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Solve Linear Elasticity with Discontinuous
Basis Functions
What are our goals?

Fast simulation of material failure: crack nucleation and growth
Linear Elasticity

ρü(x, t) = f
(
x, u(x, t),∇u(x, t),∇2u(x, t), · · · , t

)
+ b(x, t)

≈ µ∆u(x, t) + (λ+ µ)∇ div u(x, t) + b(x, t)
Explicit time integration
Partition of Unity 0 ≤ ϕi ≤ 1, suff. smooth, locally supported,∑

i∈I ϕi = 1.
Given some enrichment ηn and In ⊆ I find coefficients cn

i , dn
i (higher

order terms vn
i ∈ Vi) such that

u(·, tn) =
∑
i∈I

ϕi (cn
i 1 + vn

i ) +
∑
i∈In

dn
i (ϕiη

n)

Resulting mass matrix and linear system from weak form (higher
order terms vn

i left out for ease of notation)( (∫
Ω
ϕiϕj

)
i,j∈N
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Ω
ϕi (ϕjη

n)
)
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Ω
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i∈In,j∈I
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)
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Peridynamics
Where do we get Discontinuous Basis Functions from?

.

.

Nonlocal equation of motion

ρü(x, t) =
∫
Ω(x)

f
(
(u(x̃, · )− u(x, · ))|(−∞,t] , x̃ − x, t

)
dx̃ + b(x, t)

No gradients, discontinuities occur naturally
Discretization: fix xi, calculate un

i ≈ u(xi, tn)

ρün
i =

∑
j∈Ni

f
((

um
j − um

i
)∣∣

m∈(−∞,n] , xj − xi
)

Vi,j + b(xi, tn)

.Damage everywhere..

.

.Localized Damage..

.
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Meshfree Multiscale Algorithm
How do we put together our parts?

.

.

1 From global solution u(·, tn) find
patches where microscale information
necessary.

2 On these patches use u(·, tn) to seed
xi and run local particle simulation to
get xi,un+1

i .
3 From xi,un+1

i reconstruct vector field
ηn+1 with gradients.

4 Use basis
{ϕi}i∈I ∪

{(
ϕiη

n+1
)}

i∈In+1⊆I to solve
global problem yielding u(·, tn+1).

.

.

.
Coupling..

.

vertical: shape functions for global problem from local solution
horizontal: initial and boundary conditions for local problem from
global solution
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Moving Least Squares
How do we obtain Gradients from Peridynamics?

.

.

Add Weights Wi in least squares
functional

ηn(x) :=qx(0) qx := argmin
p∈P

Jn
x(p)

Jn
x(p) :=

∑
i

Wi(x) (un
i − p(xi − x))2

Adjacency information from
Peridynamics at time tn:

An
i,j :=

{
1 Bond between xi, xj

0 Broken bond between xi, xj

Take wi,j(xi) = 1,wi,j ≤ 1 locally
supported

W̃n
i (x) := Wi(x)

∏
{

j:An
i,j=0

} (1− wj,i (x))

.

.

.

.

.

.

in spirit similar to
visibility criteria
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Approximation Examples
What can we do with the modified weights?

.

.

.

.
.

.
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Configurations
.
Setup..

.

Symmetric loads applied in left corners
4× 4 bilinear Lagrange elements, 50
dof
400 Peridynamics particles throughout
whole domain
Automated choice of enriched dof
Condition of mass matrix without
enrichment 9
20 GFEM timesteps with 20× 5
Peridynamics timesteps
No global boundary conditions, new
initial conditions for each Peridynamics
run from previous GFEM solution

.

.

.

.
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Some Shape functions
.

.

.

.
.

.

.

.

.

.
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Linear System in Last Timestep
.Enriched x nodes..

.

.Enriched y nodes..

.

.Numbers..

.

11 additional enriched dof, total 61 dof
Condition number of mass matrix ∼ 25

.
Sparseness of Mass Matrix..

.
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Solutions
.

.

Solution encompasses
discontinuity
Solution differs from pure
Peridynamics solution
Automatic choice of enriched
nodes chooses only local
enrichment

.Difference..

.

.
Approximated Peridynamics..

.

.
GFEM..

.
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Summary

.
Take Away..

.

Resolve fine-scaled features only where really necessary
Use vector field reconstruction of solution from particle method as
enrichment function

.
Conclusions..

.

Particle methods on macroscale too expensive
Enriching everywhere even more so
Modified Moving Least Squares captures discontinuities (with
adjacency information)
Quadrature needs improvement
Enriching everywhere leads to very badly conditioned system
Scaling of new Shape Functions very important
Partial monotonicity of energies
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Next?

.

.
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