TENSOR PRODUCTS OF SOBOLEV SPACES AND APPLICATIONS
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Abstract. In many cases the approximation of solutions to variational problems involving
isotropic Sobolev spaces has a complexity which depends exponentially on the dimension. However,
if the solutions possess dominating mixed derivatives one can find discretizations to the correspond-
ing variational problems with a lower complexity — sometimes even independent of the dimension.
In order to analyse these effects, we relate tensor products of Sobolev spaces with spaces with dom-
inating mixed derivatives. Based on these considerations we construct families of finite dimensional
anisotropic approximation spaces which generalize in particular sparse grids. The obtained estimates
demonstrate, in which cases a complexity independent or nearly independent of the dimension can be
expected. Finally numerical experiments demonstrate the usefulness of the suggested approximation
spaces.
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1. Introduction. A fundamental issue for the construction of a finite element
method is the choice of a suitable approximation space. It is well known that for
a large range of problems there exist trial and test functions such that a finite el-
ement discretization leads to stiffness matrices whose condition number is bounded
independently of the number of unknowns in the finite element approximation space
[5, 12, 26, 27, 40]. Hence, iterative methods can be expected to converge rapidly.
However, on a regular full grid in n dimensions the resulting linear system is of di-
mension 277 (J level in a multiscale discretization) and is therefore intractable for
todays computers for large J or large n. Here it is important to note that the com-
plexity of many variational problems with solution in the standard isotropic Sobolev
spaces is indeed exponentially depended on the dimension n [34, 39].

However, the situation changes when we consider variational problems with solu-
tions that posses a higher regularity such as functions with dominating mixed deriva-
tives. Under this assumption and if one uses tensor-products of suitable univariate
spaces as approximation spaces, subspaces with relatively large dimensions that con-
tribute only “little” to the error reduction can be identified and omitted from the ap-
proximation spaces. This idea has appeared under various names (boolean blending
schemes, hyperbolic crosses, sparse grids) in approximation and interpolation theory
[2, 3, 4, 16, 33, 37] and has also been used for the solution of elliptic differential
equations [7, 8, 10, 18, 41] as well as integral equations [15, 17, 20], see also [24].

A first impression of the usefulness of such sparse grid constructions and their
range of applicability is obtained from the decay of the Fourier coefficients of the
function f = x(1/4,3/4)> on the torus T2, where y denotes the characteristic function.

Notice, that the function f is an element of Hlll{ii_e for all € > 0 (see section 1 for a

definition of these function spaces). The following figures show all those Fourier coef-
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Stronger compression, i.e. a larger threshhold, leads to the typical cross structure
for the coefficients of functions with dominating mixed smoothness. Sparse grids are
specially adapted to this particular situation.

In contrast, for the /4 around (1/2,1/2) rotated cube on T2, which gives an
element in #'/2-¢ for all € > 0, an analogous compression of the discrete Fourier
coeflicients leads to the Figures
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Hence, sparse grids will not outperform full grids when it comes to the approximation
of this function. In other words, a simple rotation of the coordinate system could lead
to very different approximation results if the mixed smoothness property changes.

The construction of suitable tensor product approximation spaces that exploit
additional smoothness assumptions such as dominating mixed smoothness, can be
based on norm equivalences with respect to tensor product bases functions, see [17].
For the application of this construction to e.g. elliptic boundary value problems it is
therefore essential to identify circumstances under which their variational solutions
are elements of such product spaces. To reach this goal we identify the arising tensor
product Sobolev spaces as intersections of the energy space of the underlying varia-
tional problem with Sobolev spaces of functions with dominating mixed derivatives.
In principle, this provides a feasible criterion whether the approximation results are
applicable. A general regularity theory for elliptic boundary value problems with suffi-
cient conditions on the data which enforces the desired mixed smoothness properties is
postponed to a forthcoming paper. However, in a specific case, which is related to our
numerical experiments, we trace back mixed regularity properties of the variational
solution to related assumptions for the given data.

We proceed as follows: In section 2 we study tensor products of approximation
spaces and Sobolev spaces. First we describe one-dimensional stable splittings and in-
troduce related tensor products. By this way we may introduce approximation spaces
for spaces of functions with different mixed smoothness properties. The approxima-
tion spaces give rise to a family of spaces starting from regular full grid spaces and
including the sparse grid spaces. Then we investigate relations between tensor prod-
uct Sobolev spaces and so called mixed smoothness spaces. Sobolev spaces of mixed
type will disclose themselves as tensor product Sobolev spaces. The starting point are
Sobolev spaces on R. Then we consider intervals and finally intersections of Sobolev
spaces with and without boundary conditions.

In section 3, we transfer results from [17] and obtain error estimates for specific
approximation spaces with respect to tensor product Sobolev spaces. Next, complex-
ity issues are discussed for different parameters of isotropic and mixed smoothness.
Then we apply the approximation results to Sobolev spaces of mixed type. In that way
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we obtain error estimates for appropriate regular solutions to the Poisson problem.
We conclude this section with some remarks on the optimal complexity solving the
resulting discrete equations. Specifically we improve a result of [9] on the complexity
of the Poisson problem.

In section 4 we sketch an approximation algorithm for this family of spaces that
is based on an extrapolation technique. Of course, the final decision for the usefulness
of one of these approximation spaces for a particular problem will rely on numerical
tests that take everything into account, i.e. the number of degrees of freedom, the
algorithmic complexity and also coding issues. Therefore we present numerical exam-
ples for the Poisson problem in section 5. Test functions belonging to different spaces
of the scale are considered in order to demonstrate the complexity and approximation
errors within suitable tensor product spaces.

2. Tensor products of approximation spaces and of Sobolev spaces. The
complexity estimates in the next section are essentially based on (Hilbert space) tensor
product arguments providing norm-equivalences with respect to appropriate tensor
product bases. Therefore we start in this section with the standard definition of the
Hilbert space tensor product ®, see [1, 13, 38]. Then we introduce our tensor-product
approximation spaces. From e.g. [17] it is already known how those approximation
spaces are related to tensor products of Sobolev spaces. In subsection 2.2 we proceed
by presenting characterizations for those tensor products of Sobolev spaces, that are
connected with the variational solutions of elliptic boundary value problems.

For real Hilbert spaces (Huy, (-, *)m,), (H2, (+,+)m,) and their dual spaces H; and
H!, we denote by L(Hj, H};R) the space of all bilinear forms on H{ x Hj. Then for
u € Hy and v € Hy the tensor product u ® v is defined by

(u@v)(2',y) =2'(u)y (v), («',y) € Hj x Hy,

i.e. u®v € L(Hj, H5;R), and Hi&H, is simply the subspace of L(H{, Hy;R) gen-
erated by the dyads v ® v. H1®H, becomes a Pre-Hilbert space by introducing a
positive sesquilinear form s : (Hy ® Hy) X (H1 ® Hy) — R: For f,g € Hy ® Hy with
f= ZT:1 ciu; @uj, g = 22:1 drwi @ 2z, where ¢;,di € R, uj, wy € Hy, v, 25 € Ho,
we set

m !
=33 eide(ug, we)m, (v5, 2, -

j=1k=1

The tensor product space H; @ Ho is then defined as the completion of H;&H, with
respect to s(-,-) and we denote the corresponding norm by || - ||g.

Within our context it is worth to note that ||-||g is up to equivalences the only tensor
cross norm with the property that for an orthonormal basis (ex)gen in £2 the system
(ex @ €r)k,ren is at least an unconditional basis in £, ® £5.

The following well-known fact is very useful: For Hy = Hy = L3(R), the Hilbert
space Hy @ Hy = L3(R) ® L(R) is isomorphic to Lz(R?) and the sesquilinear form
s(-,+) on L2(R)® La(R) can be identified with the standard scalar product in La(R?)
(see [38]).

We use the following standard notation: z ~ y means that there exist constants
C1, Cy independent of any parameters z or y may depend on, such that Cy -y < z <
Cy - y. ¢ < y is defined analogously. Multi-indices (vectors) are written boldface, for

example_] = (J1s-+-1Jn)-



2.1. Tensor product approximation spaces. The starting point for the con-
struction of our approximation spaces are one-dimensional splittings L, = @j>0 Si,
where the S; C H{(I),r > 0 (where I := [0, 1] and H{([) is defined in subsection 2.2),
are finite-dimensional and the complement spaces W; = S; © S;_; are spanned by
some basis {¢;x, k = 1,...,dim(Wj;)}, consisting of dilates and translates of a mother
function. In the following we work exclusively with dyadic refinements, i.e. the di-
mension of the univariate subspaces S; behaves like 2. As a rule, the considered
basis functions should satisfy a refinement relation, to allow efficient computations
via pyramidal algorithms. The particular choice of basis function is dictated by the
problem at hand, specifically by the desired stability properties of the resulting split-
tings, the size of the local masks and, connected with this, the cost in implementing
and even the taste of the user.

In the higher-dimensional case, n > 1, let Wj denote the corresponding tensor-
product space, i.e.

Wy =W;, @...0 Wj,_.
The approximation spaces we consider are given by
(2.1) vi= P w;
jeI?
with T € [—o0, 1] and the index sets
(2.2) 17 = €N —[jly + Thilo > —(n+J — 1) + T},

They have been introduced in [17]. Here, J is the maximal level in V7, ie. j; <
Jyi=1,...,nfor j € IT. With T varying between —occ and 1 (2.1) gives a scale of
approximation spaces that are nested with respect to the parameters J and T and
include regular full as well as sparse grid approximation spaces.

From [14, 17] we take the following estimates of the dimension of the spaces VJT,

27 for 1/J < T <1,
271 for 0< T < 1/,

T-1_j
277==17  for T < 0,
2nJ

(2.3) dim (V]) <

for T = —oo.

2.2. Tensor products of Sobolev spaces. The main goal of this subsection is
to identify tensor products of (isotropic) Sobolev spaces as Sobolev spaces of functions
with dominating mixed smoothness properties. To be exemplarily more precise we
relate

ro(RY = H'(R)® H™(R),

mix

to

mix(R?) = {u € La(R") | ullary,, = (3 [T+ Ik 17 u(®)%)7? < oo},

keZ2i=1

where r = (r1,72) > 0, and the Sobolev spaces H"*(R) are defined via the Fourier
transform in the usual way. In particular we are interested in Sobolev spaces with
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incorporated homogeneous boundary conditions, which appear as regularity spaces
for solutions to elliptic boundary value problems.

We shall apply several times the following basic observation, see [38]: If Hy and
Hy are two Hilbert spaces and if M1 C Hy and My C Hy are total subsets, i.e. linear
combinations of elements of M; lie dense in H;, then the set {u®v |u € M1,v € My}
is total in M1 @ Ms.

We proceed as follows: First we treat tensor products of Sobolev spaces on R,
then tensor products of Sobolev spaces without boundary conditions on an interval
and, finally, intersections of those tensor products with isotropic Sobolev spaces with
boundary conditions.

Let us start with Sobolev spaces on R. To show

,H]rrnix(Rz) = Hr];lix(R2)7
note that C§°(R) is dense in H"(R). Hence it is sufficient, because of the above
observation, to show that for u; € C(R), v; € C§°(R), 7= 1,2, holds

(2.4) s(u1 @ uz,v1 @ v2) = (u1 ® ug, v1 @ v2),

where uy ®" ug(21, 22) := u1(z1) - uz(z2). Then @ induces an isometric isomorphism
from HE,; (R?) onto HE, (R?). But (2.4) follows immediately from the definitions

mix m
and the identification of Ly(R)® La(IR) with Ly(RZ).
Next we consider Sobolev spaces on the cube I?. Within our context a convenient
way to introduce Sobolev spaces on [ is to apply differences, i.e. to take into account
the notion of Besov spaces, cf. [36]: For h € R and a function u we define

Ap(u)(z) :=u(z +h) —u(z), =R,

and for d > 2 we define inductively Af (u) := A%"1(Aj(u)). Furthermore we introduce
forhe Rand d €N

Iig:={xel|z+dhel}
and define for r > 0 and an arbitrary but fixed m € N with m > r

(wodr = [ AR (0)0) (A7 (0)2)) i i,

R Inm

(1, 0))rir = (y 0)osr + (3 V)t Juleir = (uw,w) 7 Wlllrar = ()17
and

H'(I) = {u € L*(I) | |||ulllrir < oo}

Note that another m > r would give an equivalent norm ||| - |||-;;. Moreover, for r € N
it is well-known, see [36], that

H™(I) = {ue L) | ||ull.r == O Jul™3 )? < oo}
a=0

and ||[ul[lr,r ~ [[ulr,r; w € H"().
Next we introduce directional partial difference operators AT’Z», m €€ N, h €
R,i=1,2, by (A,lwf)(r) := f(z +he;) — f(z) and A}, = A,117Z»A’,;’fi_1, m > 2, where
5



e; denote the canonical basis vectors in R2. Applying those directional differences we
set for r = (r1,72) > 0 and arbitrary but fixed mq, my € N with m; > r;

() ez i= [ ([ I AT u0) (AT o(2)) ) d,
R Ih11m1XI

(oo i= [( [ a2 (A2 u0) (A72,0(2)) dx) dha
R IXIny,m,

e LG It e YL RVERTE)

miz
K2 Thy,my XThy,mo

(AT;I ® Aﬁfzv(r)) dx) dhy dha,

((uvv))n,ﬂ;ﬂ = (U,’U)O;IE + (uvv)n,ﬂ;ﬂv ((Uav))ﬂ,rz,;ﬂ = (U’U)O;P + (uvv)ﬂ,rz;ﬂv

o o 2y 3y
((ua U)) EERES (ua U)O;p + (ua U) r1,0512 + (Ua U) 0,rg72 T (Ua U) 12y
mix mie mixe mixe
1/2 1/2 1/2
[l rporz 2= ((uy )2 o (fullowprz o= (s w)) Y2 oy [l == ((u, )22
mie mix mixr mixe mie mixe

and
mix(I?) = {u € L*(I?) [ |||ul[] .2 < 00}

Again, different m; > r; give equivalent norms and the same function spaces. As in
the isotropic case one has for r = (ry, ry) € N?

. . 1/2
niI?) = {u € L) |fJulloo = (3 0ullf) " <o)

a=(ag,a3)
lag|<ry,lag]<ra

and |||u|||erz ~ |[u]| ez for u € HE,; (I?), cf. [30]. The reason for our choice of Besov
type definitions is tﬁzridentity

(u1 @ v1,uy @ va)pn (@Hr2(I) = (w1 @ v1,uz @ Uz))H;ﬂxa
for uy,us € C°°(I) and vy, vy € c> (1), i.e. there is again an isometry on dyads u®v.
Thus, applying the fact that C°°(T) ® C*°(I) is total in HE; (I?), see [35], the same
arguments as above, together with the identification Ly(I) @ La(I) = L2(I?), give

H™ (1) @ B (1) = Ky (12).

For another approach in the case r € N see [1].

In the case of products of intervals a simpler approach via Fourier series would
also work. The advantage of our argument is that it can verbatim be transfered to
Sobolev spaces in higher dimensions and products of domains satisfying the uniform
cone condition, see [23].

Next we investigate Sobolev spaces with homogeneous boundary conditions. To
present the typical situation that arises in the investigation of elliptic Dirichlet prob-
lems, we introduce for » > 0 the Sobolev space H{(I) as the completion of C§°(T)
in H"(I) and for r = (r1,73) > 0 the mixed space H&mix(lz) as the completion of
C5°(I?) in Hy; (I7).



Since C§° (1)@ C§° (I) is total in C§° (I?) we may apply again the above arguments
to obtain

HE' (1) © Ho* (I) = H i (I7).
A little bit more involved is the following identity which considers intersections be-
tween Sobolev spaces with and without boundary conditions.

THEOREM 1. Forr = (r1,73) >1=(I1,12) > 0 holds
(Ho' (1) M H™ (I)) @ (Hg* (1) N H™(T)) = H i (1) N Hyyin (17) -

Proof. At first we notice that “C” follows directly by our above observations. For
the other direction we apply an approximation argument using wavelets. From results
in e.g. [11] follows the existence of biorthogonal wavelet bases ¥() = (wg\ll)))\lejl,
v = (17)&))&6‘]1, i = 1,2, J; suitable index sets, for Hi(I) N H"#(I), which provide
norm—equivalences

( 1/2 N
u, P )0,|) , for u € Hy (I H™(I).

(25)  Nulllar ~ (

Ai€J;

Applying arguments from [19], we then obtain

. - r2lAa 1) _ #(2) 2\ 172
(2.6) gy ~ (32 22, 50 @ 5o, 0 2)

A €7y

Ag€Jg

for u € (H(l)1 (NNH™)® (H(l)2 (I)NH"(I)). Here ||-||g1 denotes the tensor product
norm corresponding to (Hi (IYNH"™ (I))® (H (I)NH">(I)). Therefore it is sufficient
to show that the right hand side in (2.6) is bounded for u € H} I*) N HE, (1?).

,mi:c( mix
To this end let u € H} I*)N HE, (I?). For an arbitrary A; € J; the function
uy, defined by

,mi:v(

U)\l(afg) = /u(a:l,;rg) l[?g\ll)(élfl)dl‘l, 9 € I,
I

is an element of H(lf (I n H™(I). Then the Fubini theorem implies
(ur, 1/75\22))0;1 = (u, 1/7&11) ® 1/75\22))0;12
for Ay € J3. From our assumptions on ¥(2) and ¥ we then have

> PPl G0 Gop P = 30 2 30 2l o

X1 €Ty A €Jy Ao€J3

Ao €y

(2.7) < Y 2l I, -
A€

Then we observe that

3 el 2, = 30 2 '/|uA (22)[? dary

A1€J1 A1€J1
7



S ST 22 l(ul, xa), )0 1| da
T A1€Jy

23) $ [tz dos
I

5 ”u”%l,q;ﬂ'

miz

Furthermore we have with respect to some arbitrary but fixed my > ro

[ ]l AT e ) o

R Thymo
Z// / |h2|_2r2_1|AT22’2(U(1‘1,ZL‘Q))|2C[1‘1C[IQC[}L2
I R Ihy,m,

Sl -

miz

Next we notice that for h; € R and a.e. x3 € Iy, m, holds

mao _ mao (1 :
A2, (ux, (22))* = (A2, 22), ¥{)our [
which yields a.e.
D7 2pnMlATe (uy, (@) F < IAT2u( 2)]1]7,r -
A1€Jy

Thus we obtain by monotone convergence and again the Fubini theorem with respect
to some my > r

Sl = [ [ 3D AT s (23)) Pl aadh

A1€J1 R Ing m, A €Ty
5/ / |h2|_2”2_1|||AZ:2(U(',IZ))|||£171d;l‘2dh2
R Thymy
g B e
e -
(29) . |:/ / |h1|_27‘1—1|A;LT7;1’1(A2T712272U(1‘1’ m?))PdCEldhl dQL‘Zth
R Tn, m,

3 B B T

miz
2
R2Thy,my Xhy,my

|A;n111 ® AZZ2U(I1, I‘Q) |2dl‘1d232dh1dh2

< Ml sz -
s

Now, (2.6)-(2.9) imply [[ullgr < [||ul||.r2 for u € H(IL I*YN HE, (17). [ ]

Again a simple approach via Fourier series would also work here. However, the
approach presented here is also appropriate for treating products of bounded domains
with the uniform cone property.



For an application of Theorem 1 to homogeneous elliptic Dirichlet problems one
needs a further argument with respect to Sobolev spaces with boundary conditions.
To this end let 7, I € N, denote the usual trace operators defined on isotropic Sobolev
spaces H'(I?).

THEOREM 2. Forl € N holds
(2.10) HG' i (1) = {u € Hyi (1°) | mu = 0}

Proof. Since the following is a transfered version of a more general approach pre-
sented in [22], we give only the sketch of a proof: “C” is clear, since H(l)’fmm(ﬂ) C

HY(I?). Let P; := % P = PP, and for u € C®(I?), ¢ € C3°(I?), let
azlu (9%(]5

ozl 9zt 9zt
0z 0z, Oxy 0z,

b(u, @) := (Pu, d)o,r2 = (

Jo,r2-

Note that b(-,-) can be extended to a bounded bilinear-form

b Hl,l

mix

(1*) x H.!

0,mix

(I*) — R.

Now, let us consider w € H"" (I?) with yyw = 0 and b(w, ¢) = 0 for all ¢ € C§°(I?).

mix

Then for ¢1 € C§°(I) the definition
(2.11) W(ze) := (w(-, z2), Pre1)o, s, 2 €1,
provides a function @ € H(I) with

(@, Papa)o,r =0, @2 € C5°(I)

(use again the Fubini theorem). Thus, by standard elliptic regularity theory and
uniqueness follows @ = 0. Since w(-, 1) € H,(I), equation (2.11) analogously implies
w = 0.

Now let u € H"!

mix

(I*) with y;u = 0. Then, since b(-,-) is obviously H(l)’f (I%)-

elliptic, there exists a unique @ € H(l)”lmm(ﬂ) with
b(it, §) = b(u, 9), &€ C&°(I*).
Because v (u — ) = 0 we must have u = 4, i.e. u € H(lilmm(ﬂ). ]

The characterization (2.10) allows to prove our final Sobolev space tensor product
result.

THEOREM 3. For ri,ry > 1 € N holds

(2.12) (Ho(I) N H™ (I)) @ (Ho(I) N H™ (I)) = Ho(I*) N Hyl* (I7).

mix

Proof. Theorem 2 shows

e

0,miz

(1) N (1) = {u € I (1) | = 0)
Since H! (I*) — H L (I?) the well-known fact
Hy(I?) = {u € H'(I?) | yiu = 0}

implies (2.12). ]



3. Complexity estimates and Applications. So far we have considered ten-
sor products of a couple of Sobolev spaces. Corresponding results hold for tensor
products of any finite number of Sobolev spaces. Thus we may apply our results to
the more general class

H"(R™) := {u € L*(R") |

lulles = (30 TI0+ D0+ Kloo) | Fu®)?) * < o0}, 4,020

keZnmi=1

=

and to the corresponding spaces on domains. Note that the (standard) isotropic
Sobolev spaces and the spaces of dominating mixed derivatives are special cases for
t = 0 and [ = 0, respectively.

Crucial for our approach are the observations

Ht’l(Rn) — Ht]:+le1 (Rn) n...Nn ,Ht1+len (Rn)’

mix mix

where HY, (R") :== H"(R)® ...®@ H'(R) for r = (r1,...,7,) > 0, ¢; the i-th

unit—vectgllfxin R™ 1={1,...,1}, as well as
HYY (MY N HY(I™y = (HY (D) nHY(D) @ (HY(I) N HY(D) ® ... (HY(I) N HA(I))
N...nHONHND) ... (H(I)n Hy(I) @ (HT (1) N HY(I)).

3.1. Approximation properties and complexity estimates. Let us sum-
marize the approximation properties of our approximation spaces VJT from (2.1).
Now we require that our basis functions have approximation order m and that S; C
H{(I),0 < r < m, compare subsection 2.1.

As an example consider the case of piecewise linear splines. We assign the nodal
basis function to each grid point in one dimension in the respective finite element
space that takes the values 1 at that grid point and 0 at the others, i.e. ¥;r(z) :=
@ (2j_1;1: — k) , where

b(z) = 1—|z| forze(-1,1),

0 else.

Then we have m = 2 and r = 3/2 — ¢ for € > 0.
Let scR,s<r, l,t R}, s<t+!<mandlet u= ijj € H:H(IM)yn HE(I™)
with w; € Wj. Assume that the following estimate holds:

Jwjll e < 207t ]| e v € T
Application of the triangle inequality then yields
inf |lu—v||lg: < wi||lgs < wil|ge < 2(s=Dlileo =3l ) 1y e
ol [l = vl <] Z:T il < X:T llwsllm- < 2; el e
JQIJ JQIJ JQIJ
Now a straightforward estimate of the sum ij? 205 =Dlilee=tlil1 shows

o(s—l—t+(Tt—s+1) 2=L

n

) -t for T > st;l,
2(s=i=t)J for T < st;l
10
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FIGURE 3.1. Order of approzimation for s = 1 and the spaces H%2, HY! and H?O (left to right)

Inequality (3.1) states that the approximation power of the spaces VI with T <
(s — 1)/t is the same as that of the full grid space V. For approximation spaces
with T' > (s — [)/t the order of approximation deteriorates. Note that in the case of
stable splittings and at least for the parameter range ¢ 4+ [ < r the logarithmic term
J"~1in the first inequality in (3.1) can be omitted, see [17].

Let AV denote the number of degrees of freedom in the approximation space V7.
Now we combine (2.3) with (3.1) and obtain

N0 ]| ges for 0 < T,T < 3¢,

s—l—t
N : - s=l
3.2)  inf flu—vllm <1n(/\f)”—1> l[u|lgea  for T=0,T < =,
’UEVJ

s—i—t T—n

N T 71 |ul| e for T<0,T< st;l,

s—i1—1

N7 ||l gen for T = —oc.

From the requirement inf, ¢y 7 [|u—v||gr= < € we then obtain the following: If T' < st;l,
then the spaces V7 contain

e5=1=1 for 0 < T,
(3.3) v< )T et for =0,
Y| ern for —oo < T <0,

€511 for T = —oo.

grid points to obtain an accuracy e.

To visualize the implications of (3.2) and (3.3) we plot the negative exponents
on the right hand side of (3.2) (where we disregard logarithmic terms) times the
dimension n. Figure 3.1 shows these exponents against T for various dimensions
n and various smoothness assumptions. These Figures show the dependence of the
order of approximation from the dimension n and from the parameter 7. Specifically
for the space H%? the order of approximation deteriorates with larger dimension
showing the intractability of higher dimensional problems. However, for the case
H?? of dominating mixed smoothness there is an interval (0, 1/2] where the order of
approximation is independent of the dimension n.

3.2. Application to Poisson’s equation. As an application to elliptic bound-
ary value problems let us consider the Poisson equation with homogeneous Dirichlet
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boundary conditions in its variational form on H}(I™). Let u € H}(I™) be the unique
solution of

(3.4) (Vu, Vo) = (f,v), v€ HI")

and u7 its Finite Element approximation in V7.

Sufficient conditions on the data f, which provide u € H%!(I") may easily be
obtained by taking into account the spectral representation. It is known, that f €
Ly(I™) with f(x) =" _ (k1. ankH? 1 sin(mk; ;) such that (fk)keNn € (* gives
the solution u(x) = Zk (1yoenskin) €N u I} sin(wk;z;) with ux = W Clearly,

S e ey (1 + ki) **(1 + |k|00)21|uk|2 < oo implies u € HB(I"), which in turn
provides a condition on the data f.

Estimates of the approximation error in the energy-norm using our approximation
spaces (2.1) as test and trial spaces in the finite element method are easily obtained
from (3.1) via the best approximation property of the finite element solution. If
ue HH (1), t,1 € RE, 1 <t+1<m,r> 1, then we obtain

o(1—l—t+(Tt—141) 2= )JJn 1 forT>

3.5 u—uy||lp < _

CR I R R r e
Unfortunately, best approximation results do not directly carry over to estimates in
other norms than the energy-norm. However, from (3.5) together with the Lemma of

Nitsche and the fact that V> C VJT with K = ﬂ%%n—_ll we obtain

56 el < S(1=1=O (IR Tt L) 20T g s, 1t
. U—Ugl|Ly S

9(1—l=t)(1+3=F)J for T < T_

In several places in the literature [7, 9] it has been observed numerically that for
smooth solutions, i.e. u € C*, and piecewise linear splines as basis functions, the
error w.r.t. the Ly-norm behaves like 2727 J7~1. This has to be compared with the
weaker result 2~ (1+1/7) from (3.6).

We already mentioned in the introduction that for a large range of problems
there exist trial and test functions, such that a finite element discretization leads to
stiffness matrices whose condition number is bounded independently of the number
of unknowns in the finite element approximation space. Therefore it is quite natural
to ask for multilevel additive Schwarz preconditioners for the approximation spaces
VI similar to the standard BPX schemes described in [6, 27, 40]. To this end let
R;,j € Ng, be the tensor-product partition of the unit square with uniform stepsize
2-7i into the i-th coordinate direction and let Vj denote the space of multilinear finite
element functions with respect to R;. Then the BPX-type preconditioned operator

. ) ,
Poexe= 2 25y g v
J 1

for the Poisson problem on the unit square, does not lead to a spectral condition
number that is independent of the number of levels, as in the non-tensor-product case
[6]. The sum ), is over all pairs ji in the index set of the (anisotropic) full grid
space Vj. For example for the index set 17 in 2D a condition number of O(J?) has
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been shown in [18]. However, this condition number can be slightly improved. The
splitting

LK] J

Vi=> Vi + > > Vi,
=0

I=[KT {JeIT: j+1¢17 & |jleo=1}

again with K = ﬂ%%n—_ll (note that then Vi * C V) leads to the operator

LK]

3 a(u, Ya,..0).)
P — . areet )y i
et ; 21: 22 (1, 1), is (1, 1) i) Lo Vit

J CL(U, 1/;1) .,
+ Z Z Z (DD 22|jk|)(J¢ji’ V)L, Vi1, u€ VJ.

I=[K1  {JelT: j+1¢17T & |jleo=l} 1

The fact that the number of subspaces Vj involved in the last sum is bounded by
J"~2 shows then that the spectral condition number of this operator is O(.J"~?) for
T € (—00,1). The proof is a simple generalization of the proof for the case of V
in 2D from [18] (compare equation (20) in [18]) to our more general approximation
spaces and to arbitrary dimensions.

Optimal preconditioning can be obtained for example via wavelet preconditioning
and multigrid methods. This has been described in detail in [19, 28] for the space V;
and can be tuned for other values of T.

For differential operators it is important to note that one need not assemble the
stiffness matrix, because all that is required in an iterative scheme is the application
of the preconditioned stiffness matrix to a vector. Any efficient implementation must
avoid the explicit construction of the stiffness matrix, which would be more densely
populated than the usual finite element stiffness matrix using nodal (non-hierarchical)
basis functions. Instead, because of the tensor-product structure of our basis func-
tions, the action of the stiffness matrix on a function or the corresponding vector can
be performed by the application of certain sparse operators, mapping a representation
with respect to the multilevel nodal basis to the standard nodal basis representation.
This has been explained in detail in [7, 19] for the spaces V? working with hyperbolic
cross points and the full grid approximation space V;* and can be easily modified
for other values of T. Then the cost of one matrix vector multiplication is of the or-
der O(dim(V})). Hence, together with optimal preconditioning and nested iteration,
the overall cost of computing an approximation to the solution of the problem (3.4)
within discretization accuracy is O(dim(IF)), compare [21]. This together with (3.5)
and (3.2) tells us that an e-approximation of u € H%! (I") N H (1) with I < 1,¢ > 0,
may be obtained with a cost of O(el—}——i). Specifically for u € H'F51=9 ()N HJ (I™)
we have s =1 > [ =1 — 4. Hence we obtain O(eﬁ) = O(emﬁhm) =O0(eh).
This implies the following Corollary.

COROLLARY 1. Let the solution uw € HY(I") of (3.4) fulfil w € H51=9(1") N
HY(I™) with 0 < § < 1. Then the solution can be obtained up to an error of € in the
energy norm with a cost of cost(e) = O(e~1).

This includes a result of [9] for the case u € H*O(I")NH{(I"™). There the authors

use index sets that are asymptotically equivalent to 13/5‘
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1)1 =il 1

FIGURE 4.1. Index sets I and I{-5 (grey) and coefficients rj # 0 from the sum (4.2), 2D case.

4. Blending schemes, Combination technique. Our approximation space
VJT is associated with the grid point sequence

(4.1) ST = Ujerr Sj,

where the S5 := {(a12_j1, ey @270 @ =0,...,27 — 1,1 <0 < n} are anisotropic
full grids. Definition (4.1) indicates the possibility of constructing our approximation
spaces as sums and differences of simpler spaces via blending schemes in analogy to
Smolyak’s blending scheme [31].

To see this, let ul = Y jerr wi, wj € Wy and uy = o) s wk for j € IT. Hence
J =
u? € VI and uj € Vj := @Di<; Wk Then it holds

n—1
(4.2) ur = Z rju; with r; = Z(—l)k Z 1
jeIT:r;£0 k=0 {L1=4+T ;e pr 1 €17,

MC{1,...,n},|M|=k}

For a proof write w; from Wj as sum and difference of elements uy = Ek<j wj from
the spaces Vi, k < j, plug the result into u? = Zje]}” wj, collect equal terms in the

sum and exploit the fact that rj = 0ifj+ 1 € 7.

That is, every element u”} from V7 can be written as a weighted sum of approx-
imations from anisotropic full grid approximation spaces and the coefficients of the
multi-scale representation of u” follow directly from the coefficients of the multi-scale
representation of the functions u; € Vj. Figure 4.1 shows some examples for the index
sets 17 and the corresponding coefficients rj in the two-dimensional case. A short
consideration shows that the number of grid points of the anisotropic grids Sj that
are used in the blending scheme for V7 is of the same order as dim (V] ).

In the case that the exact uj are not available, we can still compute an approxi-

mation to u? via some approximations

(43) ﬂj = E Z C];1111/)m1

m<jlemm

of the uj. Here 7; is the index set defined from the subdivision rate of successive
refinement levels. We can use

T 3 =
UJ I TjUJ
JEIT5+1gIT
14



SRR DIPIT M

jeIT:j+1¢1? m<jle€rm

=2 2 2 i | Y

mEI? leTm jeI?:j+1€I’5,m§j

Hence we have for the coefficients du of v} = Emeﬁ Y aer,, Qm1Pmi

(4.4) PEREN 3 ry .

JEIT:j+1¢IT m<j

Now the following algorithm may be used for the approximate solution of (3.4)
in VF.

ALGORITHM 1. (Combination solution of Laplace equation)
1. Solve the variational problem (3.4) with respect to the Finite Flement spaces
Vi, € IT,7; # 0. This results in the coefficients c];nl of the functions uj € Vj
2. To obtain an approzimation to u? combine these coefficients according to

(4-4)-

In this algorithm the solution procedure is performed only with respect to regular
anisotropic grids. Optimal solvers are then easy to obtain via Multilevel-precon-
ditioners or multilevel methods using anisotropic refinement (semi-coarsening) [32].
The solution procedures on the anisotropic grids are completely independent of each
other and can therefore be computed in parallel. Note that this algorithm can be
implemented in a dimension recursive way.

Examples for the use of this algorithm for the approximate solution of the Laplace-
equation in the spaces V} can be found in [25, 29, 42]. In [8] and [29] corresponding
error estimates are given.

5. Numerical example. We describe a numerical example that highlights our
theoretical results. In particular we consider the solution of the Poisson equation

—~Au = f inQ=][0,1]%
u = g on 99.

Based on piecewise bilinear splines, we use the spaces VJT as trial- and test-spaces
within the Finite Element method and we employ the blending schemes from section 4.
A Galerkin discretization scheme is used on each regular grid that contributes to the
blended global solution. The error is measured in two discrete norms that correspond
to the Ly- and H'-norm. For the evaluation of the norms we use the grid points of
the full grid of the current level plus one. The discrete Ly-norm is computed from
the sum of the squared values at the grid points and the H'-norm is analogously
computed via application of the discrete Laplacian on the full grid. All the Figures
show the error with respect to the number of grid points that are used in the blending
scheme (including the points on the boundary).
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We consider three test cases with different right hand sides f and different Dirich-
let boundary values g, such that the solution u is given by

D gy = { O Pt

0 else
2) u(z1, z2)= sin(mz)sinh(mwz,)

3) u(r,¢) = e

The resulting convergence orders obviously depend on the approximation order of
the bases and smoothness properties of the solutions u. Figure 5.1 shows graphs of the
errors against the number of degrees of freedom. The Figures show the dependence
of the convergence orders from the parameter T and verify our theoretical results.
Specifically the superiority of the full grid approximation space for test case 1 and the
superiority of sparse grid constructions for the other two cases is verified. A proper
choice of the parameter T may lead to algorithms with lower cost than the choice
T = 0, compare example 3 Figure 5.1 bottom right.

Numerical results for the interpolation of the functions 1-3 gave qualitatively the
same results.
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