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Chapter 1

Introduction

Anomaly detection is one of the main goals of data science. It is the attempt to
detect the data points with substantial variations from the norm in a data set
[MMH17]. Depending on the type of the data set under inspection, an anom-
aly could indicate different events, for example, an anomaly in a bank account
transactions could indicate a theft or a fraud. On the other hand, in the case of
vibration spectra an anomaly could indicate the presence of a mass imbalance.
From a statistical point of view the data is assumed to follow a certain distribu-
tion. Fitting a model to this distribution, anomalies could then be identified as
data points that don’t fit well to the model [ZS17].

The data used in this project is from Blade Control for wind energy plants(WEP),
where each WEP has 6 sensors, 2 on each blade to record edge-wise and flap-
wise vibrations. The data is given in the form of spectra, i.e. the Fast Fourier
Transform is already calculated for the time domain vibrational amplitudes.

The data used in this project was grouped in two sets:

1. 25 WEP Data Set
This data set includes spectra for low vibration frequencies for 25 WEPs.
The measurements were recorded over 4 years using two sensors for each
blade to record edge-wise and flap-wise vibrations. The data set was used
for explorative analysis of Campbell diagrams.

2. Anomaly Data Set
This dataset includes spectra for high vibration frequencies for 1 WEP. The
measurements were recorded over 7 months and an anomaly was reported
at the end of the fifth month. The WEP was then turned of to fix the
damage and was restarted again with different operation conditions. This
data set was used to investigate the possibility of using Campbell diagrams
as features for anomaly detection.

Due to the large number of spectra and the high noise levels in them, the
attempt to fit a model for a single spectrum is very complicated, especially
when the important features characterizing the spectra are not clearly defined.
Figure 1.1 shows a single spectrum of a vibrational frequency across time, it
gives an insight on how irregular the spectra could be, for example, the real
peaks can’t be distinguished from noise artifacts.
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Figure 1.1: A spectrum of a single vibrational frequency.

Spectrograms (intensity plots, usually in a logarithmic scale, of a collection
of spectra [Smi15]) are then plotted, where the x�axis is the rotational frequen-
cies of the blades and the y�axis is the vibrational frequencies. For a rotational
structure these spectrograms are known as Campbell Diagrams. Campbell dia-
grams increase the signal to noise ratio and eliminate the main source of spec-
tral variations, the rotational frequency. These were the main motives to study
Campbell diagrams as the starting point for anomaly detection.

The main features in the Campbell diagrams are horizontal and diagonal
straight lines which form from the alignment of the important peaks of differ-
ent spectra. However, the noise in the spectra also contributes to the collective
spectrograms, resulting in fake peaks and artifacts in the Campbell diagrams.
This made the traditional edge detection operators not useful. The first re-
search topic this thesis examines, is line extraction from Campbell diagrams
using Radon transform and Hough transform.
Campbell diagrams, along with the results of adjusted line transforms, were then
visually analyzed in order to investigate which features or lines could be used
for anomaly detection, which is the second research topic of this thesis.

Chapter 2 introduces the theoretical and mathematical background. It gives
a quick overview of the vibrational analysis of wind turbines and Campbell dia-
grams; it also explains the principles of traditional edge detectors and the math-
ematical formulation of Radon and Hough transforms, which will later be used
for line detection in Campbell diagrams. Finally, it presents a brief overview on
wavelet transform which will be used in the anomaly detection method.

Chapter 3 presents the process of detecting the horizontal and diagonal lines
in Campbell diagrams. First, the effects of noise on traditional edge detection
operators are discussed. Then, Radon transform was proposed as a line detec-
tion method that is more robust against high noise levels. Changes were then
applied to Radon transform in order to make it more suitable for line detection
in Campbell diagrams. Finally, Hough transform is also proposed as a suitable
line detection method after applying some adjustments to it.

Chapter 4 presents the analysis of Campbell diagrams for the two datasets.
For the first data set, explorative analysis was done to roughly determine the
shortest time period to produce useful Campbell diagrams and to visually explore
the interesting phenomena in the Campbell diagrams and the potential features
that could be used for anomaly detection. For the second data set, the passibility
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to use the results of the adjusted Radon and Hough transforms as features for
early damage detection in a wind turbine using wavelet transform was explored.

Finally, chapter 5 presents the conclusion and future recommendations for
using Campbell diagrams as features for anomaly detection.
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Chapter 2

Background

2.1 Vibration Analysis Of Wind Turbines

The slender and elastic construction of modern wind turbines makes them ex-
tremely prone to vibration [Hau13]. Vibration analysis of wind turbines aims for
identifying the most dangerous rotational frequencies, at which resonance occurs;
hence, ascertain the dynamic stability within the permissible range of operation
frequencies. Vibrational complications in wind turbines can originate in many
parts of the structure. For example, the slender rotor blades are subjected to
aeroelastic influences. Also, the whole structure, i.e. the rotor/tower-system,
can vibrate.

The vibration of the whole system, or some of the subsystems, is triggered
by internal or external Excitation Forces.
Some of the external forces(cyclically alternating forces) are :

• Mass imbalances of the rotor, which can happen due to manufacturing
defects in the rotor blades, or due to accumulation of ice on the blades.

• Tower wind shadow effect, which is the shock impact on each rotor
blade upon passing by the tower, as in that instant the wind current,
perpendicular to the rotor blades, abruptly vanishes.

Examples of internal forces are:

• Meshing Gear Frequencies, which result from imperfect or broken teeth
within the gear boxes.

• Electrical Grid Oscillations, when grid feed lines are excessively long.

Some of the previous events are inevitable, for example, the tower wind shadow
effect will always exist as long as the blades are rotating, implying that eventually
the wind turbine will be excited into vibrational motion.

Each subsystem of the wind turbine has some Natural(Eigen) Frequen-
cies. If the system was excited at these frequencies, resonance occurs. The
most important step in vibration analysis is to make sure that, inside the op-
eration range of the wind turbine, an excitational force does not excite one of
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the systems natural frequencies. However, not all the correspondences between
the excitational forces and the natural frequencies are equally dangerous. If the
excitation frequency coincides with the natural frequency of a mode(subsystem)
that is completely uncoupled with it, no resonance actually occurs. In other
cases, the resonance can be very weak that the damping forces of the system can
be sufficient to avoid any damage [Gen09]. Rotational frequencies at which an
excitation force coincide with a natural frequency are called Critical Frequen-
cies.

2.2 Campbell Diagrams

Normally the vibrational analysis of a rotor is performed under the assumption
of constant rotational frequency, or at least constant average value. However,
natural frequencies of a deformable rotor or, more generally, a deformable struc-
ture containing the rotor, can vary with the rotational frequency. As a result, the
system response is summarized in a plot of the natural frequencies as functions
of rotational frequencies [Gen09].
A rotor is also susceptible to external and internal excitation forces which are
plotted as diagonal lines passing through the origin. The complete plot of the
system response, including both natural frequency lines and excitation forces,
is called the Campbell Diagram of the system. Fig.2.1a shows an idealized
Campbell diagram, where the x � axis is the rotational frequency(Hz) and the
y � axis is the vibrational frequency(Hz).
Campbell diagrams are line-based diagrams, the presence of certain lines with
certain slopes, or a shift in the lines locations, indicates the occurrence of cer-
tain phenomena. Nevertheless, one phenomenon can result in more than one
line, with slopes that are integer multiples of each other. These are known as
Harmonics.

In the case of wind turbines, the eigen frequencies of the structure are nearly
constant with respect to the rotational frequency, therefore, they are plotted as
horizontal lines while the excitation forces are plotted as diagonal lines passing
through the origin, with different slopes depicting different triggering factors.
Diagonal lines that are due to external factors occur at slopes of integer multiples
of the rotational frequencies. For instance, lines due to mass imbalances of the
rotor blades have slopes of 1P(per revolution), while lines depicting the tower
wind shadow occur at slopes of nP(where n is the number of rotor blades of the
wind turbine). The data used in this project is measured from a 3-blade system,
so these lines occur at slopes 3P, 6P, ... . On the other hand, diagonal lines due
to internal factors have higher slopes; the meshing frequency lines have slopes
dependent on the number of teeth in the gears.
Critical frequencies in a Campbell diagram are frequencies at which a diagonal
line intersects with a horizontal line; in fig. 2.1a, the first meshing gear frequency
excites the system second eigen frequency inside the operation range. One of the
major disadvantages of the Campbell Diagrams is that they don’t differentiate
between important(dangerous) intersections and non important ones.

Typically a Campbell diagram is plotted after the analysis of the system.
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First, the natural frequencies of the structure and the excitation forces are ap-
proximately calculated, then they are reported on the plot known as Campbell
diagram. In this project, Campbell diagrams are plotted using real spectra meas-
ured from vibrational sensors.
Figure 2.1b shows a Campbell diagram plotted using the real measuring data,
where the white regions are missing measurements at the corresponding rota-
tional frequencies. It is clear that the Campbell diagram generated from real
spectra is very noisy and the lines are not clear, which makes line detection a
more challenging problem.

Rotational Frequency(Hz)

Vi
br

at
io

na
l F

re
qu

en
cy

(H
z)

1P
3P
First Meshing Freq
1st Eigen Freq
2nd Eigen Freq
Operation Range

(a) Idealized Campbell diagram.

Rotational Frequency(Hz)

Vi
br

at
io

na
l F

re
qu

en
cy

(H
z)

(b) Real Campbell diagram.

Figure 2.1: Campbell Diagrams.

2.3 Edge Detection

Edge detection is the process of defining the boundaries between different areas
in the image. Edges could also be the contours that define geometric shapes.
In digital images, edges are set of pixels, where abrupt changes in the color
intensity take place that result in critical points in the gradient of the intensity
function of the digital image at those pixels or a zero crossing in the second order
derivative of the same function . Most traditional edge detectors are based on
those two principles [?].

Let the intensity of the image at each pixel px, yq be given by the function
fpx, yq, where x and y are the rows and columns respectively. The gradient then
can be estimated using the finite difference method:

Bf
Bx � lim

hÑ0

fpx� h, yq � fpx, yq
h

Bf
By � lim

hÑ0

fpx, y � hq � fpx, yq
h

8



which can be approximated by:

Bf
Bx u

fpx� h, yq � fpx, yq
h

|h�1 � fpx� 1, yq � fpx, yq (2.1)

Bf
By u

fpx� h, yq � fpx, yq
h

|h�1 � fpx� 1, yq � fpx, yq (2.2)

Another approach for approximating the gradient is using a convolution ker-
nel, the image is convolved with a mask(matrix) that has the same effect as
eqs. (2.1) and (2.2):

Bf
Bx u

�
�0 0 0

0 �1 0
0 1 0

�
� �

��1
1

� Bf
By u

�
�0 0 0

0 �1 1
0 0 0

�
� � ��1 1

�

Some examples of the gradient based edge detectors:

1. Roberts Edge Detector
It implements Roberts Cross Gradient Operator:

Bf
Bx � fpx� 1, y � 1q � fpx, yq
Bf
By � fpx, y � 1q � fpx� 1, yq

or using the convolution mask:

Bf
Bx �

�
�0 0 0

0 �1 0
0 0 1

�
� �

��1 0
0 1

� Bf
By �

�
�0 0 0

0 0 �1
0 1 0

�
� �

�
0 �1
1 0

�

Roberts edge detector has the shortest support which makes it very prone
to noise and can only detect sharp edges; however, it detects the edges’
position with high accuracy.

2. Prewitt Edge Detector
This edge detector has a longer support so it is more robust against noise,
but it detects the edges’ positions with lower accuracy.
The Partial derivatives are calculated by:

Bf
Bx � pfpx� 1, y � 1q � fpx� 1, yq � fpx� 1, y � 1qq

�pfpx� 1, y � 1q � fpx� 1, yq � fpx� 1, y � 1qq
Bf
By � pfpx� 1, y � 1q � fpx, y � 1q � fpx� 1, y � 1qq

�pfpx� 1, y � 1q � fpx, y � 1q � fpx� 1, y � 1qq
or using the convolution mask:

Bf
Bx �

�
��1 �1 �1

0 0 0
1 1 1

�
� Bf

By �
�
��1 0 1
�1 0 1
�1 0 1

�
�
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3. Sobel Edge Detector
The only difference between the Sobel operator and the Prewitt operator
is the weight of the center coefficient(which is 2 in the Sobel operator and
1 in the Prewitt operator). This gives the Sobel operator better noise
suppression characteristics [Cha05].
The partial derivatives are calculated by:

Bf
Bx � pfpx� 1, y � 1q � 2fpx� 1, yq � fpx� 1, y � 1qq

�pfpx� 1, y � 1q � 2fpx� 1, yq � fpx� 1, y � 1qq
Bf
By � pfpx� 1, y � 1q � 2fpx, y � 1q � fpx� 1, y � 1qq

�pfpx� 1, y � 1q � 2fpx, y � 1q � fpx� 1, y � 1qq

or using the convolution mask:

Bf
Bx �

�
��1 �2 �1

0 0 0
1 2 1

�
� Bf

By �
�
��1 0 1
�2 0 2
�1 0 1

�
�

Sometimes the image is convolved with a Gaussian kernel first, to decrease the
effect of noise before calculating the gradient of the image, BpG�fqBx , but since both
operations are convolutions, and convolution is associative, the derivative kernel
is first convolved with a Gaussian kernel and the resultant is then convolved with
the image, f � pBGBx q, [FP12].

Another edge detection algorithm is Canny, which uses a multistage al-
gorithm to detect wide range of edges in images [SKN16]:

1. Smooth the image with a Gaussian filter.

2. Compute the gradient magnitude (using one of the previous operators).

3. Edge thinning by applying non-maximum suppression.

4. Apply double threshold to determine potential edges.

5. Track edges by hysteresis.

The operator used in the type of edge detectors based on the second prin-
ciple, the presence of a zero crossing in the second order derivative, is called
Laplacian of the Gaussian(LOG) operator. The Laplacian operator is applied
to the Gaussian kernel, to smooth any discontinuities, and the resultant kernel
is convolved with the image. The pixels which have a zero value are considered
edges. Figure 2.2 shows an example of a 1-D edge and the result of applying
different operations on it.
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Figure 2.2: 1-D noisy edges, applying a gaussian filter to eliminate noise and
calculating the first and second derivatives to detect the edges.
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2.4 Radon Transform

2.4.1 Integral Transform

An Integral transform is a mathematical transform, that maps a function from
its original domain to another domain, where it becomes easier to manipulate or
solve. After performing the necessary operations on the function, the solution
may be mapped again to the original domain using the Inverse transform [int].
The equation

gpxq �
» b
a
Kpx, yqfpyqdy

is called a Fredholm Equation of the First Kind or an Integral Transform.
The bi-variate function Kpx, yq is called the kernel function of the integral trans-
form and is assumed to be defined and continuous on a ¤ x ¤ b and a ¤ y ¤ b
[RHB06]. An example of integral transforms, is the Laplace Transform which
maps a function from time domain (t) to frequency domain (s). In Laplace
transform the Kernel function is Kps, tq � e�st and the integration limits are 0
and + 8 where:

Lfptq �
» 8
0
fptqe�stdt

2.4.2 Straight Line Parametrization

A straight line in R2 can be defined by the equation y � mx � b, where m
is the slope of the line and b is the y � intercept. However, a problem arises
with this representation, the slope of a vertical line approaches infinity. Another
representation is ρ � x cospφq � y sinpφq, where ρ is the norm from the origin to
the straight line and φ is the angle between this norm and the p�veq x� axis.

Consider a straight line L in the xy plane with norm=ρ and angle=φ, rotating
the xy coordinates by angle φ, where the new coordinates are called ρ and s
respectively, fig. 2.3.
Expressing the old coordinates px, yq in terms of the new ones [Dea07]:

x � ρ cospφq � s sinpφq (2.3)

y � ρ sinpφq � s cospφq (2.4)

2.4.3 Radon transform Definition

Radon Transform was introduced in 1917 by Johann Radon [Rad86].

Theorem 1 For all real points P=rx, ys let fpx, yq be a real function satisfying
the following regularity conditions:

1. fpx, yq is continuous;

2. The double integral, » » | fpx, yq |a
x2 � y2

dxdy (2.5)

extending over the whole plane, converges;
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Figure 2.3: Rotating the original coordinates by φ.

3. For an arbitrary point P=rx, ys and each r¥0
let

f̄pprq � 1

2π

» 2π

o
fpx� r cosφ, y � r sinφqdφ

so that for a point P
lim
rÑ8

f̄pprq � 0 (2.6)

Then the following statement holds true: The straight line integral value of f
along the line defined by the equation ρ � x cospφq � y sinpφq is given by

F pρ, φq � F p�ρ, φ� πq �
»
L
fpx, yqds (2.7)

where ds is the increment along the line L. Using the transformation eqs. (2.3)
and (2.4), eq. (2.7) becomes

F pρ, φq �
» 8
�8

fpρ cospφq � s sinpφq, ρ sinpφq � s cospφqqds (2.8)

and exists almost everywhere; this means that on every circle the set of tangency
points of all tangents for which F does not exist, has a linear measure of zero.

The assertions of Theorem 1 follow from known properties of absolutely conver-
gent double integrals, which ascertain the existence of Radon transform at every
point in the Campbell diagrams. However, they were never tested in our case
because the amplitudes of the Campbell diagrams used vanish outside a certain
range.

Now it can be deduced that 2-D Radon transform is a transform the maps a
function f from 2-D space to the parametric space of straight lines. Figure 2.4
shows a graphical representation of the transform, where each line integral in
the 2-dimensional space maps to a point in the radon space.
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Figure 2.4: A line integral in the R2 domain maps to one point in the Radon
space.

2.5 Hough Transform

Any mapping between two spaces can be approached from two perspectives.
The first one is calculating the value of a point in the destination space from the
source space, this is the approach used by Radon Transform (Line to Point
Transform), where each line integral in R2 is the value of a point in the Radon
space. The other perspective is calculating the contribution of each point in
the source space to the value of all points in the destination space. This is the
approach used by Hough Transform [GHV04].

Hough transform was originally used for line detection in binary black and
white images. Like Radon, Hough transform is also a mapping function from the
image space to a parametric line space. It also uses the same line parametrization
used by Radon transform, that is each straight line is represented by the equation

ρ � x cospφq � y sinpφq (2.9)

where ρ is the normal distance between the line and the origin, while φ is the
angle between this norm and the p�veqx� axis.

At any pixel in the image the values of x and y are already known, while
ρ and φ that satisfy eq. (2.9) are the unknown parameters we are looking for,
where all the satisfying (ρ,φ) pairs, map to a curve in the Hough space, fig. 2.5
(Point to Curve Transform). Also the curves of collinear points in the image
space intersect at one point (ρ,φ) in the Hough space, fig. 2.6, [hou].

The transform is calculated by quantizing the Hough space to discrete values
of ρ and φ forming a 2-D accumulator. For each non zero pixel px, yq in the
image is discretized (ρ,φ) curve, then all the accumulator cells along this curve
are incremented by one. Cells with high values in the accumulator indicate the
presence of the corresponding line in the image, fig. 2.7.

Hough transform can be generalized to detect other shapes; Hence, it is more
generic than Radon transform. For example, it can be used to detect the presence
of circles using the parametric equation

px� aq2 � py � bq2 � r
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Figure 2.5: A point in the image space maps to a curve in the Hough space.

0 20 40 60 80
x-location

0

20

40

60

80

y-
lo

ca
ti

on

Image

-90 -72 -54 -36 -18 0 18 36 54 72
Angle( )

0

50

100

150

200

250

N
or

m
al

D
is

ta
nc

e(
rh

o)
Hough Transform

Figure 2.6: Collinear points in the image space intersects at a point in the Hough
space.

where pa, bq is the centre of the circle and r is its radius. In this case the
accumulator has three coordinates pa, b, rq.
Hough transform can be further generalized to extract features that do not have
simple parametric equations, in this case a look up table is used to define the
relationship between the boundary positions and orientations and the Hough
parameters.

2.6 Wavelet Transform

2.6.1 Fourier Transform and Short Time Fourier Transform

Fourier transform and its inverse are defined as:
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Figure 2.7: Hough Transform of an image. Lines in the image space maps to
pixels with high intensity in the Hough space.

F pωq �
» 8
�8

fptq expp�jωtqdt (2.10)

fptq � 1

2π

» 8
�8

F pωq exppjωtqdω (2.11)

Where F pωq is the Fourier transform of the signal fptq.
Using the identity:

exppjkθq � cospkθq � j sinpkθq (2.12)

eq. (2.11) becomes:

fptq � 1

2π

» 8
�8

F pωq cospωtq � j sinpωtqdω (2.13)

Fourier transform F pωq of a signal can then be seen as a function describing the
contribution of sines and cosines to the construction of the original time domain
signal. The time independence of the basis functions of the Fourier transform
results in a signal description purely in the frequency domain, which makes it
ideal for analysis of stationary signals whose statistical properties do not evolve
over time [BM94].

For the analysis of non stationary signals a function is required that trans-
forms a signal into a joint time-frequency domain. Such a description can be
achieved using short time Fourier transform(STFT) defined by:

STFT pτ, ωq �
»
sptqgpt� τq expp�jωtqdt (2.14)

which is the Fourier transform of the signal sptq, previously windowed by the
function gptq around the time τ .
As the window function is shifted in time over the whole signal and consecutive
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overlapped transforms are performed, a description of the evolution of signal
spectrum with time is achieved. However, as the length of the time window
decreases to produce better time resolution, the frequency resolution also de-
creases(the uncertainty principle [BM94].).

2.6.2 Wavelet Transform and STFT

In eq. (2.10) the function exppjωtq is called the basis function. In STFT the
basis function is gpt� τq expp�jωtq. Thus eq. (2.14) can be written in a general
form in terms of the basis function Kτ,ωptq and the signal sptq:

STFT pτ, ωq �
»
sptqKτ,ωptqdt (2.15)

The Wavelet Transform(WT) has the same concept as STFT except with
different basis functions. The basis of the STFT are sines and cosines, which
extend to infinity in time. However, the basis of the wavelet transform has
compact support in time which makes them better in representing signals which
has features with high amplitudes in short time.
Wavelet transform can also be described in terms of its basis function eq. (2.16):

ψj,nptq � 1?
2j
ψp t� n

2j
q (2.16)

where 2j is the scaling factor and n is the time shift factor. Using eq. (2.15):

WT pn, jq �
»
sptqψj,nptqdt (2.17)

From eq. (2.17) it can be seen that the WT performs a decomposition of the
signal sptq into a weighted set of scaled wavelet functions ψptq.

The WT employs a set of basis functions that are scaled versions of a single
”mother function”, where wavelets at high frequencies are of limited duration and
wavelets at low frequencies are relatively longer in duration. These variable win-
dow length characteristics are suited to the analysis of signals containing short
high frequency components and extended low-frequency components, which is
often the case for signals encountered in practice.

2.6.3 Wavelet Transform and Multiresolution analysis

The approximation of a function f at a resolution 2�j is specified by a discrete
grid of samples that provides local averages of f over neighbourhoods of size
proportional to 2j .The approximation of a function f at the resolution 2�j is
defined as the orthogonal projection PVjf on Vj .
Adapting the signal resolution allows one to process only the relevant details for
a particular task [Mal09].

Multiresolution approximations are entirely characterized by a particular dis-
crete filter that governs the loss of information across resolutions. These discrete
filters provide the procedure for designing and synthesizing orthogonal wavelet
basis.
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For f PL2pRq the partial sum of wavelet coefficients
°�8
n��8   f, ψj,n ¡ ψj,n

can be interpreted as the difference between two approximations of f at the
resolutions 2�j�1 and 2�j .

Thus discrete wavelet transform serves as a decomposition method of signals
at different resolutions, as the resolution increases, more fine and sharp details
in the original signal are captured.
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Chapter 3

Line Detection

As mentioned before, the main features in the Campbell diagrams are straight
lines. This proposes that an anomaly most probably will appear in the Camp-
bell diagram in the form of some changes in the lines. The first research topic
this thesis examines, is line extraction from Campbell diagrams using Radon
transform and Hough transform.

3.1 Effects of Noise

Usually the first step in line detection is edge detection. Most traditional edge
detectors depend on the presence of critical points in the image gradient due to
abrupt changes in the intensity of the image [Cha05], which makes them really
simple and effective in detecting sharp edges with low noise levels which can be
removed using Gaussian filters.

However, upon applying these edge detectors on the real data, one can ob-
serve that they do not produce clear edges, especially for the diagonal lines,
fig. 3.1. The two main problems in our Campbell Diagrams which render the
edge detection operators ineffective are:

1. Smooth Edges
Traditional edge detectors work well when the difference between the edge
pixels and the adjacent pixels is high(sharp edges). Sharp edges result in
a single critical point in the first derivative, or a single zero crossing in
the second order derivative, exactly at the edge location. But the edges
present in the Campbell diagrams are very smooth resulting in a very
smooth gradient.
This problem is usually solved by using edge detectors with longer support,
however, this significantly decrease the accuracy of the positions of the
detected edges.

2. High Noise Levels
Traditional edge detectors assume that the image has only small signal
noise, that is the noise values oscillate with small amplitudes around the
main amplitude of the signal.
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Figure 3.1: Results of applying traditional edge detectors to a real Campbell
diagram.

This type of noise is easy to remove using a Gaussian filter or any other
smoothing filter. However, the noise levels in the data are very high to the
point that they can introduce fake peaks that, sometimes, are sharper and
have the same intensity as real edges.

The main feature that defines the real peaks in a Campbell diagram is their align-
ment along certain contours. As a result we need a new edge or line detection
algorithm that takes this feature into consideration.

3.2 Adjusted Radon transform

Radon transform, by definition, is the integration of a function along the set
of all straight lines, which makes it very convenient for our purposes of line
detection. It is not based on the intensity difference between the pixels, and as
long as there are pixels with high intensities aligned along a line, a peak will
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appear in the Radon transform. Even if the peak is not sharp, it is still possible
to determine the location of the line with high accuracy. The integration also
decrease the number of fake lines detected. For example, a peak resulting from
ten pixels with very high intensities align along a line will still be low compared
to a peak resulting from the alignment of a hundred pixels with high intensities.
Thus, Radon transform solve both problems stated in the previous section.

Figure 3.2 shows the result of applying the Radon transform filter implemen-
ted in skimage library, where the output is a grey scale image with the angle φ
and the distance ρ as the x and y axes respectively. Each pixel in the output
image, F pφ, ρq, is the summation of pixel intensities in the source image along
the straight line ρ � x cospφq � y sinpφq. In fig. 3.2 the horizontal lines of the
input Campbell diagram appear clearly as set of bold points at the center of the
image pφ � 90�q. On the other hand, the diagonal lines can not be traced in the
output. This is due to two main reasons:
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Figure 3.2: Result of applying original Radon transform algorithm on a real
Campbell diagram.

1. The filter implementation define the origin at the centre of the image.
Therefore, the peaks due to diagonal lines do not align along a certain
contour in the output image. It was more convenient to define the origin
at the corner(p0, 0qpoint). Now the diagonal lines intensities is then given
by the points with coordinates px, 0q.

2. Compared with other lines in the image, the intensities of the diagonal
lines are not significantly high, so the don’t stand out upon plotting the
complete transform. Usually we are only interested in a specific set of lines,
either horizontal lines(eigen frequencies) or diagonal lines passing through
the origin(excitation forces). In this case it is advantageous to calculate
only partial transform, i.e. integrate only along certain set of lines.

The adjusted implementation, based on skimage implementation, of Radon
transform is reported in Appendix A. Now the new output of the (partial) Radon
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Figure 3.3: Result of applying adjusted Radon transform algorithm to detect
horizontal lines on the same Campbell diagram.

transform is plotted as a curve, where the x � axis is the angle between the
diagonal line and the p�veqx�axis of the image pφq, in case of diagonal lines, or
the distance from the origin, in case of horizontal linespρq, and the y � axis, in
both cases, is the intensity of the line. Figure 3.3 shows the output of the adjusted
Radon transform to detect horizontal lines for the same Campbell Diagram.

3.3 Adjusted Hough Transform

The close relation between Radon transform and Hough transform makes it a
good candidate as a line detection algorithm for Campbell diagrams. Since
Hough transform also does not depend on the gradient of the image, it avoids
the problem of smooth edges and high noise levels. fig. 3.4 shows the result of
applying the Hough transform filter implemented in skimage library. Originally,
Hough transform was designed to detect lines in binary images. So in order
to use it for grey scale images , edge detection algorithms should be used first.
However, in our case, the better solution was to change the algorithm and instead
of incrementing the cells of the accumulator by one for each non zero pixel, the
accumulator is incremented by the value of the intensity of the pixel. Having done
that, each pixel then contributes to the output with its intensity value; pixels
with higher intensity have higher contribution. Another adjustment is applied
on the transform, is restricting it to Diagonal lines, where the contribution of
each pixel is calculated only for diagonal lines passing through the origin.

The adjusted Hough transform implementation is also reported in appendix
A. The output of the adjusted Hough Transform has the same concept of adjusted
Radon transform, where x� axis is the angle and the y � axis is the intensity,
fig. 3.5.
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Figure 3.4: Result of applying original Hough transform algorithm on a real
Campbell diagram.
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Figure 3.5: Result of applying adjusted Hough transform algorithm to detect
diagonal lines on the same Campbell diagram.
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Chapter 4

Analysis of Campbell
Diagrams

4.1 Explorative Analysis

For the 25 WEP data set, a visual explorative analysis was done which aimed
to answer two main research questions:

4.1.1 Shortest Time Period to Produce Useful Campbell Dia-
grams

Since the process of measurement was not based on the rotational frequency, but
was periodic in time; The first step in the explorative analysis was finding the
shortest time period to produce a useful Campbell Diagram.
The judging criteria was the percentage of the rotational frequencies, in the
operation range, that exists in a time interval. High percentages means more
frequencies in this interval and less gaps in the Campbell diagram.
The percentage was chosen based on the quality of the results produced by the
line detection algorithms. Figure 4.1 shows the results of adjusted Hough trans-
form for different sensors using Campbell diagrams with different percentages
of rotational frequencies. In order for the transform to be stable, especially at
higher angles, at least 80% of the rotational frequencies should exist.

Figure 4.2 plots a histogram of the length of the shortest time periods for
the 25 Campbell diagrams.
The functions used to calculate the shortest time period is reported in Appendix
A.

4.1.2 Interesting Phenomena in Campbell Diagrams

The second step in the explorative analysis, Campbell Diagrams were examined
for uncommon phenomena. The data given was over the period of four years,
so, it was first sectioned in spans of 12 months or 6 months.

Here is some of the observed phenomena and a brief explanation for each
one:
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Figure 4.1: Adjusted Hough transform for different sensors using Campbell dia-
grams with different percentages of rotational frequencies.

Variation in the strength of excitation forces lines

This is the strongest observed phenomenon when comparing Campbell diagrams
of different years for the same wind turbine. This phenomenon is interesting
because the lines with high slopes mostly result from faulty gears and internal
systems of the turbines, so they should not have higher intensity during on
year then fade out during the next year. Figure 4.3a shows two Campbell dia-
grams(the diagrams on the right side are the same as the ones on the left side,
only the important phenomena are highlighted), The fist Campbell diagram is
plotted from data of an early year where the excitation forces lines are weak,
while the second Campbell diagram is for a later year where the excitation forces
are weaker. Figure 4.3b shows the intensity of the detected lines for the two years,
where it is observed that at higher angles the peaks are higher.

Disappearance of a Natural Frequency

A natural frequency would completely disappear during one year then reappear
again with the same intensity in the following year, fig. 4.4a.
This phenomenon is probably due to a shifting natural frequency. As a result of
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Figure 4.2: a Histogram of the length of the shortest time periods in days for
the 25 Campbell diagrams.

the averaging during calculating the Campbell diagrams, this frequency appears
twice and one of its versions appears and disappear, depending on the section
of data used to plot the Campbell diagram. Figure 4.4b shows the intensity for
the horizontal lines in the three time intervals.

Shifting Natural Frequencies

A slight downward shift, in the higher eigen frequencies is observed in most of the
wind turbines from the winter period to the summer period of each year,fig. 4.5a.
A downward shift in the natural frequency, theoretically, indicates the increase
in the masses of the blades [Hau13]. This mass change could be a result of ice
accumulation on the blades.

Negative Slope Line

In the Campbell diagrams of 10 out of the 25 wind turbines, a line with neg-
ative slope would appear, fig. 4.6. It appears more frequently in the Campbell
diagrams generated from edge sensors vibrations than flap sensors vibrations.
According to [Ehr08], this line appears due to a non-linear superharmonic re-
sponse. This phenomenon is not normally reported in the literature of Campbell
diagrams because, theoretically, they are plotted for linear systems or linearised
model of the system. But since the Campbell Diagrams used in the analysis
are plotted from real vibrational measurements, other non linear effects can also
appear in them.

4.2 Anomaly Detection

For the anomaly data set, the goal was to detect if there were strong changes
in the diagonal or horizontal lines in the Campbell diagrams before and after
the anomaly. The anomaly is reported at the end of the fourth month, and the
damage was repaired by the beginning of the sixth month. Figure 4.7 shows
a sample Campbell diagram of one month, it can be observed that it has a
lot of wide gaps due to missing measurements with respect to the rotational
frequencies.
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4.2.1 Visual Analysis for Anomaly Detection

In order to detect the anomaly two sets of lines were examined

Horizontal Lines (Eigen Frequency Lines) Plotting the intensity of hori-
zontal lines at higher frequencies, fig. 4.8, it can be observed that across
time some small peaks start to appear, also the shapes of other peaks
changes.

Diagonal Lines (Excitation Forces) plotting the intensities of diagonal lines,
it is observed that there is a peak which is present in the first five months,
but disappears in the last two month when the anomaly is fixed, fig. 4.9

4.2.2 Anomaly Detection Using wavelet Transform

The next step in anomaly detection was trying to detect the changes in the
horizontal lines across different months. Wavelet transform was used to construct
the Radon transform for horizontal lines at high frequencies with certain number
of layers. The error between the original signal and the constructed one was
calculated. High error values indicates the presence of sharper details in the
signal that requires higher wavelet scales to be captured. Table 4.1 shows a
table with the month and the error in the constructed signal. It can be seen the
the error decreases in the months before the anomaly but increases again after
fixing the damage. An initial conclusion could be drawn from that observation
that an anomaly shall change some of the peaks in the Campbell diagram to
be more smooth and spread out. The algorithm used to calculate the error is
reported in Appendix A. This approach, however, was ineffective with the other
data set because only the low vibration frequencies existed.

Table 4.1: Table showing the error on each month upon using wavelet transform
to reconstruct the Radon transform of Horizontal lines at higher frequencies

Month Error

First Month 2822.51250885
Second Month 2380.34313806
Third Month 2101.95238226
Fourth Month 2270.4143543
Sixth Month 4576.75519968
Seventh Month 4255.30456401
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Figure 4.3: Variation in the strength of excitation forces lines
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Figure 4.5: Shifting Natural Frequencies
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Figure 4.7: Sample Campbell diagram of one month for low vibrational frequen-
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Figure 4.8: Horizontal lines intensities at high vibrational frequencies, using
adjusted Radon transform, across months; intensities from each month is shifted
upward from the previous month for better visualization. Some peaks appears
starting in the second month and gets stronger across time, while other, already
existing, peaks change shape
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Figure 4.9: diagonal lines intensities, using adjusted Hough transform, across
months; intensities from each month is shifted upward from the previous month
for better visualization. A peak disappears when the damage is fixed.
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Chapter 5

Conclusion

This thesis investigated two main research topics. The first one was line ex-
traction in Campbell diagrams using Radon and Hough transforms. First, the
effects of noise, which rendered the traditional edge detectors ineffective, were ex-
amined. Then, some adjustments were applied to the original Radon and Hough
transforms to make them more suitable for the Campbell diagrams. It was con-
cluded that these transforms can extract the lines in the Campbell diagrams
with higher accuracy than the traditional gradient based edge detectors.

The second research topic was questioning the possibility of using Campbell
diagrams as features for anomaly detection. Two data sets were examined for
that purpose. The 25 WEP data set was analyzed visually to extract some of
the interesting phenomena in the Campbell diagrams and to roughly determine
the shortest time period to produce a useful Campbell diagram.
The anomaly data set was also analyzed visually to find the differences in the
peaks in Radon and Hough transforms before the damage was reported and after
it was fixed. Then wavelet transform was used to construct the Radon transform
for the horizontal lines where the error between the constructed and the original
signal was calculated and used as a criteria for determining the operation con-
dition of the wind turbine. It can be concluded that Campbell diagrams can
potentially be used as a feature for anomaly detection in the context of wind
turbines.

The algorithmic analysis of Campbell diagrams are still in a premature phase,
as all the previously presented results depend on the presence of a human ob-
server in order to point the changes of the lines.
The suggested future step is to train a model in order to identify what changes
in the Campbell diagrams correspond to serious events in the operation mode
of the wind turbines, then build an algorithm that could capture the important
changes as early as possible in order turn off the turbine before a serious damage
occurs. Also the methods used, like wavelet transform, should be tested on other
data sets in order to guarantee stability and accuracy.
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Appendix A

Python Codes

A.1 Adjusted Radon Transform

import numpy as np

from skimage.transform._warps_cy import _warp_fast

def radon(image, theta=None, mode=1):

"""

This function implements an adjusted radon transform aiming to detect either

diagonal lines that pass through the origin or horizontal lines.

For detection of diagonal lines the image is rotated about the origin

(left lower corner not the center), and the pixels of column zero are added

and stored. For detection of horizontal lines the pixels of the image are

integrated along the horizontal axis.

:param image: 2-D array

image in the form of array

:param theta: 1-D array

the rotation angles in degrees.

:param mode: int

the type of detected lines either 1: detect diagonal lines

2: detect horizontal lines

:return: 1d array of the intensities of the lines corresponding either

to the rotation angles, or the distance from the origin.

"""

if theta is None:

theta = np.arange(0, np.pi/2, 0.0001)

if mode not in [1, 2]:
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mode = 1

if mode == 1:

diagonal = np.ceil(np.sqrt((image.shape[0] ** 2) + (image.shape[1] ** 2)))

pad_width = [(0, int(diagonal - image.shape[0])), (image.shape[1], 0)]

padded_img = np.pad(image, pad_width, mode=’constant’, constant_values=0)

shift0 = np.array([[1, 0, -image.shape[1]],[0, 1, 0],[0, 0, 1]])

shift1 = np.array([[1, 0, image.shape[1]],[0, 1, 0],[0, 0, 1]])

def build_rotation(thetas):

r = np.array([[np.cos(thetas), np.sin(thetas), 0],

[-np.sin(thetas), np.cos(thetas), 0],

[0, 0, 1]])

return shift1.dot(r).dot(shift0)

lines = np.zeros(len(theta))

for i in range(len(theta)):

rotated = _warp_fast(padded_img, build_rotation(theta[i]))

lines[i] = rotated[:, image.shape[1]].sum(0)

lines[i] = lines[i]/(np.count_nonzero(rotated[:, image.shape[1]]))

else:

lines = image.sum(1)/np.count_nonzero(image, axis=1)

return lines
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A.2 Adjusted Hough transform

import numpy as np

def hough(img, theta=None):

"""

This function implements an adjusted hough transform aiming to detect only

diagonal lines that pass through the origin.

For each non zero pixel in the image its intensity added to the accumulator

at the index corresponding to the angle the straight line, that passes with

this pixel, make with +ve x-axis

:param img:img: 2-D image in the form of array

:param theta:1-D array of the rotation angles in degrees.

:return:1-D array of the normalized accumulator

"""

if theta is None:

theta = np.arange(np.pi/2, np.pi, 0.0001)

ctheta = np.cos(theta)

stheta = np.sin(theta)

accum = np.zeros((2, len(theta)))

x, y = np.where(img > 0)

for i in range(len(x)):

x_ = x[i]

y_ = y[i]

lin = np.round((ctheta * x_) + (stheta * y_))

accum[0, np.where(lin == 0)] += img[x_, y_]

accum[1, np.where(lin == 0)] += 1

norm = accum[0, :] / accum[1, :]

return norm
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A.3 Shortest Time Period

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from datetime import timedelta

def freq_inc(rotation_frequencies, start_freq=0.12, end_freq=0.23, bins=300, span=7):

"""

This method returns a data frame containing the percentage of frequencies,

in the input frequency range, included in intervals of length = span

Parameters

----------

rotation_frequencies: (,N) array-like

the rotation frequencies

start_freq, end_freq : float, default: 0.12, 0.23

the limits of the frequency range we are interested in.

bins : int, default: 300

the number of bins to use for discretizing the rotor frequencies

span : int, default: 7

the number of bins to use for discretizing the rotor frequencies

"""

clean_indices = ~np.isnan(rotation_frequencies)

rotation_frequencies = rotation_frequencies[clean_indices]

total_bins = np.linspace(0.00, max(rotation_frequencies.max(), 0.25), bins)

num_range_bins = int((end_freq - start_freq) * bins /

(max(rotation_frequencies.max(),0.25)))

range_bins = np.digitize(np.linspace(start_freq, end_freq, num_range_bins),

total_bins)

start_date = np.arange(rotation_frequencies.index[0],

rotation_frequencies.index[-1] - timedelta(days=span),

timedelta(days=1), dtype=pd.Timestamp)

end_date = start_date + timedelta(days=span)

percentage = np.ndarray(shape=start_date.size)

for i in range(start_date.size):

rot_freq_span = rotation_frequencies[start_date[i]: end_date[i]]

non_empty_bins = np.digitize(rot_freq_span, total_bins)
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intersection_set = np.intersect1d(non_empty_bins, range_bins)

percentage[i] = np.size(intersection_set) * 100 / num_range_bins

return pd.DataFrame({’Start Date’: start_date, ’End Date’: end_date,

’Intersection_Percentage’: percentage})

import numpy as np

import pandas as pd

def shortest_interval(df_scada, least_percentage=80):

"""

This method calculate the shortest time period to produce a useful Campbell

diagram. A Campbell diagram is regarded useful if it contains a certain

percentage of frequencies.

:param df_scada:dataframe

SCADA measurements fro 25 wind turbines

:param least_percentage:int

Least percentace of operation frequencies in a useful campbell diagram

:return: 1D array of shortest time intervals for 25 wind turbines

"""

spans = np.zeros(25)

for wi in range(25):

span = 1

rotation_frequencies = df_scada[wi][’wep’+np.str(wi+1)+’/omega_mean’]

flag = True

while flag:

df_perc = freq_inc(rotation_frequencies, span=span)

percentage = df_perc[’Intersection_Percentage’].max()

if percentage >= least_percentage:

spans[wi] = span

flag = False

else:

span += 1

return spans

A.4 Wavelet Transform

import numpy as np

import pywt

def wavelet_approx(Hl, wavelet, start=1000, end=5000,level=7):
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"""

This method calculates the error between the Radon transform of the horizontal lines

in a campbell diagram and its approximation using wavelet transform.

:param Hl: Radon transform of the horizontal lines.

:param wavelet: Wavelet family.

:param start: starting index of the signal to be approximated.

:param end: ending index of the signal to be approximated.

:param level: Number of levels used in the approximation.

:return: Error

"""

if wavelet is None:

wavelet = pywt.Wavelet(’sym5’)

signal_len = end-start

max_level = pywt.dwt_max_level(signal_len, wavelet.dec_len)+1

coeffs = [0]*Hl.shape[0]

res = [0]*Hl.shape[0]

error = np.zeros(Hl.shape[0])

for i in range(Hl.shape[0]):

coeffs[i] = pywt.wavedec(Hl[i,start:end], wavelet,

mode=’symmetric’, level=max_level)

res[i] = pywt.waverec(coeffs[i][:level+1] +

[None] * (max_level-level) , wavelet,

mode=’symmetric’)

error[i] = (np.abs(Hl[0,start:end]-res[i][:signal_len])).sum()

return error
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