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Abstract

Multiresolution methods are becoming increasingly important tools
for the interactive visualization of very large data sets. Multireso-
lution isosurface visualization allows the user to explore volume
data using simplified and coarse representations of the isosurface
for overview images, and finer resolution in areas of high interest
or when zooming into the data. Ideally, a coarse isosurface should
have the same topological structure as the original. The topological
genus of the isosurface is one important property which is often ne-
glected in multiresolution algorithms. This results in uncontrolled
topological changes which can occur whenever the level-of-detail
is changed. The scope of this paper is to propose an efficient tech-
nique which allows preservation of topology as well as controlled
topology simplification in multiresolution isosurface extraction.

CR Categories: G.1.2 [Numerical Analysis]: Approximation—
Approximation of Surfaces and Contours I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Curve, sur-
face, solid, and object representations

Keywords: tetrahedral grid refinement, implicit surface approxi-
mation, level–of–detail, topological genus, critical points

1 Introduction

Isosurface extraction is a very common and useful tool for the vi-
sualization of volume data. In the last years, the resolution of volu-
metric data sets has been increasing dramatically. This applies to
typical measurement data arising e.g. in medical imaging as well as
to output of large–scale numerical simulations.

The need for multiresolution methods becomes apparent when
such large data sets have to be visualized interactively as required
by many applications such as computer aided surgery or scientific
visualization. Without multiple resolutions, the number of trian-
gles which make up an isosurface can easily exceed the number of
triangles that can be rendered at interactive frame rates. Also, the
isosurface extraction phase may simply be too slow in order to be
able to change the isovalue interactively.

Multiresolution methods address both of these problems. Basi-
cally they enable the user to control the accuracy of the extracted
isosurfaces by reducing the mesh complexity (or vice versa). This

way, he or she is able to explore large volume data using simplified
approximations of the isosurface to view the overall structure of the
isosurface, and to use more detailed resolutions when zooming into
the data set for an inspection of a particular area. The user can also
adjust the isovalue interactively at coarser levels–of–detail.

The different representations of the isosurface should aid the user
in navigating and exploring the data set. They should prevent him or
her from missing interesting parts and provide a correct impression
of the grand structure of the data. The topological genus of the
isosurfaces is certainly one variable the user should have control
over.

A multiresolution isosurface extraction algorithm is called topol-
ogy preserving if all coarser isosurface approximations have the
same topological genus as the highest resolution isosurface. It
is called topology simplifying if the genus changes for different
LODs. In the latter case, however, the user should be able to con-
trol the extent and type of possible topological changes.

In this paper we present a method which allows preservation
and controlled simplification of topology for multiresolution iso-
surfaces under real–time constraints. We will use a methodology
which is based on tetrahedral volume meshes instead of the triangle
surface meshes. Although the focus will here be on regular gridded
data, the approach can be generalized to curvilinear or unstructured
grids generated by bisection in a straightforward manner.

The remainder of this paper is organized as follows. In Section 2
we review previous work. Section 3 briefly describes the construc-
tion of multiresolution isosurfaces based on tetrahedral bisection.
Algorithms for topology preservation are then considered in Sec-
tion 4. Controlled topology simplification methods are discussed in
Section 5. The conclusions in Section 6 complete the paper.

2 Related Work

Very often, an isosurface represented as a triangle mesh is extracted
in a preprocessing step. The extraction can be very time–consuming
when standard marching algorithms [14, 18] are used. Therefore,
a variety of methods have been designed to speed up the extraction
step [11, 13, 22], or to limit the extraction to the visible triangles
[7, 12]. General topological problems in isosurface generation have
been addressed in [3, 16, 21, 24].

One way to turn an isosurface into a multiresolution represen-
tation is to apply a mesh simplification algorithm on the extracted
triangle mesh. For a detailed overview of the large variety of avail-
able methods see the recent surveys of [10, 19]. In this context,
controlled topology simplification of isosurface meshes has been
considered in [1, 9]. The whole approach has several disadvantages,
though. It requires extraction of the isosurface at the finest resolu-
tion first, which makes interactive adjustments of the isovalue im-
possible unless isosurfaces for all possible isovalues are extracted.
Moreover, the construction of a multiresolution triangle mesh hier-
archy is generally slow and needs involved data structures.



Figure 1: Decomposition of a tetrahedron by recursive bisection.

On the other hand, it is possible to extract multiresolution iso-
surfaces directly from the volume data. Thereby, a multiresolution
hierarchy is not inferred on the isosurface itself, but on the under-
lying 3D data set. A coarser isosurface is simply defined as the
isosurface of a less detailed approximation of the data. Isosurface
extraction is then usually done in a top–down fashion. Starting with
an initial approximation, details are added in areas where an error
indicator shows a large local error with respect to the data on the
finest resolution. If the error drops below a user–defined threshold,
the algorithm stops the refinement locally and extracts the isosur-
face at the current LOD. In some cases the isosurface does not even
have to be stored as a triangle mesh but is directly rendered during
the data traversal.

If the data domain is refined adaptively (i.e. not uniformly) it
can happen that the extracted isosurface contains holes (cracks) at
transition zones where the mesh resolution changes. Different so-
lutions have been devised for this problem, including remeshing
[4, 8], point insertion [20], filling, adaptive projection [17], and sat-
uration of the error indicator [6, 7].

In the following, we introduce a straightforward and natural way
to incorporate topology questions into adaptive multiresolution iso-
surface extraction based on the error saturation technique.

3 Multiresolution Isosurface Extraction

In this section, we will shortly explain the construction of mul-
tiresolution isosurfaces based on tetrahedral meshes. This has al-
ready been described in detail in previous works but for clarity and
reader’s convenience we repeat the basic steps here.

3.1 Tetrahedral Bisection

The multiresolution approach considered here is based on recursive
bisection of tetrahedra. This refinement scheme is well known from
numerical methods for partial differential equations [15] and has re-
cently also found its way into computer graphics and visualization
[6, 23]. In contrast to octree approaches, where a trilinear interpo-
lation is used, the data models of the triangulated isosurface and
the volumetric grid coincide (they use both piecewise linear inter-
polation). Therefore a lot of problems arising from different data
models are eliminated. This also includes problems related to the
topology of the isosurfaces.

Let us consider a nested hierarchy of tetrahedral gridsT l with
level 0 ≤ l ≤ lmax. The tetrahedra are refined byrecursive bisec-
tion: for a tetrahedronT the midpoint of the longest edgeeref(T ) is
chosen as a new nodexref(T ), and the tetrahedron is split at the face
spanned byxref(T ) and the two nodes ofT opposite toeref(T ) into
two child tetrahedraC1(T ) andC2(T ) (Figure 1). Through recur-
sive application a binary tree hierarchy is inferred on the tetrahedra.

We assume that the input volume data is arranged in a uniform
grid with n3 nodes,n = 2k + 1. The initial tetrahedral meshT 0

consists of the six tetrahedra whose vertices are adjacent corners of
the cube and which all share the same diagonal of that cube (see
Figure 2 left). Thus, all refinement verticesxref(T ) will fall onto
grid points of the original data set.

The tetrahedral grid hierarchy does not need to be constructed
explicitly. The binary tree of tetrahedra can be traversed implicitly

Figure 2: The three types of surrounding polyhedra which arise
during the refinement. Refinement edges are bold–dashed, spoke
edges are light–dashed.

and all required information can be computed on–the–fly using the
procedure below. It is initially called for the six tetrahedra on the
coarsest meshT 0 with their longest edge given by(x1, x2):

recursive_descent(Coord x1, x2, x3, x4, Int l) {
xref=(x1+x2)/2;
if (l < lmax) {

if ((l mod 3) == 0) {
recursive_descent(x1, x3, x4, xref, l+1);
recursive_descent(x2, x4, x3, xref, l+1);

}
else {

recursive_descent(x1, x3, x4, xref, l+1);
recursive_descent(x2, x3, x4, xref, l+1);

}
}

}

Using linear interpolation inside each tetrahedron, a piecewise
linear function onT l uniquely described by the data valuesf(xi)
at the corresponding nodes is obtained.

3.2 Extraction Algorithm

The adaptive multiresolution isosurface algorithm is based on a
depth first traversal of the binary tree. On every tetrahedron for a
stopping criterion is checked. If it is true, the algorithms stops and
extracts the local isosurface using the look–up table of the marching
tetrahedra algorithm [18]. Otherwise, the two children are visited
recursively. If the algorithms stops on a specific tetrahedronT and
refines another tetrahedron which shares the refinement edge, an in-
consistency occurs at the hanging nodexref(T ). This leads to cracks
in the isosurface. Therefore, it is necessary to ensure that whenever
a tetrahedron is refined, all tetrahedra sharing its refinement edge
are refined as well. This can be achieved through definition oferror
indicatorsη on the refinement vertices, i.e.η(T ) = η(xref(T )), and
choosingη(T ) < ε as a stopping criterion for some user specified
threshold valueε.

If the error indicator fulfills the saturation condition

η(T ) ≥ η(Ci(T )), i = 1, 2,

for all T ∈ T l with l < lmax, no hanging nodes can occur for all
possible values ofε [17, 23]. If an error indicatorη does not fulfill
this condition it can easily be adjusted in a preprocessing step. In
a level–wise bottom up traversal of the hierarchy it is possible to
construct a minimal saturated error indicatorη̄ by setting

η̄(T ) := max{η(T ), η̄(C1(T )), η̄(C2(T ))}.

Furthermore, the traversal of the binary tree is also stopped lo-
cally if the tetrahedron is not a candidate for an intersection with
the isosurface. In our case, it is checked whether the current iso-
value is contained in the interval consisting of all data values inside
the tetrahedron. This information can either be explicitly computed
in a bottom–up traversal of the tree [22] or obtained from already
available error indicator values [7]. This way, the complexity of the
extraction algorithm is of the order of the output (i.e. the number of
drawn triangles), nearly independent of the size of the input.



4 Topology Preservation

The shape of the extracted isosurfaces will greatly depend on the
choice of the error indicator. There is a large variety of geometric
error indicators that can be used to control tetrahedral grid refine-
ment for visualization purposes [7]. However, in general they don’t
allow to control possible changes in the topological structure of the
isosurface, even if a conservative error measurement (e.g. based on
theL∞–norm) is used.

4.1 Critical Points

One important notion in topology is that ofcritical points. Critical
points can be defined as points in space where an isosurface would
change its genus or number of components. Since our data model
is piecewise linear, critical points can only arise at vertices of the
tetrahedral mesh. Note that this would not be true for octahedral
meshes and trilinear interpolation.

The basic idea to incorporate topology preservation into our mul-
tiresolution algorithm is the following assumption: if an adaptive
tetrahedral mesh contains all critical points, then any approximate
isosurface is of the same genus as the corresponding isosurface on
the finest resolution.

Critical points, however, have to be defined hierarchically based
on the tetrahedral bisection hierarchy since non–critical points on
the finest resolution can become critical with respect to a coarser
resolution [2]. Therefore, a refinement vertex is called ahierar-
chical critical point if the genus of an isosurface restricted to all
tetrahedra sharing the refinement edge changes when the tetrahedra
are refined. If an adaptive tetrahedral mesh contains all hierarchical
critical points, topology preservation has been achieved.

4.2 Lookup–Tables

Although hierarchical critical points can be found in a preprocess-
ing step, their identification should be done as efficiently as pos-
sible. To extract isosurfaces for isovaluesf(xref) − τ and for
f(xref) + τ (τ small), and to compare their connectivity would be
a tedious and too time–consuming task. However, since the topol-
ogy of the isosurface only depends on the relative ordering of the
data values at the vertices of the tetrahedra surrounding the refine-
ment edge, critical points can be identified quite efficiently based on
look–up tables. In [23], however, an overly simplified and conser-
vative table has been proposed which generates many unnecessarily
refined tetrahedra.

Let us define thesurrounding polyhedronof a refinement edge
as the boundary of all adjacent tetrahedra sharing the edge. In our
case of regular gridded data sets and recursive bisection, three types
of polyhedra will arise: a triangulated cube, an octahedron, and a
diamond (see Figure 2). The cube will apply to tetrahedra of levels
(l mod 3) = 0, the octahedron to levels(l mod 3) = 1, and the
diamond to levels(l mod3) = 2.

Them vertices of a surrounding polyhedron are marked with a
+ sign if the data value at the vertex is larger than the value at the
refinement vertex, and with a− sign if it is smaller. The look–up
table for each type of polyhedron consists of the2m possible cases
and contains a bit indicating if the refinement vertex is critical or
not. Simplified look–up tables can be constructed by the identifica-
tion of all symmetry classes for the+/− bit-patterns of the differ-
ent types of polyhedra and checking for criticality in each of these
classes.

Figure 3 shows the resulting 25 classes for the cube. Not shown
is case 1 where all vertices have the same sign which would lead to
a local minimum or maximum which is always critical. The images
show isosurfaces after refinement for an isovalue off(xref). Crit-
ical points arise if two or more components of an isosurface have

a (non–manifold) point connection at the refinement vertex in the
middle of the cube. This is true for classes 4b, 5a, 5b, 7b, 8b, 12b,
and 13. In these cases, changing the isovalue slightly in positive
or negative direction would lead to different connectivities of the
isosurface components.

The main symmetry classes are identical to the marching cubes
look–up table [14], but special care has to be taken to include a few
more subclasses. These subclasses arise since the endpoints of the
refinement edge (from front–bottom–left to back–top–right) have
different connectivity than the other vertices of the polyhedron.

4.3 Automatic Construction of Look–up Tables

Manual construction of look–up tables is of course potentially erro-
neous since subcases may easily be forgotten or wrongly classified.
However, there is an efficient and exact way to construct look–up ta-
bles for an automatic identification of critical points automatically.
It consists of the following four steps:

1. construct the edge graph of the polyhedron,

2. delete all edges between a+ and a− node from the graph,

3. count the remaining connected components of the graph,

4. if the number of components is1 or greater than2, then the
refinement vertex is critical.

As an example, let us consider the case shown for class 13 in
Figure 3. The vertices of the cube are numbered front to back,
bottom to top, left to right. This way, the signs of the vertices are
given by−−+ + + +−−. Note that the cube is triangulated and
therefore every quadrilateral face of the cube has a diagonal edge
as depicted in Figure 2.

1. edge graph for the cube:

− − + + + + − −
− ×
− × ×
+ × ×
+ × × × ×
+ × ×
+ × × × ×
− × × × ×
− × × × × × × ×

2. delete edges:

− − + + + + − −
− ×
− × ×
+ ×
+ × ×
+ ×
+ × ×
− × ×
− × × ×

3. count components (transitive hull):

− − + + + + − −
− ×
− × ×
+ ×
+ × ×
+ ×
+ × ×
− × × ×
− × × × ×

4. 3 components→ critical



2a 2b 3a 3b 4a

4b 5a 5b 6a 6b

6c 7a 7b 7c 8a

8b 9 10a 10b 11a

11b 12a 12b 13 14

Figure 3: Topological classes for the cube.



The total running time of the algorithm is of orderO(2m ·m2)
for each type of polyhedron. Of course, this computation has to
run only once in case of regular grid refinement. Accordingly, for
recursive bisection refinement, critical points will arise in 68/256
cases for the cube, in 8/64 cases for the octahedron, and in 400/1024
cases for the diamond.

Critical points located on boundary of the data set do not need
any special treatment. The existing lookup–tables can be used if
missing vertices (respectively their signs) are mirrored across the
boundary. This way, boundary critical points will also be classified
correctly.

Note that this automatic construction of look–up tables is not
restricted to regular grids, but can be applied to any irregular tetra-
hedral mesh generated by edge bisection.

4.4 Critical Intervals

A straightforward way to incorporate topology preservation into the
multiresolution isosurface extraction algorithm is to set error indi-
cator values at hierarchical critical points to infinity (as proposed
in [23]). However, for a given isosurface only a subset of all crit-
ical points is really relevant and many tetrahedra would be refined
needlessly.

Therefore, every critical point will be assigned acritical interval.
The critical interval is defined as the range of isovalues for which
the isosurface changes topology when the tetrahedra are refined at
the critical point. With this information, the extraction algorithm
is able to refine only at those critical points whose critical interval
contains the current isovalue.

The critical intervals are relatively easy to obtain. They are de-
fined as

I(xref) := [f(xref),min{f(x1), f(x2)}]

for refinement edges whose endpointsx1 and x2 have positive
signs, and as

I(xref) := [max{f(x1), f(x2)}, f(xref)]

for negative signs. Note that refinement edges whose endpoints
have different signs never lead to critical points.

In order to avoid missing critical points during the tree traversal,
critical intervals have to be saturated similarly to the error indicator
values. Each tetrahedron is assigned a critical interval which is de-
fined as the critical interval of its refinement vertex. In a level–wise
bottom–up traversal of the tetrahedral bisection tree, critical inter-
vals are merged taking the upper and lower bounds of the intervals
of the current tetrahedron and its two children.

4.5 Examples

In order to show the performance of the algorithm let us consider
the zero set of the algebraic function

f(x, y, z) =
√
x2 + y2 − (

1

2
x+

1

2
y − z + 0.01)2

defined on[−1, 1]3 sampled on a uniform653 grid. This function
has a strong diagonal singularity near the origin as can be seen in
Figure 4. In Table 1 we compare the number of triangles for various
geometric error threshold valuesε (L∞–norm). Topology preser-
vation will retain the original topology at a low triangle cost since
the tetrahedral grid refinement can strongly adapt towards the sin-
gularity. Without topology preservation, this delicate structure will
become lost for large error thresholds.

As a second example we will consider the geometrically more
complicated buckyball data set (courtesy of AVS). Figure 5 shows
isosurfaces for different geometric error threshold values and for

without topology with topologyε
preservation preservation

0 59290 59290
1/64 25456 25464
1/16 7124 7528
1/4 1936 3503

1 374 3095

Table 1: Triangle counts for the algebraic function for varying geo-
metric error threshold valuesε.

without topology with topologyε
preservation preservation

0.0 395798 395798
0.01 153539 163818
0.05 29594 110101
0.1 12552 109981

Table 2: Triangle counts for the buckyball data set for varying geo-
metric error threshold valuesε.

an isovalue where the data set inhibits a very complex topological
structure. The values ofε and the corresponding triangle counts are
listed in Table 2. Without topology preservation the isosurface does
not maintain the correct connectivity over different LODs (third im-
age from the left in top row), or even completely falls apart (fourth
image in top row). With topology preservation the original topol-
ogy is exactly retained. In the latter case, however, the amount of
geometric simplification is limited due to the high complexity of the
topology which the isosurface exhibits nearly everywhere in space.
After a certain LOD, increasing the geometric error threshold will
not result in lower triangle counts any more. The lower bound will
be reached for a tetrahedral mesh that consists of all hierarchically
critical points.

4.6 Performance

In this algorithm, the extraction speed per triangle is almost as fast
as the rendering speed for a triangle on modern graphics work-
stations. In [6] a combined extraction and drawing rate of up
to 300.000 triangles per second for a single processor and up to
800.000 triangles per second for a multiprocessor machine have
been reported. This speed can also be measured for our topology–
preserving version since only one additional check (namely if the
isovalue is contained in the current critical interval) is necessary for
each tetrahedron during the tree traversal. Typical mesh simplifica-
tion algorithms have lower simplification rates of at least2–3 orders
of magnitude [19].

Let us also take a look at the memory overhead. In addition to
the data the error indicator values, the minmax bounds, and the crit-
ical intervals have to be stored for each refinement vertex up to the
second finest resolution. In some cases, the minmax bounds can
be derived from the error indicator and therefore don’t need to be
stored [7]. However, with conservative quantization all additional
information can be stored with roughly the same memory require-
ments as the data itself (see [6]).

The preprocessing step for the computation of this information
requires a single level–wise bottom–up traversal of the whole data
set which takes at most a few seconds for the considered examples.
If the data set is stored in traversal order, the necessary computa-
tions can even be done during the data reading phase.



5 Controlled Topology Simplification

As we have seen in the previous example, topology preservation
will usually infer a limit on the minimum number of triangles in
the isosurface mesh. Depending on the application, it might be de-
sirable to further simplify the resulting triangle meshes leading to
controlled changes of genus of the isosurface components.

While the original — non–topology preserving — multiresolu-
tion algorithm simplifies topology naturally, it does so in an uncon-
trolled fashion. In principle it would be possible to employ con-
trolled topology simplifying triangle mesh reduction schemes such
as filtering and resampling [9], orα–hulls [5] in a postprocessing
step of the isosurface extraction. However, these algorithms work
in a bottom–up fashion on the extracted triangle mesh at the highest
resolution and would therefore not meet our real–time performance
constraints.

5.1 Choices for Simplification

The topology preserving algorithm described in the previous sec-
tion can easily be transformed into a controlled topology sim-
plifying one. To this end, let us define asimplification weight
w(xref) on all hierarchical critical points which indicates the impor-
tance of that particular point. The topology simplifying algorithm
will then be able to discard those critical points which are not im-
portant, i.e.w(xref) < δ whereδ is a user–defined threshold.

This way, the user has complete control over topology simpli-
fication by the specification of a suited weight functionw on the
critical points together with a thresholdδ. The actual values of the
weightw at the hierarchical critical points can be precomputed to-
gether with the error indicator and the critical intervals.

An appropriate choice for the weightw strongly depends on the
type of application and structure of the data set. Let us consider a
few possibilities for the simplification weight:

• An obvious choice forw would be the size of the critical in-
terval. This requires no extra computational effort in the pre-
sented framework. By a multiplication with the maximum
gradient of all adjacent tetrahedra, one has an indicator for the
amount of topological changes in the isosurface structure in-
troduced by refinement of the tetrahedra surrounding the crit-
ical point.

• Another possibility would be the size of the corresponding
local isosurface, i.e. the number of tetrahedra the family of
isosurfaces within the critical interval would intersect with.
This provides a control mechanism over the local geometric
complexity.

• One could also choose bounds for the distance between iso-
surface components that are separated by the critical point,
which of course makes only sense in the case of saddle points.
This allows control of the geometric separation between sur-
face components, i.e. disconnected components could be
merged and simplified if the distance between them is small
enough.

5.2 Example

An extensive comparison of simplification techniques for different
applications would certainly exceed the limits of this paper. There-
fore, we will here just consider a simple but characteristic example.
Let us look at a typical bio–medical data set, the famous CT scan
of a lobster (courtesy of AVS). In Figure 6 we see that original iso-
surface (1089004 triangles) is very noisy. The topology preserving
algorithm can reduce the number of triangles to 609893, but the

noise in the data set will of course remain. Let us therefore define
the weight function dependent on the size of the critical interval,

w(xref) := |I(xref)|.

Topology simplification will then reduce these artifacts nicely and
maintain the overall topological structure of the animal. The simpli-
fied isosurfaces provide visually better representations of the data
set with only 367271 triangles forδ = 0.2 and 262357 triangles for
δ = 0.7, respectively.

6 Concluding Remarks

We have shown how topology preservation and controlled topology
simplification can be achieved in multiresolution isosurface extrac-
tion on hierarchical tetrahedral meshes generated by recursive bi-
section. Thereby, we did not focus on methods working on the
isosurface triangle mesh but on the underlying 3D volume data set
itself.

While we mainly considered tetrahedral meshes based on regular
refinement in this paper, our topology considerations apply to more
irregular tetrahedral meshes generated by bisection as well. Refine-
ment methods for tetrahedral mesh generation can thereby consider
the most critical points for insertion, whereas decimation methods
will consider non–critical or less–critical points for removal. With
appropriate modifications the methodology could be extended to
handle other hierarchical tetrahedral meshes as well although this
would probably require an identification of more cases and look–
up tables.

Finally, the proposed methods may not only be important by
themselves, but can also be used as a fast preprocessor to other
algorithms which rely on a topologically consistent input mesh.
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Figure 4: Isosurfaces of an algebraic function without (upper row) and with (lower row) topology preservation for varying error tolerances.

Figure 5: Isosurfaces of the buckyball data set without (upper row) and with (lower row) topology preservation for varying error tolerances.

Figure 6: Isosurfaces of the lobster data set: original, topology preserving and controlled topology simplified versions (from left to right).


