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Sparse Grids
The sparse grid method is a general numerical

discretization technique for multivariate problems.
This approach, first introduced by the Russian math-
ematician Smolyak in 1963 [27], constructs a multi-
dimensional multilevel basis by a special truncation
of the tensor product expansion of a one-dimensional
multilevel basis (see Figure 1 for an example of a
sparse grid).

Discretizations on sparse grids involve only
O(N(log N)d−1) degrees of freedom, where d is the
problem dimension and N denotes the number of de-
grees of freedom in one coordinate direction. The ac-
curacy obtained this way is comparable to one using a
full tensor product basis involving O(Nd) degrees of
freedom, if the underlying problem is smooth enough,
i.e., if the solution has bounded mixed derivatives.

This way, the curse of dimension, i.e., the ex-
ponential dependence of conventional approaches on
the dimension d, can be overcome to a certain ex-
tent. This makes the sparse grid approach particularly
attractive for the numerical solution of moderate-
and higher-dimensional problems. Still, the classical
sparse grid method is not completely independent of
the dimension due the above logarithmic term in the
complexity.

Sparse grid methods are known under various
names, such as hyperbolic cross points, discrete
blending, Boolean interpolation or splitting extrapo-
lation. For a comprehensive introduction to sparse
grids, see [5].

In computational finance, sparse grid methods have
been employed for the valuation of multi-asset op-
tions such as basket [25] or outperformance options
[13], various types of path-dependent derivatives
and likelihood estimation [20] due to the high di-
mension of the arising partial differential equations
or integration problems.

One-Dimensional Multilevel Basis
The first ingredient of a sparse grid method is a

one-dimensional multilevel basis. In the classical
sparse grid approach, a hierarchical basis based on
standard hat functions,

φ(x) :=

{
1− |x| if x ∈ [−1, 1] ,

0 otherwise
, (1)

Figure 1: A regular two-dimensional sparse grid of
level 7.

is used. Then, a set of equidistant grids Ωl of level l
on the unit interval Ω̄ = [0, 1] and mesh width 2−l is
considered. The grid points xl,i are given by

xl,i := i · hl, 0 ≤ i ≤ 2l . (2)

The standard hat function is then taken to generate
a family of basis functions φl,i(x) having support
[xl,i − hl, xl,i + hl] by dilation and translation, i.e.,

φl,i(x) := φ

(
x− i · hl

hl

)
. (3)

Thereby, the index i indicates the location of a basis
function or a grid point. This basis is usually termed
nodal basis or Lagrange basis (see Figure 2, bottom).
These basis functions are then used to define function
spaces Vl consisting of piecewise linear functions1

Vl := span
{
φl,i : 1 ≤ i ≤ 2l − 1

}
. (4)

With these function spaces, the hierarchical incre-
ment spaces Wl,

Wl := span {φl,i : i ∈ Il} (5)

using the index set

Il = {i ∈ IN : 1 ≤ i ≤ 2l − 1, i odd} (6)

are defined. These increment spaces satisfy the rela-
tion

Vl =
⊕
k≤l

Wk . (7)

The basis corresponding to Wl is called hierarchical
1In order to simplify this exposition, we assume that the func-

tions in Vl are zero on the boundary of Ω̄. This restriction can be
overcome by adding appropriate boundary basis functions.
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Figure 2: Piecewise linear hierarchical basis (top) vs.
nodal basis (bottom) of level 4.

basis (see Figure 2, top) and any function u ∈ Vl can
be uniquely represented as

u(x) =
l∑

k=1

∑
i∈Ik

vk,i · φk,i(x) . (8)

with coefficient values vk,i ∈ IR. Note that the sup-
ports of all basis functions φk,i spanning Wk are mu-
tually disjoint.

Tensor Product Construction

From this one-dimensional hierarchical basis, a
multi-dimensional basis on the d-dimensional unit
cube Ω̄ := [0, 1]d is obtained by a tensor product con-
struction. With the multi-index l = (l1, . . . , ld) ∈
INd, which indicates the level in a multivariate sense,
the set of d-dimensional standard rectangular grids Ωl

on Ω̄ with mesh size hl := (hl1 , . . . , hld) := 2−l are
considered. Each grid Ωl is equidistant with respect
to each individual coordinate direction, but, in gen-
eral, may have varying mesh sizes in the different di-
rections. The grid points xl,i of the grid Ωl are the
points

xl,i := (xl1,i1 , . . . , xld,id), 1 ≤ i ≤ 2l − 1 , (9)

where for the above multi-indices, all arithmetic op-
erations are to be understood component-wise.

Then, for each grid point xl,i, an associated piece-
wise d-linear basis function φl,i(x) (see Figure 3) is
defined as the product of the one-dimensional basis
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Figure 3: Tensor product approach to generate the
piecewise bilinear basis functions φ(2,1),(1,1) and
φ(2,1),(1,1) from the one-dimensional basis functions
φ2,1, φ2,2 and φ1,1.

functions

φl,i(x) :=
d∏

j=1

φlj ,ij (xj) . (10)

Each of the multidimensional (nodal) basis functions
φl,i has a support of size 2 · hl. These basis functions
are again used to define function spaces Vl consisting
of piecewise d-linear functions which are zero on the
boundary of Ω̄,

Vl := span
{
φl,i : 1 ≤ i ≤ 2l − 1

}
. (11)

Similar to the one-dimensional case, the hierarchical
increments Wl are defined by

Wl := span {φl,i : i ∈ Il} (12)

with the index set

Il :=
{
i ∈ INd : 1 ≤ i ≤ 2l − 1,

ij odd for all 1 ≤ j ≤ d } . (13)

This way, the hierarchical increment spaces Wl are
related to the nodal spaces Vl by

Vl =
⊕
k≤l

Wk . (14)

Again, the supports of all multidimensional hierarchi-
cal basis functions φl,i spanning Wl are mutually dis-
joint. Also, again each function u ∈ Vl can uniquely
be represented by

ul(x) =
l∑

k=1

∑
i∈Ik

vk,i · φk,i(x) (15)

with hierarchical coefficients vk,i ∈ IR.
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Classical Sparse Grids

The classical sparse grid construction arises from
a cost to benefit analysis in function approximation.
Thereby, functions u : Ω → IR which have bounded
mixed second derivatives

Dαu :=
∂|α|1u

∂xα1
1 . . . ∂xαd

d

(16)

for |α|∞ ≤ 2 are considered. These functions belong
to the Sobolev space Hmix

2 (Ω̄) with

Hmix
2 (Ω̄) := {u : Ω̄ → IR : Dαu ∈ L2(Ω),

|α|∞ ≤ 2, u|∂Ω = 0} . (17)

Here, the two norms |α|1 and |α|∞ for multi-indices
are defined by

|α|1 :=
d∑

j=1

αj and |α|∞ := max
1≤j≤d

αj . (18)

For functions u ∈ Hmix
2 (Ω̄), the hierarchical coeffi-

cients vl,i decay as

|vl,i| = O(2−2|l|1) . (19)

On the other hand, the size (i.e., the number of de-
grees of freedom) of the subspaces Wl is given by

|Wl| = O(2|l|1) . (20)

An optimization with respect to the number of de-
grees of freedom and the resulting approximation ac-
curacy directly leads to sparse grid spaces V̂n of level
n defined by

V̂n :=
⊕

|l|1≤n+d−1

Wl . (21)

In comparison to the standard full grid space

Vn := V(n,...,n) =
⊕

|l|∞≤n

Wl , (22)

which corresponds to cubic sectors of subspaces,
sparse grids use triangular or simplicial sectors, see
Figure 4. The dimension of the space V̂n, i.e., the

Figure 4: All subspaces Wl for levels |l|∞ ≤ 3 which
together form the full grid space V3. The correspond-
ing sparse grid space V̂3 consists of all subspaces
above the dashed line (|l|1 ≤ 4).

number of degrees of freedom or grid points, is given
by

∣∣∣V̂n

∣∣∣ =
n−1∑
i=0

2i ·
(

d− 1 + i

d− 1

)
= O(h−1

n · | log2 hn|d−1) . (23)

This shows the order O(2nnd−1), which is a signif-
icant reduction of the number of degrees of freedom
and, thus, of the computational and storage require-
ment compared to the order O(2nd) of the dimension
of the full grid space |Vn|.

On the other hand, the approximation accuracy of
the sparse grid spaces for functions u ∈ Hmix

2 (Ω̄) is
in the Lp-norms given by

||u− ûn||p = O(h2
n · nd−1) . (24)

For the corresponding full grid spaces, the accuracy
is

||u− un||p = O(h2
n) . (25)

This shows the crucial advantage of the sparse grid
space V̂n in comparison with the full grid space Vn:
the number of degrees of freedom is significantly re-
duced, whereas the accuracy is only slightly deteri-
orated. This way, the curse of dimensionality can be
overcome, at least to some extent. The dimension still
enters through logarithmic terms both in the compu-
tational cost and the accuracy estimate as well as in
the constants hidden in the order notation.
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Figure 5: An at a corner singularity adaptively refined
three-dimensional sparse grid.

Extensions and Applications

The classical sparse grid concept has been gener-
alized in various ways. First, there are special sparse
grids which are optimized with respect to the energy
seminorm [4]. These energy-based sparse grids are
further sparsified and possess a cost complexity of
O(h−1

n ) for an accuracy of O(hn). Thus, the depen-
dence on the dimension d in the order is completely
removed (but is still present in the hidden constants
[9]). A generalization to sparse grids which are opti-
mal with respect to other Sobolev norms can be found
in [14]. In case the underlying space is not known a
priori, dimension-adaptive methods [12] can be ap-
plied to find optimized sparse grids.

The sparse grid approach based on piecewise linear
interpolation can be extended to non-smooth prob-
lems by locally adaptive methods [2], see Figure 5
for an adaptively refined sparse grid. Furthermore,
it can be generalized to higher order polynomial [5]
or wavelet discretizations (e.g., interpolets or pre-
wavelets) [16, 26], which allows to utilize additional
properties (such as higher polynomial exactness or
vanishing moments) of the basis.

Sparse grids have been applied for the solution
of different kinds of low- and moderate-dimensional
partial differential equations, such as elliptic [5, 28],
parabolic [1, 15] and hyperbolic [18] problems. In
this context, finite element methods [2], finite dif-
ference methods [8] and finite volume methods [21]
have been used in the discretization process.

For the solution of partial differential equations, of-
ten the so-called combination technique [10] is em-
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Figure 6: The combination technique in two dimen-
sions for level n = 3: combine coarse full grids Ωl,
|l|1 ∈ {3, 4}, with mesh widths 2−l1 and 2−l2 to get
a sparse grid Ω̂n corresponding to V̂n.

ployed. Here, a sparse grid solution is obtained by a
combination of anisotropic full grid solutions accord-
ing to the combination formula

ûn(x) =
∑

n≤|l|1≤n+d−1

(−1)n+d−|l|1−1

(
d− 1
|l|1 − n

)
ul(x) (26)

where ul(x) is a full grid solution on an anisotropic
grid with mesh width 2−l, see Figure 6 for a two-
dimensional example. The combination technique
can be further optimized with respect to the under-
lying differential operator [19].

The sparse grid approach can also be used for nu-
merical integration, e.g., for the computation of ex-
pectations [11, 24]. Thereby, the classical sparse
grid construction starts with a sequence of one-
dimensional quadrature formulas Qlf using nl points
to integrate a function f on the unit interval [0, 1],

Qlf :=
nl∑

i=1

wli · f(xli) . (27)

Using the difference quadrature formulas

∆kf := (Qk −Qk−1)f with Q0f := 0 , (28)

the sparse grid quadrature formula Q̂nf of level n for
a d–dimensional function f on the cube [0, 1]d is then
defined by

Q̂nf :=
∑

|l|1≤n+d−1

(∆l1 ⊗ . . .⊗∆ld)f . (29)
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Again, this construction can be improved by using
spatially adaptive or dimension-adaptive refinement
[3, 12].

The sparse grid methodology has also been suc-
cessfully applied to the solution of integral equations
[17], interpolation and approximation [22] and data
analysis [7, 23].
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