
SUPPLEMENTARY MATERIALS: Deep Neural Networks and PIDE
discretizations

Bastian Bohn∗ † , Michael Griebel† ‡ , and Dinesh Kannan‡

SM1. Pseudo-differential operators.

Definition SM1.1. Let Ω ⊂ Rn be open, 0 ≤ ρ ≤ 1, 0 ≤ δ ≤ 1, m ∈ R, n ∈ N, n ≥ 1.
Then the space of symbols of order m and of type (ρ, δ), denoted by Smρ,δ, is the space of all
p ∈ C∞(Ω×Rn) such that, for all compact sets K ⊂ Ω and all multi-indices α, β ∈ Nn, there
is a constant CK,α,β such that

| ∂αx ∂βξ p(x, ξ)| ≤ CK,α,β(1 + |ξ|)m−ρ|β|+δ|α|,

where x ∈ K, ξ ∈ Rn.

Definition SM1.2. Let v ∈ S(Rn), p ∈ Smρ,δ. A pseudo-differential operator P (x, D) on Rn
with symbol p(x, ξ) is defined as

(SM1.1) P (x, D)v(x) :=

∫
Rn

p(x, ξ) v̂(ξ) e2πix·ξ dξ.

SM2. Addressing the singularity. The kernel under the integral in equation (3.5) has a
singularity when x = y, but for v ∈ S(Rn), we can write

∫
Rn

[v(x)− v(y)]

|x− y|n+2s
dy ≤ C

∫
BR(x)

|x− y|
|x− y|n+2s

dy + ‖v‖L∞(Rn)

∫
Rn\BR(x)

1

|x− y|n+2s
dy

= C

(∫
BR(x)

1

|x− y|n+2s−1 dy +

∫
Rn\BR(x)

1

|x− y|n+2s
dy

)

= C

(R∫
0

1

|r|2s dr +

∞∫
R

1

|r|2s+1
dr

)
< +∞.

C is a positive constant depending on n and ‖v‖L∞ . The integral shown above is finite only
for 0 < s < 1/2, but we can make the integral in equation (3.5) well-defined for 0 < s < 1.

It can be shown [SM4] that the fractional Laplacian operator given by (3.5) can also

be written as (−∆)sv(x) :=
cn,s

2

∫
Rn

[2v(x)−v(x+y)−v(x−y)]
|y|n+2s dy. Using this reformulation of the

∗Fraunhofer Center for Machine Learning, Schloss Birlinghoven, 53754 Sankt Augustin, Germany (bas-
tian.bohn@scai.fraunhofer.de).
†Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt

Augustin, Germany.
‡Institute for Numerical Simulation, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Ger-

many (griebel@ins.uni-bonn.de, kannan@ins.uni-bonn.de).

SM1

mailto:bastian.bohn@scai.fraunhofer.de
mailto:bastian.bohn@scai.fraunhofer.de
mailto:griebel@ins.uni-bonn.de
mailto:kannan@ins.uni-bonn.de

SM2 B.BOHN, M. GRIEBEL, AND D. KANNAN

fractional Laplacian and the second-order Taylor expansion of u and assuming v to be smooth,
the integral term ∫

Rn

[2v(x)− v(x + y)− v(x− y)]

|y|n+2s
≤ ‖D

2v‖L∞
|y|n+2s−2

is integrable at the origin for any 0 < s < 1. Thus, we can remove P.V. from the integral as
long as v ∈ S(Rn). The idea is that, near x, [v(x)−v(y)] has the approximation∇v(x)·(x−y),

and the term under the integral is of the form ∇v(x)·(x−y)
|x−y|n+2s . This term is odd with respect to

x, and consequently, it averages out for any y in the neighborhood of x by symmetry, and the
immediate neighborhood does not contribute to the integral.

SM3. Speeding up tensor computations.

Rearranging the two-step computation. The affinity kernel ω is stored in a matrix form
for each batch of training data. We can reorder the terms in equation (4.1) to enable faster
computations of tensors. For example, a part of the term in the first equation of (4.1) can be
written as ∑

j

ω(Xi,Xj)(Xj −Xi) =
∑
j

ω(Xi,Xj)Xj −
∑
j

ω(Xi,Xj)Xi(SM3.1)

=
∑
j

ω(Xi,Xj)Xj − Xi

∑
j

ω(Xi,Xj).(SM3.2)

The second part of this term is just the sum of the i-th row of the matrix representing ω,
times the pixel strip Xi. Similarly, for the second stage, we have

(SM3.3) [B2]i = · · ·
[
· · ·
∑
j

ω(Xi,Xj)[B1]j − [B1]i

∑
j

ω(Xi,Xj)

]
.

Nonlocal diffusion operator. Figure SM1 shows how the tensors are dealt with and prop-
agated forward in the nonlocal block, where the shape of the input to the nonlocal block is
assumed to be H ×W × 1024, 1024 being the number of channels of the input. H and W are
the spatial height and width of the feature maps, respectively. The diagram only shows the
computations for one stage of the nonlocal block since the other stages are just repetitions
but with a pre-computed kernel ω. In Figure SM1, ⊗ represents matrix multiplication, ⊕ and
	 denote element-wise addition and subtraction, respectively, and � denotes the dot prod-
uct. For the dot product, each row of the tensor with shape HW × 1024 is multiplied by a
corresponding element from the row vector of shape HW × 1. The first multiplication is used
to compute the kernel ω. The second multiplication represents the first term in equations
(SM3.2) and (SM3.3), and the dot product is used to compute the second part of equations
(SM3.2) and (SM3.3).

Fractional Laplacian operator (−∆)s. The tensors in the nonlocal block are computed
similarly, as shown in Figure SM1. In the case of pseudo-differential operators, the ⊗ symbol
for the kernel computation represents pair-wise distance computations. The other ⊗ symbol

SUPPLEMENTARY MATERIALS: DEEP NEURAL NETWORKS AND PIDE DISCRETIZATIONS SM3

xH×W×1024

θ : 1× 1 φ : 1× 1

×
H×W×512

HW×512

H×W×512

512×HW

(Kernel ω)
HW×HW

×

H×W×1024

HW×1024

HW×1024

H×W×1024

HW×1024

HW × 1

(row sum)
•

HW×1024
−

1
N

HW×1024

H×W×1024

K1,2 : 1× 1

H×W×1024

H×W×1024

BN+act+

B1,2

Figure SM1. Forward propagation of tensors in a nonlocal block with the nonlocal diffusion operator L.

in the figures still stands for matrix multiplication as before. The only difference here is that
we compute (Xi−Xj) (and ([B1]i− [B1]j)), instead of (Xj −Xi) (and ([B1]j − [B1]i)), to be
in line with the definitions of the two operators. However, this does not make any difference
to the learning problem.

Subsampled nonlocal blocks. As we can see in Section 6.1, the global computation can
be quite expensive. In order to minimize the floating-point operations, several remedies exist.
Firstly, all the convolutions in the nonlocal block (θ, φ,K1,K2) are 1 × 1 convolutions. This
itself reduces the computational effort drastically. Secondly, the embeddings θ and φ can be
used to reduce the number of channels by half, as shown in Figure SM1. This reduces the
computation of a nonlocal block by half when the kernel ω is computed.

There is one more way of reducing the computational effort of the nonlocal blocks, namely
subsampling the image before the affinity of the pixel strips is computed. This is shown
in Figure 2 (right). Figure 2 shows how the input X (of shape H × W × C) is spatially
subsampled to X̂ (of shape H ′×W ′×C) before the affinity between the regions of the image
is computed. Experiments have shown that this has very little impact on the quality of the
results of the network. This tells us that we do not need to compare each pair of pixel strips.
Instead, it is good enough if we compare patches of the image with each other and learn the
correlations between them while we compute the kernel ω. The computational savings due to
this subsampling trick [SM6] are discussed in Section 6.1.

SM4 B.BOHN, M. GRIEBEL, AND D. KANNAN

xH×W×1024

θ : 1× 1 φ : 1× 1

×
H×W×512

HW×512

H′×W ′×512

512×H′W ′

(Kernel ω)
HW×H′W ′

1
N ×

H′×W ′×1024

H′W ′×1024

(subsampled)

HW×1024

H×W×1024

K1,2 : 1× 1

H×W×1024
BN+act

H×W×1024

+

B1,2

Figure SM2. Forward propagation of tensors in a subsampled nonlocal block with the inverse Laplacian
operator (−∆)−s.

SM4. Implementation details and choice of hyperparameters. All the networks are
implemented and trained using the Tensorflow library [SM1] with a single Nvidia Tesla P100
GPU. The networks for the semantic segmentation task (Section 5.3) are trained using an
Nvidia Tesla V100 GPU. All the trainable weights in the neural network are initialized based
on the suggestions in [SM5]. The discretization step size h is kept between 0.04 and 0.08.
Very small values of h lead to slow propagation of the information down the network, and
as a result, the network performs worse. On the other hand, we see exploding gradients and
sudden feature transformations in the network for bigger values of h, which cause instability
and adversely affect training and convergence.

The loss function S in equation (2.2) is chosen to be the cross-entropy loss function.
Stochastic Gradient Descent (SGD) is used as the optimizer with momentum 0.9 and with a
learning rate of 0.01 for the first epoch to warm up the training. Then we go back to a learning
rate of 0.1 and reduce it by a factor of 10 after 80, 120, 160 and 180 training epochs. The
weight decay constant α1 for weights in the normal blocks is 2× 10−4 for CIFAR-10/CIFAR-
100/BDD100K and 5×10−4 for STL-10. The weight smoothness decay constant α2 is 1×10−8.
The reason for such a small value for α2 is that, in our case, we have a nonlocal block after
the second block in each Unit. While we do want the weights to vary smoothly, the weights
and the features of the second and third Hamiltonian block will be invariably quite different
because of the presence of the nonlocal operation between the two blocks. Therefore, α2 is
kept smaller than the value suggested in [SM2]. As discussed before, the convolutional weights
in the nonlocal block are only regularized by weight decay (2× 10−4 for all the datasets, i.e.
CIFAR-10/100, STL-10, BDD100K) and not by the weight smoothness decay. The scaling

SUPPLEMENTARY MATERIALS: DEEP NEURAL NETWORKS AND PIDE DISCRETIZATIONS SM5

Table SM1
Number of floating-point operations depending on the subsampling pool size in the nonlocal blocks while

training the nonlocal diffusion network on the STL-10 dataset.

Network
Subsample STL-10

pool size FLOPs (M)

Nonlocal diffusion L

0 9341.2

2 3471.4

4 2003.7

6 1731.9

8 1636.8

12 1568.9

Hamiltonian-74 NA1 1432.5

factor λ is 0.1 for all the nonlocal operators with the dimensional constant n = 2. The value of
s for the pseudo-differential operators is 1/2. From the experiments, it has been seen that the
nature of the nonlocal operator plays a more important role than the power of the fractional
Laplacian and the inverse fractional Laplacian. This is to say, any value of s between 0 and
1 works for the two pseudo-differential operators, and the performance is rather determined
by the nature of the nonlocal interaction between the pixels strips and not by the value of s
in the kernel of the integral operator.

SM5. Computational costs for the STL-10 dataset. When it comes to datasets like STL-
10 [SM3] (or ImageNet, etc.), there is a trade-off that needs to be taken into consideration.
Often, the training of networks is bound by memory constraints and not by computational
constraints. In such cases, this increase is within acceptable limits. But when the aim is
to bring down the number of floating-point operations, one could use the subsampling trick
in the nonlocal block (Figure 2 and Section SM3 in this supplementary material). This
drastically reduces the number of floating-point operations for the computations of the kernel
ω while measuring the affinity between each pair of pixel strips/sections of the image, without
changing the nonlocal nature of the block. Table SM1 shows the effect of the subsampling
pool size on the number of floating-point operations for the nonlocal diffusion network while
training on the STL-10 dataset. The zero in the table stands for non-subsampled nonlocal
blocks. Clearly, the computational cost is quite high if no subsampling is performed. When
the pool size is increased, the number of floating-point operations gradually approaches the
number of FLOPs for the original Hamiltonian network (on STL-10). When the pool size is
too large, the nonlocal character of the block is degraded a bit. Thus, it is a balancing act
between computational costs versus the increase in performance of a network in the presence
of nonlocal blocks. One has to choose the fitting pool size for the subsampling in the nonlocal
block, based on the computational constraints that one has and the resolution of each image.

1Not applicable because the original Hamiltonian network has no nonlocal blocks.

SM6 B.BOHN, M. GRIEBEL, AND D. KANNAN

SM6. Real parts of the eigenvalues of weight matrices K1, K2.

Figure SM3. Real parts of the eigenvalues of weight matrices K1 and K2 in the nonlocal block placed in
each Unit of the pseudo-differential (−∆)1/2 network while training on STL-10.

Figure SM4. Real parts of the eigenvalues of weight matrices K1 and K2 in the nonlocal block placed in
each Unit of the pseudo-differential (−∆)−1/2 network while training on STL-10.

SUPPLEMENTARY MATERIALS: DEEP NEURAL NETWORKS AND PIDE DISCRETIZATIONS SM7

Figure SM5. Real parts of the eigenvalues of weight matrices K1 and K2 in the nonlocal block placed in
each Unit of the pseudo-differential (−∆)−1 network while training on STL-10.

SM7. Eigenvalues of the symmetric parts of weight matrices K1, K2.

Figure SM6. Eigenvalues of the symmetric parts of weight matrices K1 and K2 in the nonlocal block placed
in each Unit of the pseudo-differential (−∆)1/2 network while training on STL-10.

SM8 B.BOHN, M. GRIEBEL, AND D. KANNAN

Figure SM7. Eigenvalues of the symmetric parts of weight matrices K1 and K2 in the nonlocal block placed
in each Unit of the pseudo-differential (−∆)−1/2 network while training on STL-10.

Figure SM8. Eigenvalues of the symmetric parts of weight matrices K1 and K2 in the nonlocal block placed
in each Unit of the pseudo-differential (−∆)−1 network while training on STL-10.

SUPPLEMENTARY MATERIALS: DEEP NEURAL NETWORKS AND PIDE DISCRETIZATIONS SM9

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis,
J. Dean, M. Devin, et al., TensorFlow: Large-scale machine learning on heterogeneous systems,
2015, https://www.tensorflow.org/. Software available from tensorflow.org.

[2] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham, Reversible architectures
for arbitrarily deep residual neural networks, in 32nd AAAI Conference on Artificial Intelligence, 2018.

[3] A. Coates, A. Ng, and H. Lee, An analysis of single-layer networks in unsupervised feature learning, in
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, 2011,
pp. 215–223.

[4] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces,
Bulletin des Sciences Mathématiques, 136 (2012), pp. 521–573.

[5] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance
on ImageNet classification, in 2015 IEEE International Conference on Computer Vision (ICCV), 2015,
pp. 1026–1034.

[6] X. Wang, R. Girshick, A. Gupta, and K. He, Non-local neural networks, in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 7794–7803.

https://www.tensorflow.org/

	Pseudo-differential operators
	Addressing the singularity
	Speeding up tensor computations
	Implementation details and choice of hyperparameters
	Computational costs for the STL-10 dataset
	Real parts of the eigenvalues of weight matrices K1, K2
	Eigenvalues of the symmetric parts of weight matrices K1, K2

