
Adaptive sparse grid multilevel methods for ellipticPDEs based on �nite di�erencesM. Griebel, BonnAbstractWe present a multilevel approach for the solution of partial di�erentialequations. It is based on a multiscale basis which is constructed from a one-dimensional multiscale basis by the tensor product approach. Together withthe use of hash tables as data structure, this allows in a simple way for adap-tive re�nement and is, due to the tensor product approach, well suited forhigher dimensional problems. Also, the adaptive treatment of partial di�er-ential equations, the discretization (involving �nite di�erences) and the solu-tion (here by preconditioned BiCG) can be programmed easily. We describethe basic features of the method, discuss the discretization, the solution andthe re�nement procedures and report on the results of di�erent numericalexperiments.AMS subject classi�cations: 65N06, 65N50, 68Y99, 68P05.Key words: Sparse grids, �nite di�erence, multiscale method, hash tables.1 IntroductionIn this paper, we present an adaptive multilevel approach for the solution of partialdi�erential equations. It is based on a multiscale basis which is constructed from aone-dimensional hierarchical basis by the tensor product approach. Then, a contin-uous function u can be represented with respect to this basis as an in�nite series.Also any approximation to the function with a prescribed error tolerance " can berepresented by a truncation of the in�nite series to a �nite one. Here, the size ofthe coe�cients give a direct guideline and provide a reasonable error indicator.Based on this �nite dimensional representation of a discrete function, standard oper-ations on functions can be implemented straightforwardly. Addition or subtractionof two functions can be implemented by just the addition or subtraction of theircoe�cient values. In the same way, scalar multiplication can be realized. The mul-tiplication of two functions is achieved in a point-wise fashion. To this end, thecoe�cients of the two functions are transformed to their nodal values in the 'ac-tive' grid points, then, for all points, their nodal values are multiplied and �nally,the result is transformed back to the hierarchical basis representation, e.g. aftersome further compression with respect to the threshold ". Division of two functionscan be obtained analogously. In this way we set up an algebra of operations withtruncated functions.Furthermore, employing the transformation to the nodal values in a special way,di�erential operators acting on "-truncated functions can be implemented straight-forwardly using �nite di�erence stencils. Here, �rst order derivatives can be dis-cretized either by local central di�erences leading to a second order consistent dis-crete derivative or, by using local upwind stencils, leading to �rst order but stablediscrete operators. Analogously, second derivatives can be programmed easily re-sulting in a consistency order of two. Additionally, in the adaptive case, basically1



the complexity, i.e. work count versus accuracy, of the regular sparse grid casecan be obtained but this involves some further modi�cations of the stencils in thediscretization.For the treatment of partial di�erential equations, �rst a discretization must beset up (in general adaptively), and second, the discretized problem must be solvede.g. by an iterative method. In basically any iterative method, the action of thediscrete di�erential operator onto a vector must be computed. This can be achievedin a simple way by putting this action of the discrete operator on a solution iteratetogether from the derivatives, the multiplications (with the (truncated) coe�cientfunctions of the di�erential operator), the subtractions and the summations of ourfunction algebra. Furthermore, multigrid methods and multilevel preconditionersbased on prewavelets can be implemented straightforwardly.Together with a simple re�nement and coarsening of the truncated function rep-resentation on the basis of the coe�cient values as error indicators, we have allingredients for an adaptive multilevel method at hand: error indication, local re-�nement and coarsening, discretization and solution of the resulting linear system.As an underlying data structure for the adaptively resolved data and solution ap-proximations we decided to use a hash table approach. Hash tables are well knownin computer science to store and retrieve data with minimal storage overhead andnearly direct access properties (in a statistical sense). However up to now, theywere not yet used for the adaptive multilevel treatment of PDEs. There, tree-likedata structures are the state of the art. But especially in the 3D and higher dimen-sional case such an approach is complicated, programming is very di�cult and alarge storage overhead is involved. These disadvantages are avoided by using hashtables. Furthermore, due to its inherent tensor product approach, the method isperfectly suited for higher-dimensional PDEs.Our approach is closely related to the sparse grid method [9, 10, 16, 21, 42] andcan be seen as an e�cient implementation of it using �nite di�erence stencils. LetN = 2n, where n denotes the level of discretization. In case of piecewise d-linearhierarchical basis functions it can be shown [9, 20, 42] that the number of degreesof freedom and, using a multigrid method, thus the amount of operations to solvean elliptic PDE is proportional to N � (logN )d�1 whereas the achieved accuracy isO(N�2 �(logN )d�1) with respect to the L2- and L1-norm and O(N�1) with respectto the energy norm. This holds under the assumption that the solution ful�lls aspeci�c smoothness requirement, i.e. that its 2d-th mixed derivative is bounded.In case that this prerequisite is not ful�lled, i.e. in case of singularities or strongvariations in the solution, adaptive re�nement helps and allows to maintain thecomplexity advantage of sparse grids also in these cases.Note �nally that the sparse grid approach (without adaptive re�nement) is closelyrelated to the technique of hyperbolic crosses [2], boolean methods [13] and discreteblending [6, 15, 28]. It can even be tracked back to Smolyak [38], see also [39].The outline of this paper is as follows: In section 2 we give the subspace splittingrepresentation of a function based on the tensor product approach and, besidesome notation, we introduce �nite dimensional approximations to the function bytruncating the in�nite series associated to the multiscale representation. This leadsto a �nite set of active level and index number pairs with associated hierarchicalcoe�cients. This information can be stored in a hash table data structure on topof which multiscale algorithms can work easily.Section 3 discusses how a whole algebra of operations and operators on such trun-cated function representations can be realized. This is in a similar spirit as round o�error analysis for oating point numbers. We consider here the addition, subtrac-tion and multiplication of two function representations and introduce also methodsto implement discrete di�erential operators for �rst and second derivatives whichare based on �nite di�erences. 2



In section 4 we use these operations and operators to discretize (elliptic) partialdi�erential equations. There, the right hand side and the coe�cient functions ofthe di�erential operator must be resolved up to a prescribed accuracy. Then, forrunning an iterative method, the residual and thus the action of the di�erentialoperator on the actual iterate must be computed. This is done by means of theoperations and operators of the previous section. As basic iterative method weuse the BiCG approach. Besides, multilevel preconditioners and multilevel solverscan also be constructed. The existing algorithms can be combined easily to anoverall adaptive re�nement and solution procedure. Section 6 presents the resultsof numerical experiments with our sparse grid �nite di�erence method. Finally wegive some concluding remarks.2 Multilevel representation of functions2.1 Multilevel subspace splitting and tensor product basisLet �
 := [0; 1]d be the d-dimensional unit cube and let us consider the family ofgrids f
lgl2INdon 
 with mesh size hl := (h1; ::; hd) := (2�l1 ; ::; 2�ld), i.e. with in general di�erentmesh sizes in the di�erent coordinate directions, but equidistant mesh size withrespect to one coordinate direction. The grid points contained in a grid 
l are thepoints xl;i := (xl1;i1 ; ::; xld;id)with xlj;ij := ij � hlj = ij � 2�lj ; ij = 0; ::; 2lj . For reasons of simplicity, we restrictourselves in the following to functions on 
 that vanish on the boundary. Weconsider on each of these grids the space of piecewise d-linear functionsVl := spanf�l;i; ij = 1; ::; 2lj � 1; j = 1; ::; dgwhich is spanned by the usual d-dimensional hat functions�l;i(x) := dYj=1�lj;ij (xj)where x := (x1; ::; xd). Here, the 1D-functions �lj ;ij (xj) can be created from aunique one-dimensional mother function�(xj) = � 1� jxjj if x 2 (�1; 1);0 otherwise,by dilation and translation, i.e.�lj ;ij (xj) = ��xj � ij � hj2�lj � :Here and in the following, l = (l1; ::; ld) 2 INd; lj > 0, is a multi-indexwhich indicatesthe number of a level of a grid or space, and i = (i1; ::; id) 2 INd; ij = 1; ::; 2lj � 1,is a multi-index which indicates the location of an interior grid point xl;i and thecorresponding center of the basis function �l;i(x).We now can de�ne the di�erence spacesWl := Vl 	 dXj=1 Vl�ej3



where ej denotes the j-th unit vector. To complete this de�nition we formally setVl�ej = 0 if lj = 0:We then have the following multilevel splitting of the Hilbert spaceV = 1Xl1=1 ::: 1Xld=1W(l1;::ld) =Ml�1Wl (1)which is up to completion the underlying Sobolev space, i.e �V = H10 . Here andin the following, let 1 := (1; ::; 1), let � denote elementwise comparison and letjlj1 := maxdj=1 lj denote the discrete L1-norm. Note that the splitting is into adirect sum by de�nition.Note also that with the discrete spacesV (1)n := Ml�1;jlj1�nWlthe limit limn!1V (1)n = limn!1 Ml�1;jlj1�nWlexists because V (1)n � V (1)n+1 and S1n=1 V (1)n is dense in H10 (�
).Since Wl = spanf�l;i(x); ij = 1; ::; 2lj � 1; ij odd; j = 1; ::; dg; (2)the family of functionsf�l;i(x); ij = 1; ::; 2lj � 1; ij odd ; j = 1; ::; dgl�1 (3)is just a hierarchical basis [14, 40, 41] of H10([0; 1]d) which generalizes the one-dimensional hierarchical basis of [14] to the d-dimensional case by means of a tensorproduct approach. Note here that the supports of all basis functions �l;i(x) are mu-tually disjoint which span Wl. Furthermore, note similarities with the constructionin [26].Now, any function of u 2 V can be split accordingly byu =Xl�1 ul(x) =Xl�1Xi2Il ul;i � �l;i(x) where ul(x) 2Wl (4)and ul(x) =Xi2Il ul;i � �l;i(x) (5)where ul;i 2 IR are the coe�cient values of the hierarchical basis representation andIl denotes the set of indicesIl := f(i1; ::; id) 2 INd; ij = 1; ::; 2lj � 1; ij odd; j = 1; ::; dg:Note that since (3) forms a basis of V , the coe�cient values are determined uniquely.Now we consider the coe�cient values ul;i in more detail. They can be computedfrom the function values u(xl;i) in the following way:ul;i = 0@ dYj=1 Ixlj ;ij ;lj1Au =: Ixl;i;lu: (6)4



where Ixlj ;ij ;lj := � �12 1 �12 �xlj;ij ;lj 0 < ij < 2lj : (7)This is due to the de�nition of the spaces Wl and their basis functions (2). Here,as usual in multigrid terminology, Ixl;i;l denotes a d-dimensional stencil which givesthe coe�cients for a linear combination of nodal values of u, see also [24], p. 48(4.2.12).As described in more detail in [11, 42], two partial integration steps for each co-ordinate direction lead us from (6) to the following representation in terms of anintegral transformation.Lemma 1: Let  lj ;ij = �2�(lj+1) � �lj;ij (xj), and let  l;i(x) := Qdj=1  lj ;ij (xj).Furthermore, let u be such that its derivative @2du=Qdj=1 @x2j exists and belongs toC0(�
). For any coe�cient value ul;i in the representation (4) there holds:ul;i = Z
 l;i(x) � @2du(x)Qdj=1 @x2j d
: (8)For functions not vanishing on the boundary, similar formulas exist for the coe�-cients which belong to points situated on the boundary of the domain. Dependingon the dimension of the boundary manifold these formulas involve less derivativesand some Dirac functions in the product de�nition of  l;i. Note that if the consid-ered function u is not smooth enough, i.e. not su�ciently di�erentiable, then a moregeneral formula exists. It involves the 2d-th variation of a function instead of the2d-th derivative and the whole de�nition boils down to that of the variation in thesense of Hardy and Krause, see [33], pp. 19-20. Note furthermore that the compu-tation of the hierarchical coe�cients can be performed by d successive applicationsof the one-dimensional transformation due to the tensor product construction ofthe hierarchical basis.The size of the coe�cients ul;i reects the smoothness of the function u. For su�-ciently smooth functions, ul;i is proportional to 2�<r;l>, with < r; l >=Pdj=1 rj � lj,r = (r1; :::; rd), and rj > 0 depending on the degree of smoothness with respect tothe j� th coordinate direction. But also for non-smooth functions, singularities areindicated by the size and behavior of the coe�cients similar to wavelets [29, 30].This is not a surprise since our hierarchical basis can be seen as some sort of waveletin a weak distributional sense. Successive partial integration of (8) results inul;i = Z
 @2d l;i(x)Qdj=1 @x2j � u d
 =: Z
 !l;i(x) � u d
with !l;i(x) equal to a linear combination of Dirac pulses with similar oscillatingstructure as certain wavelets.2.2 Finite dimensional subspaces, truncationWe now turn to �nite dimensional subspaces and the corresponding interpolants ofa function. The usual case is that of an uniform grid, i.e.un = Xjlj1�nXi ul;i � �l;iwhere n 2 IN is a given number which denotes the level of discretization and jlj1 =maxj lj . The associated interpolation error estimates are well known and thus notrepeated here. 5



Besides, our tensor product approach also allows for the following approach, whichis known under the name sparse grid, see also [9, 10, 11, 16, 17, 20, 21]. Letjlj1 :=Pdj=1 lj and considerun;S = Xjlj1�n+d�1Xi ul;i � �l;i: (9)The dimension of the underlying sparse grid space is onlyO(nd�1 �2n) in comparisonto O(2d�n) of that of the regular full grid space. However the accuracy of the sparsegrid interpolant un;S is nearly that of the full grid interpolant un, i.e. it is of theorder O(nd�1�2�2n) with respect to the L2- and L1-norm and it is even O(2�n) withrespect to the energy norm provided that the function u is su�ciently smooth. Forthe above estimates, basically the @2d=Qdj=1-th derivative of u must be bounded.If this is not ful�lled, i.e. especially in case of singularities or steep boundary layersetc., we have to use su�ciently re�ned sparse grids instead. To this end, let " 2 IRbe a given threshold. Now we switch from the in�nite representation (4) to the(hopefully) �nite dimensional approximationu";jj:jj(x) = Xl; ijjul;i � �l;i(x)jj � " ul;i � �l;i(x) (10)i.e. we simply omit all basis functions and coe�cients whose values with respect toa given jj:jj are smaller than the threshold ". Here, depending on the chosen normor semi-norm, di�erent approaches can be obtained. We have the error indicatorsjjul;i � �l;i(x)jj = jul;ij � jj�l;i(x)jj =: jul;ij � l (11)where l = 8>><>>: 1 for jj:jj= jj:jjL1;2�d � 2�jlj1 for jj:jj= jj:jjL1;(2=3)d=2 � 2�jlj1=2 for jj:jj= jj:jjL2;(2 � (2=3)d�1 � 2�jlj1 �Pdj=1 22lj )1=2 for jj:jj= jj:jjH1:At the boundary of �
, the necessary modi�cations are obvious. Note that (in theinterior of �
) the value l is independent of the index i but depends only on thelevel number l. This is due to the construction of the basis functions by dilatationand translation.The most local choice is surely the maximum-norm. Then the thresholding boilsdown to simply taking the absolute value of the respective hierarchical coe�cient.However for practical purposes, this norm can be too sharp and may result innon-terminating algorithms. This can be seen easily form the following simple one-dimensional example: Let u(x) = � 0 0 � x < 1=2;1 1=2 � x � 1:A short calculation shows that the hierarchical coe�cients ul;i with i = 2l�1�1; l =2; 3; :::;1possess the value 1=2 whereas all other interior coe�cients are zero (exceptu1;1 = 1=2). For the boundary coe�cients we have u0;0 = 0 and u0;1 = 1. Thus,a local but in�nite tail of coe�cients with value 1/2 appears next to the jump.However, for the other norms, additional damping values come in. Consequentlyalso for the values with index i = 2l�1 � 1; l = 2; 3; :::;1 the threshold criterionjul;ij�l < " gets ful�lled for a su�cient large level number l. Then, we obtain a �nite6



set of active indices also for non-di�erentiable functions. In practical applicationsoften a combination of the maximum-norm and an other norm gives good results.Furthermore, from a practical point of view, there is an other di�culty. We cannot �rst compute the in�nite table of coe�cients ul;i and then omit the respectiveentries by means of the truncation criterion in a bottom up approach. Instead,we should proceed in a top down approach recursively level by level starting fromthe coarsest one. This is demonstrated by the following simple recursive bisectionprocedure for the one-dimensional case:adapt(l; i; ")hv := u(xl;i)� (u(xl;i�1) + u(xl;i+1))=2;if jhvj � jj�l;i(x)jj < " then skip;else ul;i := hv;adapt(l + 1; 2i� 1; ");adapt(l + 1; 2i+ 1; ");endifFor a given one-dimensional continuous function u, this procedure builds up theinterior coe�cient values ul;i of the truncated hierarchical representation. Therepresentation is complete with u0;0 = u(x0;0), u0;1 = u(x0;1). The modi�cationfor the d-dimensional case is obvious, the parts of the function u living on theboundaries must also be resolved adaptively.Then, it may happen that such a procedure terminates too early and does notresolve and compute large coe�cients on very �ne levels. An extreme exampleis the simple one-dimensional function u(x) = sin(x) on [0; 2�]. Here we haveu1;1 = (sin(0) + sin(2�))=2 � sin(�) = 0 and the above procedure terminates im-mediately. Of course, this problem can be circumvented by a more clever errorindicator which, for example, also takes the values of the hierarchical neighborsinto account or involves more sophisticated area weighted norms. But in principlesuch modi�cations of the truncation criterion are useless: Give me your error in-dicator and I give you a function for which the recursive resolution procedure willfail. The same problem appears if the function u is just a small spike on a very�ne level, for example u(x) = �20;35. There is no hope to detect it by a recursivebisection approach and to resolve such a function properly.Furthermore, for practical purposes, the descriptive notation (10) should not allowfor 'holes' in the table of the ul;i-coe�cient values. We therefore restrict our notation(10) to u";jj:jj(x) = X(l;i)2A(u;";jj:jj)ul;i � �l;i(x) (12)where A(u; "; jj:jj) denotes the set of 'active' indices, i.e.A(u; "; jj:jj) := 8<: (l; i) : i 2 Il; jjul;i � �l;i(x)jj � " _9 (k; j) : k � l; jjuk;j � �k;j(x)jj � ";supp(�k;j) \ supp(�l;i) 6= ; 9=; : (13)Here, supp(�) = fx : �(x) > 0g is the open support of �.For the following assume that we have constructed a �nite table of active hierarchicalcoe�cients ul;i which are associated to the active index set A(u; "; jj:jj). Of course,by de�nition, these coe�cients are not equivalent (except of the corner points of ourd-dimensional cube) to the values the function u possesses in the associated pointsxl;i. Now the question arises how these nodal values u(xl;i) can be reconstructedfrom the hierarchical coe�cients ul;i of our �nite table. To this end, consider againthe simple one-dimensional case: 7



E1(l; i; ua; ub)if 9ul;i thennl;i := (ua+ ub)=2 + ul;iE1(l + 1; 2i� 1; ua; nl;i)E1(l + 1; 2i+ 1; nl;i; ub)else skip;endif H1(l; i; ua; ub)if 9nl;i thenul;i := nl;i � (ua+ ub)=2H1(l + 1; 2i� 1; ua; nl;i)H1(l + 1; 2i+ 1; nl;i; ub)else skip;endifWith the procedure E1, the nodal values are reconstructed and stored in nl;i. Westart with E1(1; 1; u(0); u(1)). Analogously, the computation of the hierarchicalcoe�cients ul;i from a �nite table of given nodal values nl;i is performed by theprocedure H1. We start with H1(1; 1; u(0); u(1)). Note that these transformationsare closely related to the prolongation procedure in classical multigrid and thepyramid scheme and the re�nement equation for the wavelet transformation. Wesee that, in both cases, we proceed level by level due to the recursion. From this itgets clear why we don't want to allow for 'holes' in the table of active coe�cients.The procedures E1 and H1 implement the matrix vector multiplications~n = E1~u ~u = H1~nwhere ~u and ~n contains the active hierarchical and nodal values respectively. Forreasons of simplicity we denote the associated matrices with the same letters as thealgorithms.The generalization of the transformations H1 and E1 to the d-dimensional case isstraightforward: All we have to do is to call the procedures of the one-dimensionalcase successively for all dimensions d under consideration on all d � 1-dimensionalmanifolds, see also [10] for more details on that dimension-recursive process. To thisend we de�ne the d-dimensional operators Hj and Ej where the transformations takeplace in the j-th coordinate direction byHj := I1 
 :::
 Ij�1 
Hj 
 Ij+1 
 :::
 Id = 0@ dOi=1;i 6=j Ii1A
Hj;Ej := I1 
 :::
 Ij�1 
Ej 
 Ij+1 
 :::
 Id = 0@ dOi=1;i 6=j Ii1A 
Ej :Here, Hj and Ej correspond to the one-dimensional transformations H1 and E1(now used for the j-th coordinate) and Ij denotes the one-dimensional identity forthe j-th coordinate. Then, we obtain withH = H1 � ::: � Hd =:dj=1HjE = E1 � ::: � Ed =:dj=1Ejthe transformations involving all coordinate directions.Note that the number of operations involved in H and E is proportional to thenumber of active indices.Analogously to adapt, a procedure compress can be written easily which deletes in abottom up way the active coe�cients ul;i with criterion jjul;i ��l;ijj < ". Here again,'holes' in the resulting table of active indices must be avoided. The generalizationto the d-dimensional case is straightforward.8



2.3 Hash table storage as data structure for multiscale meth-odsNow we are in the following situation: We (hopefully) resolved a continuous functionby a top down approach up to a prescribed accuracy using the threshold ". In otherwords we computed a �nite set of active indices and the corresponding coe�cientvalues. We now have to �nd a data structure which allows to store, to retrieve andto access these data e�ciently.A �rst approach might be a binary tree structure. Tree data structures are quitecommon in many adaptive codes for the multilevel solution of PDEs [4, 5, 32,36]. There, di�erent trees represent the hierarchies of nodes, edges and elements,while entities on one level of a tree represent one grid. Re�ning the �nest gridmeans adding new leaves to the tree. However, in order to administrate the nodes(unknowns), edges (sti�ness matrix) and elements (grid), the leaves of the trees haveto be linked. This results in a number of pointers, both for the tree and for thelinks between the trees. Many software packages need a value of 400 and more bytesof memory per unknown for a scalar problem. In three dimensions, numbers canbe even higher. Thus, there is more memory required for the administration of thedata than for the numerical data itself. But note the very economical data structureBASIS3 [27] which only uses about 80 bytes additional memory per unknown in twoand three-dimensions.The tree approach for our sparse grid method is inspired by the recursive bisectionalgorithm to build the table of active coe�cients. For the higher dimensional case,we could use the tensor product structure, i.e. we could work recursively in thenumber of dimensions and would obtain a binary tree (d-th dimension) with nodesthat have pointers to binary trees (d � 1-th dimension), and so on. To understandthis better, consider the two-dimensional case. Every row in the adaptive sparsegrid is a one-dimensional adaptive grid which can be represented by a binary treecontaining the corresponding grid points. The set of all existing rows in the grid canbe represented as a binary tree with pointers in each node to the row grid lines. Themodi�cation for the boundaries is obvious. Besides, also graph like data structurescan be used. For more details, see [3].Now, performing numerical operations on one grid often requires a complete treetraversal. In addition to the computational operations, a number of indexing andadministration operations have to be performed which degrades overall performance.Of course it is possible to eliminate some of the tree traversals by establishingadditional data structures like linked lists or sparse matrices at the expense ofadditional memory, but this results in more storage requirements and complicatesprogramming.Therefore, we decided to use a hash table concept [31] instead. It is quite wellknown in computer science for many years but, as far as we know, it was neverapplied for adaptive multiscale methods. Thus, in the following, we discard the treeapproach and consider directly our plain data. There, the structure information issimply the �nite set of active indices (l; i) 2 A(u; "; jj:jj).The idea of hash table storage is to map each entity (in our case the index pair(l; i) 2 IN2d) to a hash-key which is used as an address in the hash table. The entityand its associated data are stored and can be retrieved at that address in the hashtable which is implemented as a linear array of cells (buckets). The mapping is doneby a (deterministic) hash function. Since there are many more possible di�erententities than di�erent hash keys, the hash function is not injective. Algorithms toresolve collisions are needed. It may also happen that some entries in the hash tableare left empty, because no present entity is mapped to that key.To deal with the collision case, basically two approaches are commonly used. The�rst is the double hashing technique. Here, in case of a collision we compute a new9



adress by adding (modulo size of the hash table) to the present adress the result ofthe evaluation of a second hash function. This step is iterated until, for examplein the insertion case, a free cell in the hash table is found. (Of course if the hashtable is full, it must be su�ciently enlarged.) The other technique, which we willuse in the following, resolves the collision case by the so-called chaining approach.Here, instead of only one data entry per hash table adress, a whole list of entriesis dynamically stored. In case of a collision, this list is searched and eventuallyenlarged. For an example of insertion of new data in case of a collision see Figure1. The analogous approach is used in retrieve and delete operations. For furtherdetails on hash tables, collision treatment and optimal strategies see [31].
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up,qFigure 1: Collision treatment by chaining for the case of insertion of data.Hash tables allow to deal with locally adapted or compressed data in a simple way.They give more or less direct access to the stored data (if the hash function scattersthe entries broad enough and there are enough di�erent cells in the hash table), i.e.they are proven to have a O(1) complexity with a low constant if a statistical settingis assumed. Furthermore, they need no additional storage overhead for logicalconnectivities, like tree-type data structures which are usually used in adaptive�nite element codes, see [5] and the references cited therein. Finally, they areeasy to program and to handle and they allow a straightforward implementationof multilevel algorithms on top of them. Meanwhile we applied the hash storagetechnique also successfully for a conventional adaptive multigrid method, see [22,23].Besides a hand-written code, we presently use the hash table implementation ofan extended version of the C++standard template library (STL) [35], which useschaining, i.e. linked lists, for the resolution of collisions and which provides auto-matic resizing. So the number of cells will be kept proportional to the number ofentries and we will only have to bother with a well suited hash function.We developed di�erent hash functions and tested them for adaptively re�ned sparsegrids in the case of smooth and singular functions (point- and line singularities) fortwo-, three- and higher-dimensional cases. We used the hash functionh(l; i; d) = 0@ dXj=1 �2lj � ij� � P (j) � P (p� j)1Amod m (14)with p = 43 � (d� 2) � 10, where P (k) is the k-th prime number and m denotes thesize of the hash table. The form of this hash function is gained by a straightforwardgeneralization of the well known principles for hash functions to the d-dimensionalcase. The speci�c choice of the above prime numbers was determined by exhaustivenumerical experiments. Here, we considered various types of lower-dimensional10



Figure 2: Smooth function, u(x; y) = sinh(�(1 � x)) sin(�y)= sinh(�); " = 1:9 �10�6;
 = [0; 1]2, the size of the hash table is 3 � 104.singular functions (point-, line-, surface-type singularities, etc.) as well as smoothfunctions with up to nine dimensions. It turned out that in all considered cases(smooth and singular, low and high-dimensional) the hash function scatters the dataquite well and distributes them more or less equally over the hash-table. Examplesare given in Figure 2, 3 and 4.There, we show the function (upper left) and the grid obtained by adaptive re�ne-ment of the function with a given tolerance " (upper right). Furthermore, we givethe distribution of the points in the hash table (lower left). The x-axis denotes theaddress in the hash table, the y-axis gives the number of data to be stored underthis location by chaining, i.e. it gives the length of the respective chain. Finally,we show a diagram illustrating the number of chains with the same length (lowerright). The x-axis denotes the length of the chain, the y-axis counts the numberof chains with length x. For both, the smooth function and the functions withpoint singularity and line singularity where strong adaptive re�nement takes place,we clearly see that the hash function works well: The data get equally distributedover the hash table, the hash table is equally �lled and the involved chains are notdegenerated.The costs of a hash table access consist of the evaluation of the hash function andthe collision treatment. The evaluation of (14) involves 4d integer operations if we11



Figure 3: Regularized point singularity, u(x; y) = 1=(j10�3 � x2 � y2j + �); � =10�3; " = 10�2;
 = [�1; 1]2, the size of the hash table is 540:672.precompute and store the values P (j) � P (p� j). The collision treatment involvesq comparisons of level and index number pairs (2d integer comparisons) where qdenotes the respective chain length. Altogether, the costs of a hash table access arebounded by (4 + ~q � 2) � d (15)integer operations with ~q denoting the maximal chain length. If we use a hash tableimplementation with automatic resizing like that of the C++standard templatelibrary, we can control the maximal chain length explicitly.Using such a hash table approach, programming of algorithms that work with �nitedimensional approximations of functions is easy. We address the data and workwith them simply by means of the multi-indices l and i. All code can be writtenjust using these indices as (abstract) data structure and the nasty details where andhow the data are stored are completely hidden in the hash table module.3 Operations and operatorsUp to now we are able to represent and store �nite dimensional approximations tofunctions properly. Now, we turn to standard operations like addition, subtraction,12



Figure 4: Regularized line singularity, u(x; y) = 1=(j0:3�x2�y2j+�); � = 10�1; " =5 � 10�5, the size of the hash table is 11:264.multiplication, etc., working with such "-truncated functions. Furthermore, weconsider di�erential operators on such functions.3.1 An algebra of function operationsUsing the representation (4) of a continuous function, it is directly clear how theaddition or subtraction of two functions can be performed: All we have to dois to add or subtract their coe�cients to obtain the result with respect to therepresentation (4), i.e.u� v =Xl;i ul;i � �l;i(x) �Xl;i vl;i � �l;i(x) =Xl;i (ul;i � vl;i) � �l;i(x):In the same way, we can proceed in the �nite dimensional case. Due to the �nitenumber of active coe�cients, the summation process of the coe�cients is �nite. Ofcourse, the summation must be extended to the union of the two index sets inducedby u and v and e.g. di�erent truncation values "1 and "2, i.e.u"1;jj:jj � v"2;jj:jj = X(l;i)2A(u;"1;jj:jj)[A(v;"2;jj:jj)(ul;i � vl;i) � �l;i(x);13



with missing coe�cients taken to be zero.The accuracy of the result can be controlled using the following theorem.Theorem 1: Let u"1;jj:jj1 (x) and u"2;jj:jj2 (x) be truncated functions of u1(x) and u2(x)with active index sets A1 and A2 in the sense of (13) with the thresholds "1 and "2and error boundsju1(x) � u"1;jj:jj1 (x)j < ~"1; ju2(x) � u"2;jj:jj2 (x)j < ~"2:Then, the error bound for u"11 (x) + u"22 (x) is ~"1 + ~"2 on the index set A3 which isobtained by the union of the two index sets A1 and A2.Proof: j (u1(x) + u2(x))� �u"1;jj:jj1 (x) + u"2;jj:jj2 (x)� j = (16)= j�u1(x) � u"1;jj:jj1 (x)� + �u2(x) � u"2;jj:jj2 (x)� j� ju1(x) � u"1;jj:jj1 (x)j + ju2(x) � u"2;jj:jj2 (x)j� ~"1 + ~"2 2Note that the truncation parameters "1; "2 and the accuracies ~"1; ~"2 are in generaldi�erent but closely related. Provided that the solution is su�ciently smooth, theyare proportional to each other with a proportionality constant depending on thenorm used in the adaptive re�nement process. Otherwise things are more compli-cated, but here the hierarchical basis theory [14] and the wavelet theory [29, 30]give further insight, see also [12].However, when we consider the multiplication of two functions u and v in hier-archical representation, things are not so simple any more. Now the pointwisemultiplication of pairs of basis functions is involved, i.e.u � v =Xl;i ul;i � �l;i(x) �Xl;i vl;i � �l;i(x) =Xl;i Xk;j (ul;i � vk;j) � �l;i(x) � �k;j(x)but this results in general not more directly in a representation of the type (4). Wecould try to express each product of two basis functions (which can be locally aquadratic function) by means of the hierarchical representation in an in�nite series,i.e. �l;i(x) � �k;j(x) =:Xm;rwl;i;k;jm;r �m;r(x)but the computation of the coe�cients wl;i;k;jm;r and their reordering and summationis complicated and expensive. Furthermore, in the �nite dimensional case, this stillwould require an in�nite series representation for the result.Therefore, we proceed as follows: We evaluate the multiplication pointwise in theset of points fxl;i : (l; i) 2 A(u; "1; jj:jj) [ A(v; "2; jj:jj)g. To this end, for u"1;jj:jjand v"2;jj:jj, we compute recursively by means of E the nodal values in the pointswith indices that belong to the union of the two active index sets. Then, for eachpoint, we multiply the associated values. This gives us (pointwise) the result ofthe multiplication of the two approximate functions. Now, the problem remains tospan a continuous function again. To this end, we use the values in the points tocompute the hierarchical representation of the result by means of H. Finally, to getrid of resulting very small coe�cients, we can make use of the compress procedure.Note that, in the intermediate step, we have no longer a basis representation. Fur-thermore, between grid points we introduced a slight error, which however can be14



shown to be of the size of the approximation order only. Thus, our approach usesthe multiplied nodal values to reconstruct by linear interpolation the result of thefunction multiplication. This is in the same spirit as [1, 25].The relative accuracy of the result can be controlled using the following theorem.Theorem 2: Let u"1;jj:jj1 (x) and u"2;jj:jj2 (x) be truncated functions of u1(x) and u2(x)with active index sets A1 and A2 in the sense of (13) with the thresholds "1 and "2and the error boundsju1(x) � u"1;jj:jj1 (x)j < "1; ju2(x) � u"2;jj:jj2 (x)j < "2:Then, error bounds for u"1;jj:jj1 (x) � u"2;jj:jj2 (x) areju1(x)j � ~"2 + ~"1 � ju"2;jj:jj2 (x)j and ~"1 � ju2(x)j + ju"1;jj:jj1 (x)j � ~"2;respectively, and a symmetric, but weaker error bound for u"1;jj:jj1 (x) � u"2;jj:jj2 (x) ismax�ju2(x)j; ju"2;jj:jj2 (x)j� � ~"1 +max�ju1(x)j; ju"1;jj:jj1 (x)j� � ~"2on the set A3 = A1 [A2.Proof:ju1(x) � u2(x)� u"1;jj:jj1 (x) � u"2;jj:jj2 (x)j == ju1(x) � u2(x) � u"1;jj:jj1 (x) � u"2;jj:jj2 (x) + =0z }| {u1(x) � u"2;jj:jj2 (x) � u1(x) � u"2;jj:jj2 (x) j= ju1(x) � �u2(x) � u"2;jj:jj2 (x)�+ �u1(x) � u"1;jj:jj1 (x)� � u"2;jj:jj2 (x)j� ju1(x)j � ~"2 + ~"1 � ju"2;jj:jj2 (x)jAnalogously, we obtainju1(x) � u2(x)� u"1;jj:jj1 (x) � u"2;jj:jj2 (x)j � ~"1 � ju2(x)j + ju"1;jj:jj1 (x)j � ~"2:Summation and division by 2 gives �nallyju1(x) � u2(x) � u"1;jj:jj1 (x) � u"2;jj:jj2 (x))j �� 12 ��ju2(x)j+ ju"2;jj:jj2 (x)j� � ~"1 + �ju1(x)j + ju"1;jj:jj1 (x)j� � ~"2�� max�ju2(x)j; ju"2;jj:jj2 (x)j� � ~"1 +max�ju1(x)j; ju"1;jj:jj1 (x)j� � ~"2 2An analogous result (with obvious modi�cations and restrictions, division by zero)can be shown for the division of two functions.3.2 Di�erential operators and �nite di�erencesIn this section we want to develop �nite di�erence operators for second order ellipticpartial di�erential operators L of the typeL = dXi=1 dXj=1 aij(x) @@xi @@xj + dXi=1 bi(x) @@xi + c(x) (17)in d dimensions. The application of the operator L to u involves summations andmultiplications of functions and �rst and second order derivatives. In the previous15



subsection, we described how to implement the summation and multiplication ofdiscrete functions. What is left is the realization of the derivatives.We consider the di�erentiation of a functions u in hierarchical representation. Nowthe di�erentiation of the basis functions is required, i.e.@u@xj = @@xj Xl;i ul;i � �l;i(x) =Xl;i ul;i � @�l;i(x)@xj ;but this results, except for the constant function case, not in a representation of thetype (4) with basis functions �l;i. For the respective coordinate direction, we couldswitch to the Haar system instead or we could try to express each di�erentiatedbasis function (which is, for the respective coordinate direction, locally a constantfunction involving jumps) by means of the hierarchical representation in an in�niteseries, i.e. @�l;i(x)@xj =:Xm;rwl;im;r � �m;r(x);but the computation of the coe�cients wl;im;r and their reordering and summationis costly and complicated. Furthermore, in the �nite dimensional case, this againwould require an in�nite series representation for the result due to the jumps.Therefore, we proceed as follows: For a derivative in the j� th coordinate direction,we apply Ej to the hierarchical coe�cients, i.e. we perform a transformation tonodal representation but only with respect to the j� th coordinate direction. Then,for every interior grid point, we apply a standard 1D di�erence stencil. It is chosenas the narrowest stencil (in the j-th coordinate direction) available on the sparsegrid. Finally we use Hj to obtain the representation of the result in hierarchicalbasis. For regular sparse grids, compare (9), the well-known second order �nitedi�erence stencil for the �rst derivative (centered di�erence)12 � 2�lmaxj � �1 0 1 �xlj;ij ;lmaxj (18)or the both �rst order stencils (backward or forward di�erence)12�lmaxj � �1 1 0 �xlj ;ij ;lmaxj ; 12�lmaxj � 0 �1 1 �xlj;ij ;lmaxj (19)can be applied where lmaxj := n + d � 1 �Pdj0=1;j0 6=j lj0 . For the approximationof a second derivative we consider the usual stencil12�2�lmaxj � 1 �2 1 �xlj ;ij ;lmaxj : (20)These stencils belong for each interior grid point to an equidistant grid (in the j-thcoordinate direction) with local mesh size 2�lmaxj .In the adaptive re�nement case, we have in general no longer an equidistant grid.Then, the stencil for each node is still chosen as the narrowest �nite di�erence stencil(in the j-th coordinate direction) available on the adaptive sparse grid. Its entriesare now the coe�cients known from �nite di�erences on non-uniform grids.We obtain the operator @2@x2j � DSjj := Hj � Djj � Ejfor the second derivative in direction j and the operators@+;�;0@xj � DS;+;�;0j := Hj � D+;�;0j � Ej16



for the �rst derivative in direction j, respectively. Here, in the regular sparse gridcase, Djj represents the application of the one-dimensional stencil (20) for coordi-nate direction j in each interior grid point and D0;+;�j represents the application ofthe one-dimensional stencils (18) and (19), respectively, for coordinate direction jin each interior grid point. In the adaptive case, their non-uniform analogues aretaken.For example, the costs of an application of the d-dimensional Laplacian Pdj=1DSjjconsist of the costs of the operators Hj , Djj, Hj and the costs of the summationover d. To be precise, we haved � (cost(Hj) + cost(Djj) + cost(Ej)) + (d� 1) � cost(+):Let M denotes the total amount of sparse grid points. Since cost(Hj) = cost(Ej) =3M , cost(Djj) = 4M (or 6M in the adaptive case, respectively) and cost(+) = M(neglecting boundary e�ects), we obtain altogether a work count ofwork( dXj=1DSjj) = (11 � d� 1) �Mor (13 � d � 1) � M oating point operations, respectively. Additionally, besides(2M + 2M ) � d simple integer in-/decrements (get neighboring points in Hj andEj, j = 1; :::; d) and a few integer operations plus some tricky bit mask operations(get nearest neighboring points in Djj, j = 1; ::; d), the integer operation overheadaccording to (15) for a total of approximately 10d �M hash table accesses must betaken into account. In the general case of adaptively re�ned sparse grids, �ndingthe index pairs of the nearest neighboring points in Djj is more involved. Here, analternative implementation possibility is to store and update these indices explicitlyand thus to trade work against storage. Note that the overall work count stillcompares favorable with many other existing adaptive implementations for two-and three-dimensional problems.We also can switch from the hierarchical representation to the representation interms of pure nodal values in each grid point via an equivalency transformationE � DS;(+;�;0)j(j) � H. We obtainD̂Sjj := E � Hj � Djj � Ej � H = E6=j � Djj � H6=j (21)for the second derivative in direction j andD̂S;+;�;0j := E � Hj � D+;�;0j � Ej � H = E 6=j � D+;�;0j � H6=jfor the �rst derivatives in direction j, respectively. Here, H6=j := Hj � E denotesthe transformation from nodal representation to hierarchical representation (in theproduct sense) for all directions except the j-th coordinate direction, and E 6=j :=Ej � H denotes the analogue for the inverse transformation. Note that the spectralproperties of both representations are the same due to E = H�1.At least for the case of the regular sparse grid, using Taylor series expansion for thedi�erence stencil, the transformation and its inverse, plugging these into each otherand performing a lengthy and technical computation, the consistency order of ourhierarchical di�erence operators can be proven, see [37] for details.Theorem 3: The operator D̂Sjj is a second order consistent discretization for thesecond derivative on the regular sparse grid of level n, 1 � j � d, i.e.jjD̂SjjRSu� ~RS�ujj1 � c � h2jjujjC3+d�1;1(�
) (22)17



for all u 2 C3+d�1;1(�
). Here, h = 2�n and RS and ~RS denote pointwise restrictionmappings to the sparse grid points of level n.The operator D̂S;0j is a second order consistent discretization for the �rst derivativeon the regular sparse grid of level n, and the operators D̂S;+;�j are �rst order con-sistent discretizations for the �rst derivative on the regular sparse grid of level n,1 � j � d.Proof: See [37]. 2Now, as an example, we consider the discretization DS11 + DS22 of the Laplacianin two dimensions on a regular sparse grid. Note �rst that the eigenvalues of thecorresponding matrix are real numbers despite the non-symmetry of the matrix.The resulting largest and smallest eigenvalues are given in Table 1.Table 1: Eigenvalues �min and �max and condition number � of the discretizedLaplacian DS11 + DS22, regular sparse grid case.level n �min �max � factor1 18.387503 69.61 3.79 |2 19.273832 263.30 13.66 3.613 19.587081 1031.81 52.67 3.864 19.691734 4103.95 208.43 3.965 19.724926 16391.99 831.24 3.996 19.735029 65543.99 3320.36 3.99We see that �min converges clearly to 2 � �2 = 19:739209, i.e. to the smallesteigenvalue of the continuous operator. Furthermore we see from Table 1 that thecondition number is proportional to 22�n like that of the 5 point stencil matrix ona regular uniform grid. From this and Theorem 3 (consistency), we can infer thatour discretization is stable for regular sparse grids.Mixed derivatives which are put together from second order discretizations D̂S;0j forthe �rst derivatives in di�erent coordinate directions possess also consistencies ofsecond order.In the case of adaptively re�ned sparse grids, in general, we encounter non-equidistantgrid spacing when we want to apply our one-dimensional stencils within the D̂S-operators. Then, due to lack of symmetry, an order of consistency is lost (lowerorder terms in the Taylor series). To cope with this problem the associated �nitedi�erence 3-point stencils for non-equidistant mesh sizes must be locally modi�edin the same way as it is common for standard �nite di�erence discretizations onnon-equidistant grids. This is in the same spirit as the Shortley-Weller trick, see[24], pp. 78f. Also switching locally to a one-dimensional 5-point stencil helps tomaintain the second order, if wanted.4 Adaptive solution of elliptic partial di�erentialequationsNow we are able to assemble the discrete version of our di�erential operator (17).It involves the summation and multiplication (by su�ciently resolved coe�cientfunctions) and the necessary di�erence operators. Written in matrix notation, thiswould result in a linear system of equations to be solved. However, in our approach,we never assemble the system matrix. For most iterative solution methods this is18



not necessary anyway. Instead, only the action of the system matrix onto the vectorof an actual iterate is needed.The corresponding matrix LS is in general non-symmmetric, even if we restrictourselves to a symmetric, selfadjoint continuous operator (17). Therefore, we useas basic iterative scheme the BiCGstab iteration. This iteration is convergent in anycase. However its convergence is quite slow. To speed it up, we can apply techniquesknown from multigrid. Here, the BiCGstab iteration over an (adaptively re�ned)sparse grid serves as a smoother. To this end, similar to (21), we switch fromthe hierarchical representation of our operator by the equivalency transformationE � LS � H to the nodal representation L̂S . The right hand side is transformedaccordingly. It is this transformed system to which we apply the BiCGstab methodif we use it as a smoother within a multigrid method.The coarser grids can be obtained by applying successively one step of the compressoperator globally, i.e. without any threshold. Now switching from coarse grids to�ner grids involve basically the application of the hierarchical basis interpolation,which is trivially obtained by setting the hierarchical values on �ner levels to zero.This implements the prolongation operator. The implementation of the restrictionoperator is obvious. Altogether we have now all ingredients to set up a (multiplica-tive) multigrid iteration [8, 25]. On this method and its convergence properties willbe reported elsewhere, especially in the case of adaptively re�ned sparse grids.Besides, also additive multilevel preconditioners have been developed. They areeither in the spirit of Bramble, Pasciak and Xu [7, 34] with necessary modi�cations[18, 19] to cope with problems posed by the tensor product construction of ourhierarchical basis. Alternatively, we developed a multilevel preconditioner based onthe prewavelet approach [19]. Note that, in all cases of multilevel iterative solvers,good convergence rates independent on the number of unknowns can be obtained.However, the convergence rates are not independent of the coe�cient functions ofthe operator. Singular perturbed problems exhibit a slowing down of the multilevelsolver. Thus, as for conventional multigrid methods, the problem of robustness isnot yet solved.These solvers or a few iterates of them can now be used within a cycle to adapt thegrid to the solution without a priori knowledge where to re�ne. Solving the problemon one grid and employing an error indicator gives information, where a �ner gridis needed to resolve the solution. We start with a very coarse grid and iterate theprocedure, always adding new nodes. If a �nal error tolerance is matched, we havea solution on a �ne adapted grid. The technique is the same as for other adaptivere�nement methods [4, 5, 32, 36] and can be applied straightforwardly also in ourcase. The di�erence is, however, in the re�nement process. We work node-orientednot element-oriented. If a node index (l; i) has been agged for re�nement then thenodes of then next 'level', which lie in its inuence cone, i.e. the set of nodes withindices f(l + ej; i+ (ij � 1) � ej); j = 1; ::dg are set active. As an indicator of thelocal error we use the criterions due to (11) to ag a node for future re�nement.5 Numerical experimentsIn the following, we present the results of numerical experiments obtained with ournew sparse grid method.First we consider the case of regular, i.e. non-adapted sparse grids.Problem 1: We �rst consider the Poisson equation ��u = f in 
 = (0; 1)2with Dirichlet boundary conditions and the exact solution u(x; y) = sinh(�(1 �x)) sin(�y)= sinh(�). The results for di�erent levels of discretization are given inTable 2. Here and in the following, we show the number of points involved in the19



sparse grid �nite di�erence discretization, the resulting approximation error withrespect to the L2- and L1-norms and the pointwise error in the point (1=�; 1=�)and give furthermore their quotients on two successive levels. To some extent, thisreveals the order of approximation. We clearly see that the accuracy behaves likeO(2�2�n). This is in contrast to the sparse grid Galerkin method, see [9, 10]. There,only an accuracy of order O(n � 2�2�n) is achieved in two dimensions. Note thatthis additional n-term is due to inherent interpolation by means of the hierarchicalbasis, i.e. due to the Galerkin integration of the (interpolated) right hand side.Table 2: Error for Problem 1, regular sparse grid.level n points L1-error quotient L2-error quotient pointwise quotient2 49 3:15�3 - 1:75�3 - 2:74�3 -3 113 7:95�4 3.96 4:34�4 4.03 7:11�4 3.854 257 2:00�4 3.97 1:08�4 4.02 1:80�4 3.955 577 5:03�5 3.98 2:69�5 4.01 4:48�5 4.026 1281 1:26�5 4.00 6:71�6 4.01 1:12�5 4.007 2817 3:15�6 4.00 1:67�6 4.01 2:80�6 4.00Problem 2: Now we consider the Helmholz equation ��u+ cu = f in 
 = (0; 1)2,c(x; y) = y=(x + 0:1), with Dirichlet boundary conditions and the exact solutionu(x; y) = ex+y . Table 3 summarizes the results. We see that the approximationorder is even better than for Problem 1. This is due to the term c � u. In contrastto the sparse grid Galerkin method, for the discretization of the Helmholz term nomass matrix is necessary. Thus no interpolation occurs and the approximation getsbetter with rising value of c.Table 3: Error for Problem 2, regular sparse grid.level n points L1-error quotient L2-error quotient pointwise quotient2 49 4:56�4 - 2:55�4 - 2:81�4 -3 113 1:10�4 4.15 6:16�5 4.14 6:93�5 4.054 257 2:59�5 4.25 1:45�5 4.25 1:63�5 4.255 577 6:05�6 4.28 3:36�6 4.32 3:78�6 4.316 1281 1:39�6 4.39 7:70�7 4.36 8:65�7 4.377 2817 3:16�7 4.40 1:75�7 4.40 1:96�7 4.41Problem3: Next we have a look at the convection-di�usion equation��u+~� �ru+cu = f in 
 = (0; 1)2, ~� = (1; 1), c = 1, with Dirichlet boundary conditions and theexact solution u(x; y) = 4 sin(�x) sin(�y). Note that, for the discretization of ther-term, we used the central di�erence approach here. The results are given in Table4. We only see an approximation order of O(n � 2�2n) or less. The convection termreduces the accuracy somewhat, even if a central di�erence stencil is used. Of coursefor larger convection strength, we would run into trouble with this discretization(due to stability reasons) just like for a standard full grid discretization.Problem 4: Therefore we consider a second convection di�usion equation ��u+~� �ru+ cu= f in 
 = (0; 1)2, �1 = 1+x2+xy, �2 = ex+y � ey +sin(xy), c(x; y) =sin(x) sin(y), with Dirichlet boundary conditions and the exact solution u(x; y) =4 sin(�x) sin(�y). Now, we used the upwind approach for the discretization of the20



Table 4: Error for Problem 3, regular sparse grid.level n points L1-error quotient L2-error quotient pointwise quotient2 49 2:59�1 - 1:42�1 - 1:79�1 -3 113 8:73�2 2.97 4:65�2 3.05 6:64�2 2.704 257 2:87�2 3.04 1:49�2 3.12 2:24�2 2.965 577 9:09�3 3.16 4:64�3 3.21 7:06�3 3.176 1281 2:74�3 3.31 1:39�3 3.34 2:13�3 3.317 2817 8:05�4 3.40 4:08�4 3.41 6:26�4 3.40Table 5: Error for Problem 4, regular sparse grid.Level points L1-error quotient L2-error quotient pointwise quotient2 49 3:15�1 - 1:59�1 - 1:36�1 -3 113 1:92�1 1.64 9:78�2 1.63 9:03�2 1.514 257 1:12�1 1.71 5:52�2 1.77 5:26�2 1.725 577 5:99�2 1.87 2:96�2 1.86 2:86�2 1.846 1281 3:12�2 1.92 1:54�2 1.92 1:50�2 1.917 2817 1:59�2 1.96 7:85�3 1.96 7:71�3 1.95convection terms. Then, as can be seen from Table 5, the accuracy deterioratesto �rst order, i.e. to about O(n � 2�n). We conducted further experiments forother model problems with large convection terms using upwind discretizations.There, the same order of approximation was observed. The results remained stableindependent of the convection strength.Now we turn to the case of adaptively re�ned grids.Problem 1, adaptive case: First we reconsider Problem 1 but solve it on adap-tively re�ned grids. Here, the solution is adapted successively using the criterionjul;ij � 1 � ", i.e using the maximum-norm approach. Of course, the solution ofProblem 1 is quite smooth. Therefore, no substantial di�erence to the case of theregular sparse grid can be expected. From Table 6 we see that, due to the adap-tivity, even slightly more grid points are needed to reach the same absolute errorsize as for the regular sparse grid case of Table 2. With respect to the ratio relativeerror reduction versus number of grid points they are comparable.Table 6: Error for Problem 1, adaptively re�ned sparse grid." points L1-error quotient L2-error quotient pointwise quotient0:1 12 4:23�1 - 2:24�1 - 2:42�1 -0:0125 38 1:21�2 34.95 4:49�3 49.88 8:95�3 27.400:25�2 105 2:33�3 5.19 8:06�4 5.57 2:14�4 41.820:3�3 354 3:83�4 6.08 1:78�4 4.53 1:76�5 12.160:35�4 1207 9:09�5 4.21 4:80�5 3.71 3:84�5 0.4580:35�5 4448 1:53�5 5.94 8:13�6 5.90 5:17�6 7.4321



Problem 5: Finally we consider a convection-di�usion problem with non-constantconvection coe�cients which involves boundary layers. These must be resolvedadaptively. We deal with the equation ��u + ~� � ru + cu = f in 
 = (0; 1)2,~� = (e3xy; sin(�(x + y))); c = 1, with Dirichlet boundary conditions and the exactsolution u(x; y) = x3 � e3:5�y. Figure 5 shows the solution of this problem andalso an example of a sparse grid produced by adaptive re�nement. Here, again, weused the simple error indicator which is based on the maximum norm. It seems towork reasonable also in case of convection-di�usion. The results are summarized in
Figure 5: Solution (left), and adaptively re�ned grid (right), " = 0:03052.Table 7. For the discretization, we used the upwind approach to be on the safe side.Table 7: Error for Problem 5, adaptively re�ned sparse grid, upwind di�erenceapproach." points L1-error quotient L2-error quotient pointwise quotient500 47 1:87+3 - 4:67+2 - 2:65+2 -125 106 1:84+2 10.16 7:78+1 6.00 1:06+2 2.5031.25 233 8:86+1 2.08 2:39+1 3.26 1:51+1 7.027.813 516 3:06+1 2.90 1:73+1 1.38 2:82+1 0.541.953 1135 1:38+1 2.22 6:69+0 2.59 1:11+1 2.540.488 2475 6:98+0 1.98 3:33+0 2.01 5:60+0 1.98In comparison to the results of Table 5 (also upwind discretization and moderateconvection but on a regular sparse grid without any adaptivity), now, a much betterrelative accuracy of the solution is obtained with less grid points, i.e. adaptivitypays o� and helps to approximately regain the convergence order (i.e. error versusnumber of grid points) of a smooth solution case. Note that in further experimentsa local convex linear combination of the upwind and central di�erence operatorsimilar to the ux di�erence splitting approach gave also good results with a betterapproximation order. 22
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