

OBJECTIVES

Fast simulation of localized material failure for macroscale material samples through

- efficient (Generalized) Finite Elements for global linear elasticity problem and
- the use of solution from a local particle simulation
- as enrichment to construct discontinuous shape functions for the global problem.

DISCONTINUOUS APPROXIMATION OF PERIDYNAMICS

- (Modified) Moving Least Squares approximation of displacements from impact simulation (not yet used as enrichment)
- upper left: coordinates $x_i + u_i^n$ from **Peridynamics**, color coding shows $\|\mathbf{u}_{\mathbf{i}}^{\mathbf{n}}\|$
- lower left: coordinates $\mathbf{x_i} + \eta^{n}(\mathbf{x_i})$ from MLS approximation $I(\mathbf{u}) = \eta^{n}$ of Peridynamics data $\mathbf{x}_{i}, \mathbf{u}_{i}^{n}, \mathbf{A}_{i,i}^{n}$, color coding shows $\|\eta^{\mathsf{n}}(\mathsf{x_i})\|$ right: coordinates $\mathbf{x_i} + \mathbf{u_i^n}$, color coding shows $\|\mathbf{u_i^n} - \eta^n(\mathbf{x_i})\|$

MESHFREE MULTISCALE METHODS

FOR SOLIDS

Sa Wu, Marc Alexander Schweitzer

wu@ins.uni-bonn.de, schweitzer@ins.uni-bonn.de

DAMAGE EVERYWHERE

Enrichments and particle simulation needed everywhere

- No speedup expected
- **Example:** Peridynamics simulation of brittle impact

PERIDYNAMICS SIMULATION WITH PARTICLES Nonlocal equation of motion

Sonderforschungsbereich 716 Universität Stuttgart

Focus: Localized Damage

- Enrichments and particle simulation needed only locally
- Speedup depending on localization of damage expected
- Example: Peridynamics simulation of petaling

Use global solution $\mathbf{u}(\cdot, t_n)$ to to

ACKNOWLEDGMENTS

This work is supported and funded by the Sonderforschungsbereich 716 of the Deutsche Forschungsgemeinschaft as Subproject D.7.

REFERENCES

- E. Emmrich and O. Weckner.
- On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity.
- Communications in Mathematical Sciences, 5(4):851–864, 2007.
- D.-J. Kim, C. A. Duarte, and S. P. Proenca. Generalized finite element method with global-local enrichments for nonlinear fracture analysis.
- In H. S. da Costa Mattos and M. Alves, editors, *Mechanics of Solids in Brazil 2009*,

- $\rho \ddot{\mathbf{u}}(\mathbf{x},t) = \int_{\Omega(\mathbf{x})} f\left(\left(\mathbf{u}(\tilde{\mathbf{x}},\cdot) \mathbf{u}(\mathbf{x},\cdot)\right)|_{(-\infty,t]}, \tilde{\mathbf{x}} \mathbf{x}\right) \mathrm{d}\tilde{\mathbf{x}} + b(\mathbf{x},t)$
- No gradients, discontinuities occur naturally
- Discretization: fix \mathbf{x}_i , calculate $\mathbf{u}_i^n \approx \mathbf{u}(\mathbf{x}_i, t_n)$

$$\mathbf{v}_{i}^{n+1} = 2\mathbf{u}_{i}^{n} - \mathbf{u}_{i}^{n-1} + \frac{(\Delta t)^{2}}{\rho}$$

$$\left(\sum_{j \in \mathbf{N}_{i}} f\left(\left(m \mapsto \mathbf{u}_{j}^{m} - \mathbf{u}_{i}^{m} \right) \Big|_{(-\infty,n]}, \mathbf{x}_{j} - \mathbf{x}_{i} \right) \mathbf{V}_{i,j} + b(\mathbf{x}_{i}, t_{n}) \right)$$

Explicitly track bonds and bond failure between particles

$$\mathbf{A_{i,j}^{n+1}} = \begin{cases} 1 & f\left(\left(m \mapsto \mathbf{u_j^m} - \mathbf{u_i^m}\right)\Big|_{(-\infty,n]}, \mathbf{x_j} - \mathbf{x_i}\right) \neq 0\\ 0 & \text{otherwise} \end{cases}$$

Data $x_i, u_i^{n+1}, A_{i,i}^{n+1}$ for (discontinuous) vector field approximation η^{n+1}

MOVING LEAST SQUARES Scattered data x_i , u_i^{n+1} approximation with $\eta^{\mathbf{n+1}}(x) := q_x^{n+1}(0)$ $q_x^{n+1} := \operatorname*{argmin}_{p \in P} \mathbf{J}_{\mathbf{x}}^{\mathbf{n+1}}(p)$ $\mathbf{J}_{\mathbf{x}}^{\mathbf{n+1}}(p) := \sum \mathbf{W}_{\mathbf{i}}^{\mathbf{n+1}}(\mathbf{x}) \left(\mathbf{u}_{\mathbf{i}}^{\mathbf{n+1}} - p(\mathbf{x}_{\mathbf{i}} - \mathbf{x})\right)^{2}$

choose domain $\bigcup_{i \in I^{n+1}} \operatorname{supp}(\varphi_i) \ni x_i$ and initial and boundary conditions (e.g. $\mathbf{u}_{\mathbf{i}}^{\mathbf{n}} = \mathbf{u}(\mathbf{x}_{\mathbf{i}}, t_{n}), \ldots$) for local Peridynamics run(s)

LINEAR ELASTICITY WITH GENERALIZED FINITE ELEMENTS Local equation of motion

> $ho\ddot{\mathbf{u}}(\mathbf{x},t) = \mu\Delta \mathbf{u}(\mathbf{x},t) + (\lambda + \mu)\nabla \operatorname{div} \mathbf{u}(\mathbf{x},t) + b(\mathbf{x},t)$ $= (L_t \mathbf{u}(\cdot, t))(\mathbf{x}) + b(\mathbf{x}, t)$

- Partition of Unity $0 \le \varphi_i \le 1, i \in I \in \mathbb{N}$, suff. smooth, locally supported, $\sum_{i\in I} \varphi_i = 1$.
- Local approximation spaces P_i (polynomial(s)), $\mathbf{E}_i^{n+1} \stackrel{!}{\supseteq} \emptyset$ (enrichments) on supp (φ_i)

$$\Xi_i^{n+1} = \begin{cases} \operatorname{span} \left\{ \eta^{n+1} \right\} & i \in \mathbf{I}^{n+1} \\ \emptyset & i \notin \mathbf{I}^{n+1} \end{cases}$$

Global shape functions for timestep t_{n+1}

 $\bigcup_{i\in I} \{\varphi_i p : p \in P_i\} \cup \bigcup_{i\in I^{n+1}} \{(\varphi_i \eta^n)\}$

■ Discretization: find coefficients $(c_{i,\cdot}^{n+1})_{i\in I}$ and $(\mathbf{d_i^{n+1}})_{i\in I^{n+1}}$ such that $\mathbf{u}(\mathbf{x}, t_{n+1}) = \sum \left(o_i(\mathbf{x}) \left(\sum c_i^{n+1} p(\mathbf{x}) \right) + \sum \mathbf{d}_i^{n+1} \left(o_i p^{n+1} \right) (\mathbf{x}) \right)$

$$\begin{aligned} \mathbf{(x, t_{n+1})} &= \sum_{i \in I} \varphi_i(\mathbf{x}) \left(\sum_{p \in P_i} c_{i,p} p(\mathbf{x}) \right) + \sum_{i \in \mathbf{I}^{n+1}} \mathbf{d}_i + (\varphi_i \eta +)(\mathbf{x}) \\ &= 2\mathbf{u}(\mathbf{x}, t_n) - \mathbf{u}(\mathbf{x}, t_{n-1}) + \frac{(\Delta t)^2}{2} \left(\left(L_{t_n} \mathbf{u}(\cdot, t_n) \right) (\mathbf{x}) + b(\mathbf{x}, t) \right) \right) \end{aligned}$$

2009.

J. M. Melenk and I. Babuka.

The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(14):289–314, 1996.

■ N. Mos, J. Dolbow, and T. Belytschko.

A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1):131–150, 1999.

M. A. Schweitzer.

Generalizations of the finite element method. Central European Journal of Mathematics, 10:3–24, 2012.

D. Shepard.

A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, ACM '68, pages 517-524, New York, NY, USA, 1968. ACM.

S. A. Silling.

Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1):175 – 209, 2000.

S. A. Silling and R. B. Lehoucq.

Convergence of peridynamics to classical elasticity theory. Journal of Elasticity, 93(1):13–37, 2008.

• W_i^{n+1} are normal Moving Least Squares weights W_i (some kernels) modified to take $A_{i,i}^{n+1}$ into account

Take $w_{i,i}(x_i) = 1, w_{i,i} \le 1$ locally supported

$$egin{aligned} \mathsf{W}^{\mathsf{n+1}}_{\mathsf{i}}(\mathsf{x}) &:= \mathit{W}_{\mathit{i}}(\mathsf{x}) \prod_{igl\{j:\mathsf{A}^{\mathsf{n+1}}_{\mathsf{i},\mathsf{j}}=0igr\}} \left(1-\mathsf{w}_{\mathsf{j},\mathsf{i}}\left(\mathsf{x}
ight)
ight) \end{aligned}$$

MESHFREE MULTISCALE (COUPLED) ALGORITHM

Timestepping from $\mathbf{u}(\cdot, t_n)$ to $\mathbf{u}(\cdot, t_{n+1})$:

I From global solution $u(\cdot, t_n)$ find patches $supp(\varphi_i), i \in I^{n+1} \subseteq I$ where microscale information is necessary.

2 On $\bigcup_{i \in I^{n+1}} \operatorname{supp}(\varphi_i)$ use $u(\cdot, t_n)$ to seed x_i and find initial and boundary conditions to

B Run **local particle** simulation to get x_i, u_i^{n+1} .

From $\mathbf{x}_i, \mathbf{u}_i^{n+1}$ reconstruct vector field η^{n+1} with gradients.

I Use basis $\bigcup_{i \in I} \{\varphi_i p : p \in P_i\} \cup \{(\varphi_i \eta^{n+1})\}_{i \in I^{n+1}}$ to solve **global problem** yielding $u(\cdot, t_{n+1})$.

(Discontinuous) enrichment η^{n+1} for construction of new shape functions $\varphi_{i}\eta^{n+1}$ for global elasticity problem

SETUP

Symmetric constant loads applied in left corners

- 4 × 4 bilinear Lagrange elements, 50 dof φ_i
- 400 Peridynamics particles throughout whole domain
- $P_i = \text{span}\{1\}$, Automated choice of enriched dof

FINAL PERIDYNAMICS CONFIGURATION

0.00

0.25

0.50

0.75

1.00 0.00

0.00 0.25 0.50

0.75 1.00

0.2

0.4

0.6

0.8

1.0 0.0

0.75 1.00

0.50

Sparseness of Final GFEM Mass Matrix

-1.5

1.0

■ 20 **GFEM timesteps** with 20 × 5 **Peridynamics** timesteps

No global boundary conditions Initial Configuration ∎∎∎ dof $\bullet \bullet \bullet$ particles 1.0 0.80.60.40.2● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.0 0.80.20.61.0-0.20.40.01.2

0.00 0.25