)(2d3) ...) := (2o1mats) with binary digits d; € {0,1}.'
02.d2d4d6 .

The function f defined on the Cantor set C is extended to the unit interval
I by linear interpolation. The generator of the Lebesgue curve looks like in
Figure 1.19. Although constructed by digit shuffling, the curve is continu-
ous and a space-filling curve. The order of the quadrants imposed by the
generator of the curve can be found in the depth-first traversal of oct-trees
and related algorithms.

1.6.2 Applications of space-filling curves

Space-filling curves had been created for purely mathematical purposes.
However, nowadays there is a number of applications of space-filling curves.
Basically, multi-dimensional data are mapped to a one-dimensional se-
quence. This mapping is useful for load-balancing of parallel simulations
on a computer, for data locality of memory or disc accesses inside a com-
puter in geographic information systems [ARRT97], for finding shortest
paths in optimization [BP88, BG88] and ordering data in computer graph-
ics [PKK92, WZ93, Voo94] and in other applications [BS98].

1. A Sparse Grid PDE Solver 31

Another interesting application of space-filling curves are particle or n-
body problems which are defined by the interaction of n entities by some
interaction forces. This model describes different phenomena like the move-
ment of planets or dust under gravitational forces in astrophysics and the
dynamics of atoms or groups of atoms in molecular dynamics. The number
of particles of interest easily reaches the range of 10° — 10°. The model
leads to a system of n ordinary differential equations. The right hand side
of each equation consists of the n — 1 forces of particles, which interact
with the particle under consideration. Usual model forces decay with the
distance of the particles, which can be exploited by efficient approximation
algorithms like the fast-multipol and the Barnes-Hut algorithm. However,
there is still a global coupling of the particles, which cannot be neglected.
Furthermore, particle can be distributed randomly and can form clusters.
Hence a parallel particle simulation code requires efficient load-balancing
strategies for the enormous amount of data. The particle moves in space due
to the acceleration imposed by the interaction-forces. This means, that a
re-balancing or a dynamic load-balancing is needed for parallel computing,
which can be done by space-filling curves [WS95, SWW, PB96].

A slightly different situation can be found in adaptive discretizations of
partial differential equations. Now a grid consisting of n nodes and ele-
ments or volumes has to be distributed to a parallel computer. The nodes
and elements can be found at arbitrary positions (completely unstructured
grids) or at fixed positions, which are a priori known (structured grids) or
at least computable by grid-refinement rules from a coarse grid (adapted
grids). The degrees of freedom are coupled locally, usually between neigh-
boring nodes. However, algorithms for the solution of the resulting equa-
tion systems couple all degrees of freedom together, which imposes diffi-
culties on the parallelization of the solver. For the solution of stationary
problems, no nodes are moved in general. However, due to adaptive grid
refinement, new nodes are created during the computation. This requires
dynamic load-balancing, which can also be done by space-filling curves

[OPF94, PB96, GZ98b, RKCHC9S].

1.6.3 Parallel sparse grid algorithms

First of all we want to convert the sequential finite difference sparse grid
code into a parallel code. There will be some extensions and slight modifi-
cations, but the general design and most of the lines of code are retained.
The parallel version, run on a single processor, will only introduce very
little overhead. However, the parallel version run on a larger distributed
memory parallel computer with p processors should ran ideally at p times
the speed of the sequential code, at least for problems large enough, where
enough computational load can be distributed to the processors. We are in-
terested in high number of processors. Hence we consider a message passing
programming model, where each processor can access its own memory only.

32 G. W. Zumbusch

Smaller shared memory parallel computers offer more convenient program-
ming models and have been used for a similar code based on automatic
parallelization by loop-parallelism, see [Sch98].

In the last chapter we have introduced a key-based node addressing
scheme, where each node is stored in a hash map. The advantage in the
sequential version was simplicity and little administration overhead. The
parallel version is based on the distribution of nodes to the processors. Each
processor owns a subset of the sparse grid. Each node is present on exactly
one processor. The appropriate process stores the node in a local hash map.
The difference to the sequential code is, that the hash map does not contain
all nodes any longer, but the nodes owned by the processor. Additionally,
at some stages of the algorithm there are ghost nodes present, which con-
tain the values of nodes belonging to other processors, but whose values are
required by the algorithm. The values of the ghost nodes are updated or
filled in a communication step prior to the actual computation. During the
creation of such ghost nodes, processors have to communicate which nodes
are required: Processor 1 determines which ghost nodes it needs. It finds
out that some of the nodes originally belong to processor 2 and asks for
them. Hence processor 2 knows that during the communication step, it has
to send this data to processor 1. This negotiations would be quite compli-
cated in a code based on pointers, because a reference to local memory does
not make sense on another processor’s memory. However, using keys, i.e.
a unique id for each ode derived from its coordinates, there is no problem
at all. The global key is understood by all processors and can be used for
all kind of requests. Furthermore, the space-filling curve, which provides a
unique mapping of nodes to processors, immediately reveals, which proces-
sor to ask for a node. Other grid partitioning heuristics in contrast would
require a substantial bookkeeping effort to decide where a node belongs to.

One detail is still missing: In an adaptive sparse grid, it is not exactly
clear, where to look for a neighbor node, while father and son nodes are
determined. Hence there has to be some searching procedure for the ap-
propriate neighbor node. Several requests for potential nodes may have to
be raised. The node might or might not exist and might or might not be
the nearest node in a certain direction. Note that these request might be
addressed to different processors, because each requested node can belong
to another processor.

We list some hints on the parallel version of the stages of the sparse grid
discretization and equation solver:

e Krylov iteration: Conjugate-gradient type of Krylov methods like
BiCG, BiCGstab and CGS can be parallelized such that, the par-
allel version of an iterative Krylov method looks exactly like the se-
quential one. Each processor operates on the unknowns related to its
own nodes. The Blas level one operations of sazpy type do not re-
quire communication. The communication of a Blas level one scalar

1. A Sparse Grid PDE Solver 33

products can be implemented by local summation and a standard
reduce operation over all processors. This communication library call
is hidden in the vector classes scalar product in our implementation.
The main source of trouble is the application of the operator (matrix
multiply) and a preconditioner, which is implemented separately.

Finite difference operator: The operator

SOTI B YeDio(I Hy) (1.7)

i=1 j=1, j#i j=1, j#i

is composed of three basic operations, the transform to hierarchi-
cal basis H;, the one-dimensional finite difference stencil D; and the
transform back to nodal basis Hj_l, which are implemented sepa-
rately, see also section 1.3.3.

— Transform to hierarchical basis H;: Each processor computes
the values related to its own nodes. Prior to the computation,
in a communication step the required ghost nodes are filled.
The ghost nodes for this operation are determined by the direct
parent nodes of nodes on the processor.

— Transform to nodal basis Hj_l: This operation can be done in
place and requires more communication than the previous one.
The sequential implementation cycles through a tree top down,
so that the parent nodes are processed before their children. A
straightforward parallelization would be to insert a communica-
tion step before each tree level is traversed. However, this results
in a number of communication steps (= communication laten-
cies) proportional to the maximum number of levels, which is
unacceptable for large sparse grids.

We propose an alternative implementation here, which is based
on a single communication step before the computation: Along
with with the parents of a node, the whole tree of their grand-
parents and so on are required as ghost nodes on a processor.
When the ghost nodes are filled, the computation can be done
top down, such that the values on all nodes owned by the proces-
sor and additionally their parents, grand-parents and so on are
computed. Hence, this implementation requires a larger amount
of computation and a larger volume of communication than the
straightforward version. However, the overall execution time is
smaller because of the number of communication steps is reduced
to one.

— Finite difference operator D;: First the appropriate ghost nodes
for the difference stencil is filled and afterwards the stencils are
applied to all nodes, which belong to the processor. The main

34 G. W. Zumbusch

point here is the searching procedure for the neighbor nodes that
are necessary for adaptive refined sparse grids. We create the
necessary ghost nodes, so that the sequential search algorithm
can be re-used in this situation.

e Adaptive grid refinement: Following some refinement rules, new nodes
are created. This can be done also in parallel. Afterwards, a reparti-
tioning has to takes place, which is also responsible for the elimination
of multiple instances of a node that might have been created during
the grid refinement. The partitioning of nodes is done by the space-
filling curve heuristic and can be implemented as cutting a sorted
list of all nodes into equal sized pieces. Of course, one has to avoid
storing all nodes on a single processor. That is why the sorting is
also executed in parallel by a bucket sort algorithm. The old par-
titioning serves as the buckets, each one mapped to one processor.
Afterwards the new partitioning is computed. This procedure can be
run completely in parallel and scales very well. The execution time
of this repartitioning step usually is so low that it is below .01 of the
execution time spent in the numerical algorithms, see also [Zum99].

5006006000000

PO pl p2 p3

FIGURE 1.20. An example of a sparse grid partitioned and mapped to four pro-
cessors. The sparse grid (left) can be represented by its nodes in coordinate space.
A Hilbert type space-filling curve, which fills the domain, is laid over the grid
(right). Each node lies on the curve. Now we straighten the space-filling curve with
the nodes fixed to the curve (bottom). The interval is cut into four sub-intervals
assigned to one processor, each containing the same number of nodes.

1. A Sparse Grid PDE Solver 35

w2,

FIGURE 1.21. A three-dimensional sparse grid, partitioned to eight processors
(color coded).

All numbers reported are scaled CPU times measured on our paral-
lel computing cluster ‘Parnass2’. It consists of dual processor Pentium II
400MHz BX boards with at least 256 Mbytes of main memory, intercon-
nected by a Myrinet network in a fat-tree configuration. The MPI message
passing protocol implementation Mpich-PM showed a bandwidth between
each two boards of 850 Mbit/s, see also [SZG99].

In the first test we consider the solution of a three-dimensional convection-l
diffusion equation discretized on sparse grids with up-winding (standard
refinement). Table 1.2 shows wall clock times for the solution of the equa-
tion system on a sparse grid of different levels using different numbers of
processors.

For a fixed number of processors, we observe a scaling of a factor slightly
above of 2 from one level to the next finer level, which corresponds to a
similar factor of increase in the amount of unknowns on that level. Further-
more, for a fixed level the measured times scale roughly with 1/p of the
number of processors p up to a parallel efficiency of 0.4 for 64 processors.
However, the 32 and 64 processors perform efficiently only for sufficiently
large problems, i.e. for problems with more than some thousands degrees
of freedom. If we fix the amount of work, that is the number of nodes per
processor, we obtain the scale-up. Comparing a time at one level [and a
number of processors p with the time of one level finer [4+ 1 and 2p proces-
sors, we obtain very well scaling of the method. Note that in this case of
uniform grid refinement, some a priori partition schemes would be superior
to our dynamic partitioning scheme. However, our dynamic load balancing

36 G. W. Zumbusch
time processors

nodes | 1/h 1 2 4 8 16 32 64

81 4(0.03 0.03 0.07 0.08 0.11
225 81| 0.12 0.09 0.09 0.11 0.16 0.20 0.20
593 16 | 0.63 0.41 0.33 0.32 0.38 0.44 0.53
1505 32| 3.78 229 1.60 1.34 1.26 1.33 1.53
3713 64 | 22.1 13.3 8.79 6.39 5.17 4.47 447
8961 128 | 68.1 40.7 24.8 16.2 11.9 8.89 7.56
21249 | 256 | 201 119 66.1 40.1 28.0 18.6 13.5
49665 | 512 | 575 379 169 106 71.6 28.0
114689 | 1024 | 1630 275 179 62.6

TABLE 1.2. Parallel execution times for a 3D convection-diffusion problem on
sparse grids. Solution of the equation system in seconds on Parnass2.

scheme performs well and introduces only little overhead and results in
good partitions, see figure 1.21.

In the next test we consider adaptively refined sparse grids for a problem
with singularities, where the sparse grids are refined towards a singular-
ity located in the lower left corner, see also Figure 1.8. Table 1.3 depicts
times in the adaptive case. These numbers give the wall clock times for the
solution of the equation system again, now on different levels of adaptive
grids and on different numbers of processors. Due to the solution-dependent
adaptive refinement criterion, the single processor version contained slightly
more nodes, indicated by *. For the same reason, the equation systems have
been solved up to rounding error instead of the weaker discretization error
condition in the uniform sparse grid experiment.

time processors

nodes | 1/h 1 2 4 8 16 32

81 41 0.03 0.04 0.05 0.07 0.11
201 8 0.07 0.05 0.05 0.07 0.08 0.09
411 16| 0.21 0.13 0.12 0.13 0.17 0.20
711 32 0.78 0.48 0.38 0.36 0.41 0.51
1143 64 2.60 149 1.06 0.93 0.92 1.14
1921 128 | 8.69 5.99 3.70 2.88 270 2.83
3299 | 256 | 39.3* 20.7 13.8 9.62 7.79 7.32
6041 | 512 | 177* 91.0 56.8 39.5 28.6 22.0
11787 | 1024 | 949* 525 271 177 138 88.2

22911 | 2048 1280 761 660

TABLE 1.3. Parallel execution times for adaptive sparse grids. A 3D convec-
tion-diffusion problem is solved and the solution times in seconds on Parnass2
are given.

1. A Sparse Grid PDE Solver 37

We obtain a good scaling, both in the number of unknowns and in the
number of processors, i.e. the times are proportional to the number of
unknowns for a fixed number of processors and are indirect proportional to
the number of processors. Increasing the number of processors speeds up
the computation accordingly. The parallel efficiencies are somewhat smaller
than for the uniform refinement case, due to the imbalance in the tree of
nodes. This is also the case for other parallel adaptive methods. Hence this
parallelization approach does perform very well, even in the range of higher
number of processors 16 and 32, where a number of other strategies are not
competitive.

1.7 Application to time-dependent problems

Sparse grid discretizations have been applied so far to stationary prob-
lems and to time-dependent, transient problems. Besides methods based
on the extrapolation method, where standard time-dependent codes can
be re-used, there are also attempts to solve parabolic problems [Bal94] and
Navier-Stokes equations [Sch98] by native sparse grid discretizations. We
will discuss some features of a sparse grid finite difference discretization of
space-time for scalar parabolic and hyperbolic equations.
We are interested in the numerical solution of

u + V- flu) = qu) for u(z,t),
r € QCR? (1.8)
t € [0,%0]

written as an initial-boundary value problem. The standard procedure for
the numerical solution of (1.8) is to discretize the space © and the initial
value u° = wu(z,0) on Q and to step forward in time. The solution u’*!
at time step ¢ 4+ 1 is computed from u? and the boundary conditions. This
‘time stepping’ scheme is iterated until ¢ = t¢ is reached.

1.7.1 Space-time discretization

An alternative solution algorithm uses a discretization of (1.8) in the ‘space-
time’ domain Q x [0,%¢], see figure 1.22. The transient problem can be
re-written as a boundary value problem

V-F(u) = q(u) for u(z),

r € Qx][0,t] Cc R (1.9)

with F given by the components Fy(u) = u and Fy,.. q(u) = f(u). A
standard finite difference or finite element discretization, implicit in time,
on a regular grid leads to a sequence equation systems, for one time step
each. However, the corresponding sparse grid discretization, where different

38 G. W. Zumbusch

2/h I Ly Lo I Ly Lo

32 | 1.8973 1.8713 1.7746 | 1.4347 1.6189 1.6752
64 | 1.9348 1.9194 1.8696 | 1.5539 1.7186 1.7834
128 | 1.9610 1.9534 1.9297 | 1.6518 1.7985 1.8652
256 1.7247 1.8558 1.9235
512 1.7746 1.8932 1.9606

TABLE 1.4. Convergence rates on regular (left) and on sparse grids, sine wave
initial data for the linear advection equation.

step sizes in time and in space are coupled, requires the numerical solution
of asingle large (non-) linear equation system and returns an approximation
of u at all time steps at once. The hierarchical basis transformation glue
all time slices and all location in space together. Together with an iterative
equation solver on the global equation system, this approach is related to
the waveform relaxation [Van92]. Tt has been used for standard grids by
many authors, see e.g. [McC89] and with the Galerkin method for periodic
parabolic equations on sparse grids in [Bal94].

-

-
space space-time

FIGURE 1.22. Time stepping vs. space-time discretization.

We present two test cases of finite difference sparse grid discretizations for
problems in space-time. The heat conduction equation (parabolic, u; = Au)
and the linear advection equation (hyperbolic, u; + u; = 0). We prescribe
some simple initial values and use a zero source term ¢ = 0. The boundary
conditions of the heat conduction as well as the inflow of the advection
are set to zero. The solutions are depicted in figures 1.23 and 1.24 resp.
1.25. Errors and convergence rates are given in table 1.4. The ratio of
number of unknowns to global error is much better on sparse grids than
on standard grids. We obtain a weaker dependence on the dimension for
sparse grid discretizations, as predicted. However, the actual performance
depends on the smoothness of the solution in space-time, which is present
for the heat conduction problem, but is missing for typical solutions of
hyperbolic equations. That is why we consider adaptive grid refinement
next. For details and further considerations and numerical schemes for the
solution of hyperbolic equations on sparse grids we refer to [GZ98a].

1. A Sparse Grid PDE Solver 39

K
o5 08 o1 oy

FIGURE 1.23. Sparse grid solution of the parabolic heat conduction equation in
2D space-time.

FIGURE 1.24. Sparse grid solution of the parabolic heat conduction equation in
3D space-time. Snapshots at different times ¢

space e time

FIGURE 1.25. Sparse grid solution of the hyperbolic linear advection equation
in 2D space-time with a sine wave as initial data.

40 G. W. Zumbusch

1.7.2 Adaptive grid refinement and macro time stepping

The storage requirements of the space-time formulation are often consid-
ered as prohibitively high. However, by the sparse grid technique the ad-
ditional dimension in storage is affordable. Furthermore there is the ad-
vantage of easy adaptive grid refinement in space-time. In any stage of
the computation it is possible to introduce a finer grid or additional nodes,
which gives better resolution in space and local time steps. This is often dif-
ficult or even impossible for time stepping algorithms, where the time-steps
have to be computed again at a finer scale.

Adaptive grid refinement added some features to the solution algorithm
for time-dependent problems: There is only one error indicator operating
in the space-time domain, instead of several indicators, which operate sep-
arately in space and time and are coupled through a CFL type of stability
condition. Grid refinement now enhances local space resolution and at the
same time introduces local time stepping. However, due to the discretiza-
tion implicit in time, there is no temporal stability condition.

FIGURE 1.26. Adaptive sparse grid solution in space-time.

Initial value problems, where the final time #; is unknown, cannot be
discretized in space-time straightforward. However, variable time steps can
be introduced with a macro time stepping. Each macro step is based on a
single sparse grid in space-time. Putting the macro steps together in the
way of time stepping methods gives the whole time interval [to,%1], see
figure 1.27.

time

FIGURE 1.27. Macro time stepping in a space-time scheme.

1. A Sparse Grid PDE Solver 41
1.8 Conclusion

We have introduced sparse grids, several ways to discretize partial differen-
tial equations on sparse grids and strategies to create adaptive sparse grids.
This includes the extrapolation method, the Galerkin method and the fi-
nite difference method, error estimators and grid refinement algorithms.
Furthermore an object oriented software design for a finite difference sparse
grid PDE solver was proposed. The parallelization of such a code by means
of space-filling curves was discussed, along with experimental results of the
parallel code on a cluster of PCs. Applications of the sparse grid discretiza-
tions to time-dependent parabolic and hyperbolic equations in space-time
concluded this survey.

1.9 REFERENCES

[ABLYT] E. Arge, A. M. Bruaset, and H. P. Langtangen. Object-
oriented numerics. In M. Dehlen and A. Tveito, editors,
Numerical Methods and Software Tools in Industrial Math-
ematics. Birkhauser, Basel, 1997.

[AN9S] J. Alber and R. Niedermeier. On multi-dimensional Hilbert
indexings. In Proc. of the Fourth Annual International Com-
puting and Combinatorics Conference (COCOON’98), Taipei
1998, Lecture Notes in Computer Science. Springer, 1998.

[ARR*T97] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer.
Space filling curves and their use in the design of geomet-
ric data structures. Theoretical Computer Science, 181:3-15,

1997.

[Aus99] M. H. Austern. Generic Programming and the STL. Addison-
Wesley, 1999.

[Bal94] R. Balder. Adaptive Verfahren fir elliptische und parabolische
Differentialgleichungen auf diinnen Gittern. PhD thesis, TU
Miinchen, Inst. fiir Informatik, 1994.

[Bas98] P. Bastian. Load balancing for adaptive multigrid methods.
SIAM J. Sei. Comput., 19(4):1303-1321, 1998.

[BDZ96] H.-J. Bungartz, T. Dornseifer, and C. Zenger. Tensor prod-
uct approximation spaces for the efficient numerical solution
of partial differential equations. In Proc. Int. Workshop on
Scientific Computations, Konya, 1996. Nova Science Publish-
ers, Inc. to appear.

42 G. W. Zumbusch

[BG8S]

[BHY5]

[BLYT]

[BN94]

[BPSS]

[BR95]

(BS9S]

[Bun92]

[Bun98]

[Fab09]

[GKS]

[Gri92]

D. Bertsimas and M. Grigni. On the spacefilling curve heuris-
tic for the Euclidean traveling salesman problem. Techni-
cal report, Massachusetts Institute of Technology, Cambridge,
MA, 1988.

K. Birken and C. Helf. A dynamic data model for parallel
adaptive PDE solvers. In B. Hertzberger and G. Serazzi, ed-
itors, Proceedings of HPCN Furope 1995, volume 919 of Lec-
ture Notes in Computer Science, Milan, Italy, 1995. Springer.

A. M. Bruaset and H. P. Langtangen. A comprehensive set
of tools for solving partial differential equations; Diffpack. In
M. Dahlen and A. Tveito, editors, Numerical Methods and
Software Tools in Industrial Mathematics. Birkhauser, Basel,

1997.

J. J. Barton and L. R. Nackman. Scientific and Egineering
C++ - An Introduction with Advanced Techniques and Fz-
amples. Addison-Wesley, Reading, Ms., 1994.

J. Bartholdi and L. K. Platzman. Heuristics based on space-
filling curves for combinatorial optimization problems. Man-

agement Science, 34:291-305, 1988.

R. Becker and R. Rannacher. Weighted a posteriori error
control in FE methods. In Proc. ENUMATH 95, 1995.

I. Beichl and F. Sullivan. Interleave in peace, or interleave in
pieces. IEEE Computational Science & Engineering, 5(2):92—
96, 1998.

H.-J. Bungartz. Diinne Gitter und deren Anwendung bei der
adaptiven Losung der dreidimensionalen Poisson-Gleichunyg.
PhD thesis, TU Miinchen, Inst. fiir Informatik, 1992.

H.-J. Bungartz. Finite Elements of Higher order on Sparse
Grids. PhD thesis, TU Miinchen, Inst. fiir Informatik (Habil-
itation), 1998.

G. Faber. Uber stetige Funktionen. Mathematische Annalen,
66:81-94, 1909.

M. Griebel and S. Knapek. Optimized approximation spaces
for operator equations. Technical Report 568, University

Bonn, SFB 256, 1998.

M. Griebel. The combination technique for the sparse grid
solution of PDEs on multiprocessor machines. Parallel Pro-
cessing Letters, 2:61-70, 1992.

[Gri98]

[GSZ92]

[GZ98a]

[G7.98b)]

[Har95]

[HBZ95]

[Hem95]

[Hil91]

[IP97]

[Knu75]

[Kup97]

1. A Sparse Grid PDE Solver 43

M. Griebel. Adaptive sparse grid multilevel methods for el-
liptic PDEs based on finite differences. In Proc. Large Scale
Scientific Computations, Varna, Bulgaria. Vieweg, 1998.

M. Griebel, M. Schneider, and C. Zenger. A combination tech-
nique for the solution of sparse grid problems. In P. de Groen
and R. Beauwens, editors, Iterative Methods in Linear Alge-

bra, pages 263-281. IMACS, Elsevier, 1992.

M. Griebel and G. Zumbusch. Adaptive sparse grids for
hyperbolic conservation laws. In Proceedings of Seventh
International Conference on Hyperbolic Problems, Zurich.

Birkhauser, 1998.

M. Griebel and G. Zumbusch. Hash-storage techniques for
adaptive multilevel solvers and their domain decomposition
parallelization. In J. Mandel, C. Farhat, and X.-C. Cai, edi-
tors, Proc. Domain Decomposition Methods 10, volume 218
of Contemporary Mathematics, pages 279-286, Providence,
Rhode Island, 1998. AMS.

A. Harten. Multi-resolution representation of data: A general

framework. STAM J. Numer. Anal., 33:1205-1256, 1995.

S. Hilgenfeldt, S. Balder, and C. Zenger. Sparse grids: Ap-
plications to multi-dimensional Schrodinger problems. Tech-
nical Report 342/05/95, TU Miinchen, Inst. fiir Informatik,
SFB 342, 1995.

P. W. Hemker. Sparse-grid finite-volume multigrid for 3D-
problems. Advances in Computational Mathematics, 4:83—

110, 1995.

D. Hilbert. Uber die stetige Abbildung einer Linie auf ein
Flachenstick. Mathematische Annalen, 38:459-460, 1891.

M. T. Jones and P. E. Plassmann. Parallel algorithms for
adaptive mesh refinement. SIAM J. Sientific Computing,
18(3):686-708, 1997.

D. E. Knuth. The Art of Computer Programming, volume 3.
Addison-Wesley, 1975.

F. Kupka. Sparse Grid Spectral Methods for the Numeri-
cal Solution of Partial Differential Fquations with Periodic
Boundary Conditions. PhD thesis, Universitat Wien, Inst.
fir Math., 1997.

44 G. W. Zumbusch

[LLS95]

[McC89]

[OPF94]

[Osw98]

[PBY6]

[PKK92]

[RKCHC98]

[Riid92]

[Sag94]
[Sam90]

[Sch98]

[Smo63]

C. B. Liem, T. Lu, and T. M. Shih. The Splitting Extrap-
olation Method: A New Technique in Numerical Solution of
Multidimensional Problems, volume 7 of Applied Mathemat-
ics. World Scientific, 1995.

S. F. McCormick. Multilevel Adaptive Methods for Par-
tial Differential Equations. Frontiers in Applied Mathemtics.
STAM, 1989.

J. T. Oden, A. Patra, and Y. Feng. Domain decomposition
for adaptive hp finite element methods. In Proc. Domain
Decomposition 7, volume 180 of Contemporary Mathematics,

pages 295-301. AMS, 1994.

P. Oswald. Best N-term approximation of singularity func-
tions in two Haar bases. Technical report, Bell Labs, Lucent
Technologies, 1998.

M. Parashar and J. C. Browne. On partitioning dynamic
adaptive grid hierarchies. In Proceedings of the 29th Annual
Hawai International Conference on System Sciences, 1996.

A. Pérez, S. Kamata, and E. Kawaguchi. Peano scanning of
arbitrary size images. In Proc. Int. Conf. Pattern Recognition,

pages 565-568, 1992.

S. Roberts, S. Kalyanasundaram, M. Cardew-Hall, and
W. Clarke. A key based parallel adaptive refinement tech-
nique for finite element methods. In Proc. Computational
Techniques and Applications: CTAC °97. World Scientific,
1998. to appear.

U. Rude. Data structures for multilevel adaptive methods
and iterative solvers. Technical Report 1-9217, TU Miinchen,
Inst. fir Informatik, 1992.

H. Sagan. Space-Filling Curves. Springer, New York, 1994.

H. Samet. The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, 1990.

T. Schiekofer. Die Methode der Finiten Differenzen auf
diinnen Gittern zur Lésung elliptischer und parabolischer par-
tieller Differentialgleichungen. PhD thesis, Universitat Bonn,
Inst. fur Angew. Math., 1998. to appear.

S. A. Smolyak. Quadrature and interpolation formulas for
tensor products of certain classes of functions. Dokl. Akad.

Nauk SSSR, 4:240-243, 1963.

[SWW]

[$7.98]

[SZG99]

[Tem89]

[Van92]

[Ver96]

[Voo94]

[WS95]

[WZ93]

[Yse86]

[Zen91)

[Zum99]

1. A Sparse Grid PDE Solver 45

J. K. Salmon, M. S. Warren, and G.S. Winckelmans. Fast par-
allel tree codes for gravitational and fluid dynamical n-body
problems. [International Journal of Supercomputer Applica-
tions, 8(2).

T. Schiekofer and G. Zumbusch. Software concepts of a sparse
grid finite difference code. In W. Hackbusch and G. Wittum,
editors, Proceedings of the 14jth GAMM-Seminar Kiel on Con-
cepts of Numerical Software, Notes on Numerical Fluid Me-
chanics. Vieweg, 1998.

M. A. Schweitzer, G. Zumbusch, and M. Griebel. Parnass2: A
cluster of dual-processor PCs. In W. Rehm and T. Ungerer,
editors, Proceedings of the 2nd Workshop Cluster-Computing,
number CSR-99-02 in Informatik Berichte. University Karl-
sruhe, TU Chemnitz, 1999.

V. N. Temlyakov. Approximation of functions with bounded
mixed derivative. Proc. of the Steklov Institute of Mathemat-
ics, 1, 1989.

S. Vandewalle. Parallel Multigrid Waveform Relazation for
Parabolic Problems. Teubner, Stuttgart, 1992.

R. Verfirth. A Review of A Posteriori Error Estimation and
Adaptive Mesh-Refinement Techniques. J. Wiley & Teubner,
1996.

D. Voorhies. Space-filling curves and a measure of coherence.
In J. Arvo, editor, Graphics Gems II, pages 26-30. Academic
Press, 1994.

M. Warren and J. Salmon. A portable parallel particle pro-
gram. Comput. Phys. Comm., 87:266-290, 1995.

R. E. Webber and Y. Zhang. Space diffusion: An improved
parallel halfoning technique using space-filling curves. In
Proc. ACM Comput. Graphics Ann. Conf. Series, page 305ff,
1993.

H. Yserentant. On the multilevel splitting of finite element
spaces. Numer. Math., 49:379-412, 1986.

C. Zenger. Sparse grids. In W. Hackbusch, editor, Proc. 6th
GAMM Seminar, Kiel, 1991. Vieweg.

G. Zumbusch. Dynamic loadbalancing in a lightweight
adaptive parallel multigrid PDE solver. In B. Hendrick-
son, K. Yelick, C. Bischof, I. Duff, A. Edelman, G. Geist,

46 G. W. Zumbusch

M. Heath, M. Heroux, C. Koelbel, R. Schrieber, R. Sinovec,
and M. Wheeler, editors, Proceedings of 9th SIAM Conference

on Parallel Processing for Scientific Computing (PP 99), San
Antonio, Tx., 1999. STAM.

