Meshfree Multiscale Methods for Solids

Sa Wu, Marc Alexander Schweitzer

Institut für Numerische Simulation Universität Bonn

Sonderforschungsbereich 716 Universität Stuttgart

Dynamische Simulation von Systemen mit großen Teilchenzahlen

SOLVE LINEAR ELASTICITY WITH DISCONTINUOUS BASIS FUNCTIONS WHAT ARE OUR GOALS?

Fast simulation of material failure: crack nucleation and growthLinear Elasticity

$$\rho \ddot{u}(x,t) = f(x, u(x,t), \nabla u(x,t), \nabla^2 u(x,t), \cdots, t) + b(x,t)$$

$$\approx \mu \Delta u(x,t) + (\lambda + \mu) \nabla \operatorname{div} u(x,t) + b(x,t)$$

- Explicit time integration
- Partition of Unity $0 \le \varphi_i \le 1$, suff. smooth, locally supported, $\sum_{i \in I} \varphi_i = 1$.
- Given some enrichment η^n and $l^n \subseteq l$ find coefficients c_i^n, d_i^n (higher order terms $v_i^n \in V_i$) such that

$$u(\cdot, t_n) = \sum_{i \in I} \varphi_i \left(c_i^n 1 + v_i^n \right) + \sum_{i \in I^n} d_i^n \left(\varphi_i \eta^n \right)$$

Resulting mass matrix and linear system from weak form (higher order terms vⁿ_i left out for ease of notation)

$$\left(\begin{array}{c|c} \left(\int_{\Omega}\varphi_{i}\varphi_{j}\right)_{i,j\in\mathbb{N}} & \left(\int_{\Omega}\varphi_{i}\left(\varphi_{j}\eta^{n}\right)\right)_{i\in l,j\in\mathbb{P}}}{\left(\int_{\Omega}\left(\varphi_{i}\eta^{n}\right)\varphi_{j}\right)_{i\in\mathbb{P},j\in\mathbb{I}}} & \left(\int_{\Omega}\left(\varphi_{i}\eta^{n}\right)\left(\varphi_{j}\eta^{n}\right)\right)_{i\in\mathbb{P},j\in\mathbb{P}}}\right) \left(\begin{array}{c} \left(c_{i}^{n}\right)_{i\in\mathbb{I}}\\ \left(d_{i}^{n}\right)_{i\in\mathbb{P}}\end{array}\right) = \cdots$$

PERIDYNAMICS Where do we get Discontinuous Basis Functions from?

Nonlocal equation of motion

$$\rho \ddot{u}(x,t) = \int_{\Omega(x)} f\Big(\left(u(\tilde{x},\cdot) - u(x,\cdot) \right) \Big|_{(-\infty,t]}, \tilde{x} - x, t \Big) \, \mathrm{d}\tilde{x} + b(x,t)$$

No gradients, discontinuities occur naturally

Discretization: fix \mathbf{x}_i , calculate $\mathbf{u}_i^n \approx u(\mathbf{x}_i, t_n)$

$$\rho \ddot{u}_i^n = \sum_{j \in N_i} f\left(\left(u_j^m - u_i^m\right)\Big|_{m \in (-\infty, n]}, x_j - x_i\right) V_{i,j} + b(x_i, t_n)$$

DAMAGE EVERYWHERE LOCALIZED DAMAGE

MESHFREE MULTISCALE ALGORITHM How do we put together our parts?

- From global solution $u(\cdot, t_n)$ find patches where microscale information necessary.
- 2 On these patches use $u(\cdot, t_n)$ to seed x_i and run local particle simulation to get x_i, u_i^{n+1} .
- 3 From x_i, u_i^{n+1} reconstruct vector field η^{n+1} with gradients.

4 Use basis $\{\varphi_i\}_{i \in I} \cup \{(\varphi_i \eta^{n+1})\}_{i \in I^{n+1} \subseteq I}$ to solve global problem yielding $u(\cdot, t_{n+1})$.

COUPLING

- vertical: shape functions for global problem from local solution
- horizontal: initial and boundary conditions for local problem from global solution

MOVING LEAST SQUARES How do we obtain Gradients from Peridynamics?

 Add Weights W_i in least squares functional

$$\eta^{n}(\mathbf{x}) := \mathbf{q}_{\mathbf{x}}(0) \qquad \mathbf{q}_{\mathbf{x}} := \operatorname*{argmin}_{\mathbf{p} \in \mathcal{P}} \mathbf{J}_{\mathbf{x}}^{n}(\mathbf{p})$$
$$\mathbf{J}_{\mathbf{x}}^{n}(\mathbf{p}) := \sum W_{i}(\mathbf{x}) \left(\mathbf{u}_{i}^{n} - \mathbf{p}(\mathbf{x}_{i} - \mathbf{x})\right)^{2}$$

- Adjacency information from Peridynamics at time t_n:
 - $\mathbf{A}_{i,j}^{n} := \begin{cases} 1 & \text{Bond between } x_i, x_j \\ 0 & \text{Broken bond between } x_i, x_j \end{cases}$
- Take $w_{i,j}(x_i) = 1$, $w_{i,j} \le 1$ locally supported

$$\tilde{\boldsymbol{W}}_{i}^{n}(\boldsymbol{x}) := \boldsymbol{W}_{i}(\boldsymbol{x}) \prod_{\left\{j: \boldsymbol{A}_{i,j}^{n}=0\right\}} \left(1 - \boldsymbol{w}_{j,i}\left(\boldsymbol{x}\right)\right)$$

 in spirit similar to visibility criteria

A 2D Example

APPROXIMATION EXAMPLES What can we do with the modified weights?

A 2D Example

CONFIGURATIONS

SETUP

- Symmetric loads applied in left corners
- 4×4 bilinear Lagrange elements, 50 dof
- 400 Peridynamics particles throughout whole domain
- Automated choice of enriched dof
- Condition of mass matrix without enrichment 9
- No global boundary conditions, new initial conditions for each Peridynamics run from previous GFEM solution

A 2D Example

Some Shape functions

LINEAR SYSTEM IN LAST TIMESTEP

ENRICHED y NODES

NUMBERS

- $\blacksquare~11$ additional enriched dof, total $61~{\rm dof}$
- \blacksquare Condition number of mass matrix ~ 25

Sparseness of Mass Matrix

SOLUTIONS

- Solution encompasses discontinuity
- Solution differs from pure Peridynamics solution
- Automatic choice of enriched nodes chooses only local enrichment

DIFFERENCE

Approximated Peridynamics

GFEM

SUMMARY

TAKE AWAY

- Resolve fine-scaled features only where really necessary
- Use vector field reconstruction of solution from particle method as enrichment function

CONCLUSIONS

- Particle methods on macroscale too expensive
- Enriching everywhere even more so
- Modified Moving Least Squares captures discontinuities (with adjacency information)
- Quadrature needs improvement
- Enriching everywhere leads to very badly conditioned system
- Scaling of new Shape Functions very important
- Partial monotonicity of energies

E. Emmrich and O. Weckner.

On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity. Communications in Mathematical Sciences, 5(4):851–864, 2007.

D.-J. Kim, C. A. Duarte, and S. P. Proenca.

Generalized finite element method with global-local enrichments for nonlinear fracture analysis. In H. S. da Costa Mattos and M. Alves, editors, *Mechanics of Solids in Brazil 2009*, 2009.

J. M. Melenk and I. Babuška.

The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1–4):289–314, 1996.

N. Moës, J. Dolbow, and T. Belytschko.

A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1):131–150, 1999.

M. A. Schweitzer.

Generalizations of the finite element method. Central European Journal of Mathematics, 10:3–24, 2012.

D. Shepard.

A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, ACM '68, pages 517–524, New York, NY, USA, 1968. ACM.

S. Silling and R. Lehoucq.

Convergence of peridynamics to classical elasticity theory. *Journal of Elasticity*, 93(1):13–37, 2008.

S. A. Silling.

Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1):175 – 209, 2000.