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Abstract

This is the continuation of ��� where we specialize to multilevel space splittings
for the solution of elliptic variational problems in Sobolev spaces� Starting from
an increasing� dense sequence of subspaces

V� � V� � � � � � Vj � � � �

of L����� where each Vj is equipped with a L�
stable basis �j � f�j�ig� we intro

duce multilevel systems by selecting bases �j � f�j�ig in certain �detail� spaces
Wj which complement Vj�� to the next space Vj in the sequence� Vj � Vj���Wj�
Naturally� the system

F � �� ��� � � � � ��j � � � �

and its �nite sections

FJ � �� ��� � � � � ��J � J � � �

are candidates for multilevel frames resp� Riesz bases in function spaces on �
and their restrictions to VJ � respectively� We derive the recursive strucutre of ad

ditive and multiplicative subspace correction methods associated with such mul

tilevel systems� with emphasis on potential applications to the solution of PDE
discretizations� Then we give a list of wavelet systems on IR� which are based on
shifts and dyadic dilates of one or several � �scaling functions� or � �wavelets�
and discuss their properties with respect to the scale of Sobolev spaces� Finally�
multilevel �nite element frames and Riesz bases for Sobolev spaces on IRd and
bounded polyhedral domains will be considered�
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� Introduction to multilevel systems

��� De�nitions

We assume familiarity with Sobolev spaces Hs��� on � � IRd and on bounded Lipschitz
domains � � IRd ��� 	
�� All our discussion is for a given sequence of subspaces Vj �
L����� j � � �� � � �� such that

fg �� V� � V� � � � � � Vj � � � � � closL���jVj� � L���� � ���

We assume that there exist Riesz bases �j � f�j�ig for Vj with L��condition uniformly
bounded with respect to j � � This means� that each vj � Vj possesses a unique
decomposition

vj �
X
i

cj�i�j�i ���

such that
c�kvjk�L� � ��

j

X
i

c�j�i � c�kvjk�L� ���

for some scaling constants �j �  and constants  � c� � c� �� which are independent
of vj and �only the latter� of j � � If all these properties are satis�ed� we will call
fVjg a multiresolution analysis �MRA� in L���� �this terminology goes back to Mallat
and is often used in a more restrictive setting�� We could have weakened the above
assumptions by only requiring the frame property of �j in Vj � L���� but will not
pursue this possibility further�

An immediate consequence of ��� and ��� is that all basis functions from Vj�� possess
unique decompositions

�j���k �
X
i

akj�i�j�i ���

with respect to �j� j � �� The relations ��� will be called generalized re�nement equa�
tions associated with the MRA fVjg� and the coe�cient sequences �akj��� ��masks asso�
ciated with �j���k�

Examples of dyadic MRA which are generated by a single scaling function � � L��IR
d�

satisfying the dyadic re�nement equation

��x� �
X
��ZZd

a����x� �� � ���

are extensively discussed in connection with wavelet analysis on IRd� see ��� ���� The
extension to the torus TTd is straightforward� The case of general domains is by no means
trivial� already the construction of non�periodic wavelet systems on the interval �� �� has
triggered a signi�cant number of investigations� Another important model case which
covers the more traditional �nite element applications is described by the following

Example �� Let � � IRd be a polyhedral domain equipped with an initial partition
T� of � into simplices �triangles �d � ��� tetrahedra �d � ��� and so on�� Other types
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of elementary cells replacing or complementing simplices may be allowed� e�g�� mixtures
of triangles and quadrilaterals are popular in some applications� From T�� a sequence of
partitions Tj is created by some global re�nement process� We will assume the following

	 Monotonicity� T� � T� � � � � � Tj � � � � �

	 Regularity� Simplices are uniformly shape�regular� intersections of di�erent sim�
plices in Tj can only be empty� a common vertex� a common edge� etc�

	 Quasi�uniformity� The diameters of simplices in Tj are of size 
 ��j� uniformly in
j � �

Given such a sequence fTjg� spaces Vj of piecewise polynomial functions can be intro�
duced in various ways� Finite element spaces are usually de�ned by local interpolation
problems �i�e�� triples f�� P�� I�g where � � Tj is a simplex� P� a speci�ed class of
polynomials� and I� an associated projector of interpolation type which is well�de�ned
on certain classes of functions on � �including P��� maps into P� and satis�es I�� � I���
Global smoothness properties for functions in Vj are achieved by sharing interpolation
conditions with support on the intersection of neighbored simplices� compare ���� for
examples� Spline spaces are characterized by �xing a space of polynomials P and a
global smoothness parameter r � ��� � � � �� and de�ned as

Sr
P �T � � fu � Cr��� � uj� � P �� � T g �

where C����� �� L����� For � � IRd and Tj which are invariant under ��j�shifts� an
alternative are box spline spaces where certain basis systems �j of piecewise polynomial
functions are used to create Vj �see ����� These possibilities cover a variety of numerical
discretization schemes for partial di�erential equations� Whether the spaces Vj created
in this way satisfy the above assumptions of a MRA depends on the choices made for
P � I� and r� respectively� The crucial properties to be veri�ed are the monotonicity in
��� which is often violated� and the existence of suitable Riesz bases �j� For computer
implementations� the case of locally supported functions �j�i� with only a few non�zero
terms in the generalized re�nement equations ���� is of interest�

The simplest case in which a MRA is obtained is that of linear �nite element spaces�
It is covered by either approach� Take P � P� � IP� �the space of all polynomials of
total degree � � in IRd�� r � � and consider linear interpolation at the vertices of a
simplex � as I�� The basis functions �j�i� the so�called hat functions� are associated with
the vertices of Tj� More precisely� if fPj�ig is the set of all vertices in Tj then �j�i � Vj
is characterized by the requirements �j�i�Pj�i� � � and �j�i�Pj�k� �  for all remaining
vertices with k �� j� Clearly� the support Kj�i of �j�i coincides with the union of all
simplices � � Tj that have Pj�i as a vertex� Formula ��� holds sinceZ

�
jpj� 
 j�j X

Pj�i��

jp�Pj�i�j�
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for any p � IP� and any � � Tj� and the de�nition of the �j�i yields cj�i � vj�Pj�i� in ����
In this application� �j 
 ��jd�� would be a correct choice of the scaling constants in ����
We will come back to this example later on�

Multilevel systems associated with a MRA are given by at most countable collections

�j � f�j�ig � Vj � j � � � �	�

of functions  �� �j�i � Vj such that �j�� � �j is a representation system in Vj� i�e�� for
each vj � Vj� there exists at least one �L��convergent� representation

vj �
X
i

cj���i�j���j �
X
k

dj�k�j�k �

In particular� this is satis�ed if �j is a Riesz basis in its L��closed span Wj � ��j� and
if each vj � Vj admits at least one representation vj � vj�� � wj� where vj�� � Vj���
wj � Wj� If the latter representation is unique then Vj is the direct sum of Vj�� and Wj

which will be denoted by Vj � Vj�� ��Wj� In any case� since �j � Vj we have unique
representations

�j�k �
X
i

bkj�i�j�i �
�

for all �j�k � �j� the coe�cient sequences �bkj��� are called ��masks�
The multilevel system

F � �� � �� � � � � � �j � � � � ���

resp� its sections
FJ � �� � �� � � � � ��J � J �  �

and their scaled versions will be investigated as candidates for frames in function spaces
on � resp� in VJ in connection with possible applications to the e�cient iterative solution
of variational problems arising from PDE� In the remainder of this subsection we mention
some simple results concerning the frame property of multilevel systems in Sobolev
spaces which happen to be the natural energy spaces used in the variational approach to
elliptic �and parabolic� PDEs� The corresponding algorithms resulting along the lines
of ��� Section ��� especially� their arithmetical complexity and factors that in�uence it�
are discussed in some detail in the next subsection ����

The following result appears to be �after some transformations� a special case of ���
Example 
��

Theorem � Let be given a MRA� and set �j � �j� j � � Assume that the pair
�L����� H

����� satis�es Jackson�Bernstein inequalities with respect to fVjg and with
constants � �  and a � �� i�e��

ej�u�L� � inf
vj�Vj

ku� vjkL� � Ca��jkukH� � u � H���� �
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and
kvjkH� � Ca�jkvjkL� � vj � Vj

hold with constants C independent of j � � Then� for  � s � �� the scaled system

F � � f�ajs�j����j�i � �j�i � �j � j � g �

where �j is de�ned in ���� is a frame in Hs���� Its sections F �
J form frames in VJ �the

latter considered as subspaces of Hs����� with a possible choice of frame bounds that are
independent of J � �

Proof� We sketch the main steps� According to ��� Example 
�� the following space
splitting is stable�

�L����� H
�����s���� �

�X
j��

fVj� a�js�� �L�g �  � s � � �

To this end� set V � H���� and H � L���� there� For domains satisfying the extension
property �e�g�� Lipschitz domains�� we have

Hs��� � �L����� H
�����s���� �  � s � � �

with spectrally equivalent Hilbert space structure� This gives the norm equivalence

kuk�Hs 
 inf
vj�Vj �u�

P
j��

vj

X
j��

a�sjkvjk�L� � u � Hs��� �

Using the L��stability ��� of the basis �j in Vj� this implies

kuk�Hs 
 inf
u�
P

j��

P
i
cj�i�j�i

X
j��

X
i

a�sj��
jc

�
j�i

� inf
u�
P

j��

P
i
c�
j�i
��
j�i

X
j��

X
i

�c�j�i�
� �

where we have denoted ��j�i � �ajs�j�
���j�i �note that this step can be viewed as an

example of the re�nement technique for stable splittings mentioned in ��� Section ����
But this is equivalent to the frame property of F � with respect to Hs���� compare

��� Theorem ��� The result for the �nite sections F �
J is obtained in complete analogy� if

one starts from the uniform stability of the subsplittings

fVJ � �� �Hsg �
JX
j��

fVj� a�js�� �L�g �

which was already established in ��� Example 
� in the abstract setting�
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Theorem � generates an initial multilevel frame for Sobolev spaces from basic approximation�
theoretic properties of the underlying MRA fVjg� A classical way to check Jackson�
Bernstein inequalities �such as needed in Theorem �� for functions on �bounded� do�
mains� is to use moduli of smoothness and Besov space techniques� see ��	� �
�� An
example of such techniques is given in Section ��� below� For the case of MRAs on IRd

which are obtained by translation and dilation� Fourier transform techniques are usually
prefered� Analogously� Fourier series are the tool for MRA on TTd and on smooth closed
curves �a case which is similar to TT���

Note that by interpolation from the Bernstein inequality� and from ���� we have

k�j�ikHs � Casjk�j�ikL� 
 asj�j

for all basis functions in F � Thus� the scaling constants asj�j which make F into F �

could be replaced by asjk�j�ikL� or� if also the opposite inequality

asjk�j�ikL� � Ck�j�ikHs

holds true� by k�j�ikHs� without changing the result of Theorem �� However� such modi��
cations have impact on the size of the frame bounds� with consequences for the practical
performance of iterative solvers associated with the multilevel systems�

As was already discussed in ���� the result does not extend to L� �s � � neither to
s �  �in this section� we take H�s��� � Hs����� s � � as the de�nition of Sobolev
spaces of negative order by duality which is not exactly the standard if � is a bounded
domain� see Section ��� for some explaining words�� A possible repair for this drawback
is as follows� Assume that

�j � f�j�ig � Wj � Vj �L���	 Vj�� ���

is a Riesz basis in the orthogonal complement spaces Wj� j � �� I�e�� in analogy to ���
we assume that each wj � Wj possesses a unique decomposition with respect to �j such
that

wj �
X
i

dj�i�j�i � kwjk�L� 
 	�
j

X
i

d�j�i � ���

where the constants in the two�sided inequality can be chosen independently of j � �
�again� we could have assumed only the frame property of �j in Wj�� The resulting
system F as de�ned by ��� will be called L��semiorthogonal multilevel system associated
with the MRA fVjg�
Corollary � Let the MRA satisfy the assumptions of Theorem �� Then� for any �� �
s � �� the scaled semiorthogonal multilevel system

F � � f���� ���i � ���i � ��g � f�asj	j����j�i � �j�i � �j� j � �g
forms a Riesz basis in Hs���� Moreover� its sections F �

J form Riesz bases in VJ �con�
sidered as subspaces of Hs����� with a choice of Riesz bounds that is independent of
J � �

	



Proof� The case s �  has essentially been considered in ��� Example 
�� The
following argument covers the case of negative Sobolev exponents� Let s � �� ��� Since
L���� is dense in H�s���� it is enough to consider u � L���� in the sequel� Recall that
by duality

kukH�s � sup
���v�Hs��	

�u� v�L�
kvkHs

for all u � L����� By construction of the Wj� we have a unique L��orthogonal decom�
positions

u �
X
j��

wj � v �
X
j��

w�
j � wj� w

�
j � Wj �W� � V�� �

By the �already established� result for Hs���� we have

kvk�Hs 

X
j��

a�sjkw�
jk�L� � v � Hs���

�the reader may derive this as an exercise along the lines of ��� Example 
��� Thus� for
any such u and v�

j�u� v�L�j � X
j

j�wj� w
�
j�L�j �

X
j

a�jskwjkL�  ajskw�
jkL�

� �
X
j

a��sjkwjk������
X
j

a�sjkw�
jk�L�����

Equality is achieved if we de�ne v from the decomposition of u by setting w�
j � a��sjwj

�check that this particular v belongs to Hs����� From these remarks we have

kuk�H�s 

X
j

a��sjkwjk�L�

for any u � L����� and by the above mentioned density argument� for all u � H�s����
Thus�

H�s��� �
X
j��

fWj� a
��sj�� �L�g

is stable� The remaining steps of the proof are as for Theorem �� The result for the
sections F �

J follows immediately since subsplittings of a splitting into a direct sum of
subspaces are again stable �with the same or better Riesz bounds��

Examples of semiorthogonal multilevel systems are given below� in some sense� they
are still hard to construct in situations that deviate from model cases �although the
task is simpler than to construct CONS�� A brief discussion of the broader concept of
biorthogonal multilevel systems will also be given later� It turns out that the basic result
of Theorem � is the key to most of the investigations on multilevel systems in Sobolev
spaces�






��� Multilevel algorithms

For the discussion in this subsection we will accept some further� reasonable restrictions�
First of all� we assume that all spaces Vj are �nite�dimensional� and that the collections
�j �obvious� and �j are �nite as well� For simplicity� we will also assume that the
numbers

nj � ��j � dim Vj � mj � ��j

grow exponentially� i�e�� nj
nj�� � b � � for all j � �� analogously for mj� Adaptivity
applications� where this assumption might be violated� are discussed in later parts� In
case that the multilevel system F �resp� its scaled versions and �nite sections� is minimal�
then necessarily

mj � dim Wj � nj � nj�� � j � � �

All this implies that the subspacesWj � ��j� � Vj are well�de�ned and �nite�dimensional
�dim Wj � mj�� and that the generating system �j is at least a frame in Wj if we equip
Wj with an appropriate scalar product� In most cases� this scalar product will be a
scaled L��scalar product� in order to cover possible modi�cations we will identify this
scalar product with a spd bilinear form bj�� �� Moreover� we will exclusively deal with
the �nite sections FJ resp� F �

J of a multilevel system such that only  � j � J is of
interest�

We concentrate on the solution of the restriction of a Hs����elliptic variational prob�
lem to VJ with J �  temporarily �xed� Find uJ � VJ such that

a�uJ � vJ� � ��vJ� � vJ � VJ � ����

To match the notation used throughout ���� we will assume that� for a �nite section FJ
resp� F �

J � we have de�ned the one�dimensional subspaces

Vj�i � ��j�i� i � �� � � � � nj � j �  �

Wj�i � ��j�i� i � �� � � � � mj � j � � �

�for our convenience� set W��i � V��i� m� � n�� and bilinear forms bj�i on Wj�i such that
the assumed frame property �with respect to fVJ � a�� �g� of the system F �

J is equivalent
to the stability of the splitting

fVJ � ag �
JX
j��

fWj� bjg �
JX
j��

mjX
i��

fWj�i� bj�ig � ����

The inclusion of the intermediate splitting �involving fWj� bjg� does not restrict the
generality �as we have seen so far� it naturally appears in the derivation of multilevel
frames and Riesz bases�� That operators Rj are not explicitly indicated means that the
natural embedding operators of the subspaces into VJ are used�

There are two generic ways to use the splitting ���� for purposes of discretizing and
solving ����� They have some common parts but have di�erent potential and bottlenecks�
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	 Standard discretization and multilevel preconditioning� In the standard setup of�
say� �nite element spaces VJ and a PDE�based variational problem� the ansatz

uJ �
nJX
i��

xJ�i�J�i ����

substituted into ����� and tested with the set �J leads to a linear spd system

AJxJ � fJ � AJ � �a��J�i� �J�i���i��i�������nJ � ����

�with right�hand side fJ � ����J�i���
T
i��������nJ

�� Typical features of AJ are sparsity
and ill�conditioning �exponential growth of condition numbers if J ���� With all
the engineering codes in mind that produce and store AJ in large�scale applications�
the issue seems to be just the e�cient preconditioning of AJ for the stable and fast
solution of the linear system ����� Looking at the theory outlined in ���� we guess
that the splitting ���� will provide suitable preconditioners CJ � In this section we
will have some look at their structure� and the connection with standard multigrid
algorithms for the same type of problem�

	 Multilevel discretization and standard solution� At least� if F �
J is minimal �i�e�� the

splittings in ���� are into a direct sum of subspaces� and F �
J is a Riesz basis not

only a frame in VJ� then the following alternative is available� One can discretize
directly with respect to FJ �

uJ �
JX
j��

mjX
i��

 xj�i�j�i � ����

which leads to another linear spd system

 AJ  xJ �  fJ � ��	�

where the matrix  AJ can be viewed as �J � ��� �J � �� block matrix with blocks

 Aj�j� � �a��j��i�� �j�i��i��������mj� �i�������mj
� j �� j � � � � � � J �

The vectors  xJ �  fJ � are analogously composed from sections corresponding to the
di�erent levels j � � � � � � J � This matrix is well�conditioned after diagonal scaling
which is nothing but the application of the scaling factors for deriving F �

J from
FJ �this diagonal scaling can be avoided if the discretization is performed directly
with respect to F �

J�� Thus� any standard iterative method such as Richardson� or
cg�iteration would do� The drawback is that in cases where AJ is extremely sparse�
the new matrix  AJ is less sparse� There is a close connection between AJ and a
natural factorization of the multilevel preconditioner CJ � on the one hand� and
 AJ � on the other� which would result in a fast implementation of matrix�vector
products involving  AJ � and avoid the explicit computation and storage of  AJ �

�



However� this would be just a reformulation of the above method based on ����
and the multilevel preconditioning introduced through �����

The reduced sparsity of  AJ is no longer a disadvantage if the matrix AJ itself is
not extremely sparse� E�g�� integral equations but also a number of PDE problems
with global low�order terms or some applications to data analysis and denoising
typically lead to dense matrices when the standard basis representation ���� is
used� Although this does not change if we turn to ���� but a special design of the
detail spaces Wj resp� of the systems �j can increase the !diagonal dominance" in

the resulting  AJ � it has often much less signi�cant entries and matrix compression
can sparsify it dramatically� In other words� the system ��	� can often be replaced
by another linear spd system

Acomp
J xcomp

J � f comp
J ��
�

such that the error kuJ � ucomp
J k remains within the order of the discretization

error achievable from VJ which is sparse and well�conditioned at the same time�
Speaking in terms of algorithms� this approach compares with replacingAJxJ by an
approximate matrix�vector multiplication of lower complexity �see ��
� ���� which
has been tried before �and after� the availability of multiscale and wavelet analysis�
On the other hand� the fact that whole classes of operators �such as operators
of Calderon�Zygmund type� can be essentially diagonalized when represented in
wavelet bases ���� will have further impact in scienti�c computing� See the survey
����� where this approach is emphasized� Clearly� the approach can be carried out
also for situations where AJ is sparse although it is less obvious why to do it�

In these notes� we will concentrate on the �rst approach and emphasize the intimate
connections with other� more classical methods in the �eld of scienti�c computing such
as multigrid and domain decomposition� From now on� let us talk about solving ���� by
some of the abstract Schwarz methods �see ��� Section ��� associated with the splitting
����� We start with the structure of the Schwarz operator PJ � To prepare the statement
of the next theorem� introduce the following matrices�

Ij� These are the nj � nj�� matrices representing the natural embedding Vj�� � Vj
in the bases �j�� resp� �j� The k � th column �k � �� � � � � nj��� is given by the
coe�cients akj�i� i � �� � � � � nj� of the ��mask associated with �j���k� see ����

 Ij� These nj � mj matrices describe the transformation of a �j�representation into

the basis representation in Vj� i�e�� with respect to �j� Clearly� the columns of  Ij
contain the coe�cients of the ��masks given by �
��

Sj� De�ne these diagonalmj�mj matrices as Sj � diag�bj�i��j�i� �j�i� � i � �� � � � � mj�
���

j �  �for j � � set ���i � ���i��

�



Theorem � The Schwarz operator PJ of the space splitting ��	� associated with the
section F �

J of a multilevel frame takes the form

PJuJ �
JX
j��

mjX
i��

a�uJ � �j�i�

bj�i��j�i� �j�i�
�j�i � uJ � VJ � ����

The matrix representation of PJ � VJ � VJ with respect to the basis �J of VJ is given
by CJAJ where CJ is spd and recursively given by

C� � S� � Cj � IjCj��I
T
j �  IjSj  I

T
j � j � �� � � � � J � ����

Proof� Solving the one�dimensional auxiliary problems associated with fWj�i� bj�ig
�and� thus� determining R�

j�iuJ� means to �nd the constant c in R�
j�iuJ � c�j�i such that

cbj�i��j�i� �j�i� � a�u� �j�i�� This gives �����
Consequently turning to matrix representations �note that the iterated matrix IJ � � � Ij
�

corresponds to the natural embedding Vj � VJ� we have

�a�uJ � �J�i��
T
i�������nJ

� AJxJ �

�a�uJ � �j�i��
T
i�������nj

� ITj
� � � � I
T
J AJxJ � j � J

�a�uJ � �j�i��
T
i�������mj

�  ITj I
T
j
� � � � I

T
J AJxJ � j � J �

�
a�uJ � �j�i�

bj�i��j�i� �j�i�
�Ti�������mj

� Sj  I
T
j I

T
j
� � � � I

T
J AJxJ � j � J �

This gives the coe�cients in front of �j�i in the sum representation ���� of PJuJ � Now

it remains to recursively use the matrix representations Ij�  Ij� j � �� of the embeddings
to arrive at the coe�cients of PJuJ with respect to the basis �J � Altogether� we have
�����

The symmetry of CJ is obvious from the recursion ����� the positive de�nitness
follows from

 � a�PJuJ � uJ� � �AJCJAJxJ � xJ� � �CJyJ � yJ� � yJ � AJxJ ��  �

since AJ is invertible� yJ ��  implies xJ ��  and uJ �� � and PJ was spd with respect
to a�� ��

Before we come to the multiplicative algorithms� let us recall that the additive
Schwarz method �AS� de�ned in ��� Section �� is given by the stationary linear iter�
ation

x
�n
�	
J � x

�n	
J � #CJr

�n	
J � r�n	 � f �n	 � AJx

�n	
J ���

where one has to put #CJ � �CJ with some relaxation parameter � �  �note that
the pcg�method �SCG� is quite similar but nonstationary� the only change is that the

��



relaxation parameter is now computed from x�n	� � � ��n	�� If the matrix�vector multi�
plication with CJ is implemented according to the recursion ���� than the !parallelism"
of visiting the auxiliary subspace problems is obviously lost� and the preconditioning
step reminds us more of a multigrid V�cycle�

To make this precise� and to move to the multiplicative Schwarz iteration �MS��
let us formulate a general multigrid V����	�cycle iteration� with coarse grid matrices #Aj�
smoothing matrices #Sj� j � � � � � � J � and restriction and prolongation matrices #Rj� #Pj�
j � �� � � � � J � by writing it in the form of a stationary linear iteration ��� and describing
the matrix�vector multiplication with the corresponding preconditioner #CJ �

V����	�cycle preconditioner� Given a vector xj� the vector #xj � #Cjxj� j � � � � � � J �
is computed by the following recursion�

a� For j � � set #x� � #S�x� �i�e�� #C� � #S���

b� For j � �� � � � � J do

�� yj � #Sjxj �corresponds to pre�smoothing�

�� xj�� � #Rj�xj � #Ajyj� �residual restriction�

�� #xj�� � #Cj��xj�� �coarse�grid�correction�

�� #yj � #Pj#xj�� �prolongation�

�� #xj � yj � #yj �update�

More general V�cycles are described and investigated in ��� �using the language of
space splittings� and ��	� �in a more traditional algebraic way�� E�g�� pre�smoothing can
be applied repeatedly� post�smoothing can be implemented after step �� The number of
pre� and post�smoothing steps can vary with j �this is quite natural to add robustness
and is called variable V�cycle iteration�� If the coarse�grid correction is done twice� so�
called W�cycles result� Standard multigrid algorithms use #Aj � Aj and S� � A��

� �exact
solution on the coarsest level j � ��

Interesting enough� both �AS� and �MS� when applied with the splitting ���� are
special instances of a V����	�cycle iteration� Let us make precise which �MS� is consid�
ered� We apply �MS� to the second splitting in ���� with the choice

bj�
mjX
i��

wj�i�
mjX
i��

w�
j�i� �

mjX
i��

bj�i�wj�i� w
�
j�i� �

where wj�i� w
�
j�i � Wj�i� i � �� � � � � mj� j � � � � � � J � The order of using the auxiliary

subspace problems in the multiplicative algorithms is reverse in j � J� J � �� � � � �  �and
arbitrary within each level��

��



Theorem 	 The algorithms �AS� and �MS� when applied to the splitting ��	� in the
way as indicated above can be interpreted as multigrid V����	�cycle iteration if the follow�
ing choices are made for the components


#Pj � Ij � #Rj � ITj � j � �� � � � � J �

#Aj �

�
 for �AS�
ITj
� � � � I

T
J AJIJ � � � Ij
� for �MS�

j � � � � � � J �

and

#Sj �

�
�  IjSj  I

T
j � j � �� � � � � J

�S� � j � 
�

Proof� The case of the additive Schwarz iteration is left upon the reader� see The�
orem �� For the multiplicative case� see ��	� ���	��� �di�erences in the notation$�� We
give the elementary argument� Write the iteration �MS� in matrix notation� To make
this compact� recall that

�  Tj � �IJ � � � Ij
�  IjSj  I
T
j I

T
j
� � � � I

T
J � IJ � � � Ij
� #SjI

T
j
� � � � I

T
J � Kj � j � �� � � � � J �

analogously for j � � and that the order of visiting the subspaces is reverse� Thus�
if the vector corresponding to the old iterate u�n	 � VJ is denoted by xJ � z�J
�	� the
vectors corresponding to the intermediate v�j	 in �MS� are recursively computed by

z�j	 � z�j
�	 �Kj�fJ � AJz
�j
�	� � j � J� � � � �  �

and z��	 gives the vector corresponding to u�n
�	� Introducing the residuals r�j	 � fJ �
AJz

�j	� we obtain
r�j	 � �IdJ � AJKj�r

�j
�	 � j � J� � � � �  �

from which the formula

r��	 � �IdJ � AJK�� � � � �IdJ � AJKJ�r
�J
�	

follows which expresses the residual r��	 for u�n
�	 by the residual r�J
�	 of u�n	� Using
the same notation� from the description of the V����	�cycle we obtain

#C� � #S� � #Cj � #Sj � Ij #Cj��I
T
j �Idj � #Aj

#Sj� � j � �� � � � � J �

Multiplying the equation for #Cj by IJ � � � Ij
� from the left and� accordingly� by ITj
� � � � I
T
J

from the right� and using the formula for the Galerkin coarse grid matrices #Aj� we see
after trivial transformations that

#Kj � IJ � � � Ij
� #CjI
T
j
� � � � I

T
J � Kj � #Kj���IdJ � AJKj� �

j � �� #K� � K�� and

IdJ � AJ
#Kj � �IdJ � AJ

#Kj����IdJ � AJKj� � j �  �

��



if we agree about #K�� � � Since #KJ � #CJ we see from ��� that the residual propagation
of the V����	�cycle iteration �with the speci�cations of its components given in Theorem
�� is

�IdJ � AJK�� � � � �IdJ � AJKJ� �

i�e�� the same as the one derived above directly from �MS�� This proves the Theorem�

We leave it upon the reader to formulate the correct multigrid counterpart of �SMS�
when applied to the splitting ���� �clearly� a symmetric V����	�cycle should come out��

While the choices made for our multilevel �MS� correspond to a V����	�cycle with
Galerkin coarsening and Richardson��Jacobi� smoothing in the multigrid context� and
are therefore relatively restrictive� the convergence theory given in ��� Section �� is di�
rectly applicable �the stability assumptions follow from the Theorems of the previous
subsection�� Who is interested in the theory of the whole variety of multigrid algorithms
should consult ��	� or ��� �warning� ��� is quite technical��

Theorem � also gives a chance to understand the di�erences of additive and mul�
tiplicative multilevel Schwarz methods� and why the multiplicative version should be
preferred in practical computations �this does not mean that we recommend to fully
neglect the additive Schwarz methods � as we have seen� their theoretical understand�
ing is an important prerequisite for the multiplicative case� in applications they might
be advantegeous if robustness is more important than e�ciency�� In all other aspects
�operation count per iteration� potential for parallelization etc��� there seems to be no
serious reason not to use the �MS��based algorithms� The additional computation of
residuals by using the coarse�grid matrices #Aj in step � of the V�cycle implementation
usually pays o� in improved convergence rates� A theoretical justi�cation of this often
numerically observed fact is only available in special cases �it is somehow analogous to
the classical comparison between Jacobi and Gauss�Seidel%SOR methods which �t into
the general picture according to ��� Example ����

We conclude with a short discussion of the arithmetical complexity of multilevel
iterations if J � �� Most of the components of the above algorithms associated with
a multilevel system are �xed if a choice for the MRA fVjg is made� This concerns the
sti�ness matrices AJ and the prolongations%restrictions Ij� I

T
j which are determined by

the generalized re�nement equations for the bases �j in Vj� j � � The desired sparsity
of AJ and Ij and generally time%storage restrictions limit the use of more involved
approximation schemes� e�g�� high order methods tend to achieve �for smooth solutions�
the desired accuracy with smaller J but at the expense of denser AJ and Ij� The
appropriate choice of the MRA also depends on the problem at hand�

To simplify the task� let us assume that the MRA is �xed� Then the �xed costs
related to precomputing AJ and of its Galerkin projections #Aj on coarser levels j � J
can be estimated �the latter need only be accounted for in the multiplicative methods��
The same is true for the costs per iteration� i�e�� for residual calculations involving the
multiplication by AJ resp� by #Aj� j � J � and the application of prolongations and
restrictions� The choice of fVjg also �xes the approximation error of the solution�
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The choice of �j has mainly impact on two properties� First it may heavily in�uence
the frame condition J � �F �

J� and� thus� the convergence rate of the multilevel Schwarz
methods� Secondly� the average mask size of the ��masks in �
� determines the costs of
the smoothing operations �here it usually does not matter whether  Ij� Sj�  I

T
j are applied

separately� for each j and each iteration� or their product  IjSj  I
T
j is precomputed��

What is clear is that the operation count per iteration �OpsJ of the above multilevel
methods for solving a problem on VJ usually satis�es the bound

�OpsJ � CnJ � ����

at least� if mj 
 nj� if AJ is sparse� with � CAnJ non�zero entries� and if the average
size of �� resp� ��masks is uniformly bounded �� C� resp� � C��� For �MS� one has to
require in addition that the precomputed matrices #Aj contain � C �Anj non�zero entries
for all  � j � J � Then ���� follows from the recursions for computing the V����	�cycle
action and the assumed exponential growth of nj� The constant C in ���� behaves
like a linear combination of the constants CA� C �A� C�� C�� In Section � we will present
some more precise asymptotic formulae which express the costs of multilevel solvers for
several proposals of systems F in the case of the linear �nite element MRA� Usually�
iterative methods for solving ���� that satisfy ���� and that exhibit an iteration count
�ItJ which is bounded independently of J and changes only with the desired relative
error reduction are called optimal� Most of the multilevel and wavelet iterative methods
designed for solving variational problems ���� with respect to a given MRA are aiming
at this optimality�

The task to �nd �j such that they realize an optimal compromise between the it�
eration count �ItJ �e�g�� by minimizing J� and costs per iteration �OpsJ �e�g�� by
minimizing C�� i�e�� the costs for applying  Ij�  I

T
j � has been achieved so far only on an ex�

perimental level� through numerical tests� A theoretical di�culty is the non�availability
of e�cient methods for computing frame bounds �rather than solving large scale eigen�
value problems�� a practical di�culty is to agree on the benchmarks for such a compar�
ison� Another point to make is that in some cases iterative methods may behave better
than predicted by J � Again� to see from the choices of �j� �j� whether this happens or
not is an unsolved problem�

� Wavelet systems on IR� � an overview

The case of a dyadic MRA on IR allows for the most complete theory� both in the L��
and Sobolev space setting� It is already well�represented in monographs ��� ��� ��� and
in survey papers ���� ���� see also the collections ���� 	� �� �	�� Most parts of this theory
are now well�understood also for � � IRd� d � � �this will be discussed in Subsection
����� Since dyadic MRA on IR are the starting point �and partial case� for most of
the multilevel constructions on domains in IRd �by restriction� boundary modi�cation�
and tensor�product techniques�� we decided to give a brief list of the most !famous"
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one�dimensional examples� The exposition is oriented to our application area� we avoid
talking about �lters and other signal processing terminology�

A dyadic MRA on IR is a MRA for L��IR�� with two additional properties�

u�t� � Vj �� u���jt� � V� �dyadic dilation principle� ����

and that �� is generated by the ZZ�shifts of a �nite number of so�called scaling functions
��� � � � � �M � L��IR� from which we have �by using the dyadic dilation principle� that

�j � f�mj�k�t� � �m��jt� k� � k � ZZ� m � �� � � � �Mg � j �  � ����

can be taken as the designated basis systems in the subspaces Vj of the MRA� In contrast
to ��� Example ��� we have dropped the scaling factor �which has to be changed anyhow
if we go to Sobolev spaces� see Section �����

In technical terms� these assumptions allow for major simpli�cations through Fourier
analysis techniques� This is not the place to go into very details� consult ���� �� ���
��� ���� We just mention a few things closely related to the investigation of a dyadic
MRA in connection with Sobolev spaces and multilevel algorithms� For simplicity� let
M � � and write � � �� �the case M � � leads to vector�matrix analogs of the following
facts� and is similar in spirit but technically more involved�� The re�nement equations
��� turn into a single re�nement equation

��t� �
X
k�ZZ

ak���t� k� ����

which means that we essentially have a single ��mask� In the following� we will assume
that � has compact support resp� that the ��mask �ak� is real and �nitely supported�
Occasional exceptions will be mentioned� Set C� � �fk � ak �� g� These assumptions
on ���� considerably reduce storage �for Ij� and overhead in multilevel algorithms� and
simplify the analysis� E�g�� after taking Fourier transforms of both sides� we get the
analog of ���� in the frequency domain�

 ���� � m��
�� ���
�� � m��� � m���� �
�

�

X
k

ake
�ik� � ����

���� allows us to reconstruct the scaling function ��t� from the symbol m��� of the
re�nement equation�

 ���� �
�Y
j��

m���j�� � ��	�

�assuming the normalization  ��� � ��� In our case� m��� is a Laurent polynomial �with
real coe�cients�� and m�� � � can be assumed� Necessary and su�cient conditions on
the polynomial symbolm��� such that ��	� converges in L��IR� and yields an L��solution
��t� of the associated re�nement equation ���� are due to A� Cohen �see ���� Part II�
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Chapter ��� the same source deals with Hs�regularity of � which can also be derived
from properties of m����� That �j forms a Riesz basis in Vj is essentially equivalent to

g������� �
g������ � L��TT� �

Necessary and su�cient conditions for the validity of Jackson�Bernstein inequalities as
required by Theorem � are known� too� E�g�� the Jackson inequality

inf
vj�Vj

ku� vjkL� � C��j�kukH� � u � H��IR� � j �  � ��
�

holds if �and only if�

g������� j ����j� � O�j�j��� � � � 

�see �
��� and the Bernstein inequality

kvjkH� � C�j�kvjkL� � vj � Vj � j �  � ����

holds if �and only if�
g������ � L��TT� �

see ��� Lemma ���� The ���periodic function

g��s��� �
X
k�ZZ

�� � j� � ��kj��sj ��� � ��k�j�

used in all these statements is accessible by knowledge about m��� via ����� Note that
the statement g������ � L��TT� is equivalent to � � H����� What we see is that the
regularity of the scaling function � is intimately connected with all other properties of
the associated MRA� Without proof� we will give the easy�to�remember formulation of
Theorem � for the special case of a dyadic MRA�

Corollary 
 Let � be the compactly supported scaling function associated with a dyadic
MRA on IR� If � � H��IR��� then for  � s � � the scaled system

F � � f������s	j�j�k � k � ZZ� j � g

is a frame in Hs�IR�� The sections F �
J of F � are frames in VJ � considered as subspaces

of Hs�IR�� with frame bounds and condition numbers bounded independently of J � �

Analogous statements can be obtained for dyadic MRA on IRd ��� and for the case
M � � of MRA generated from several scaling functions�

Needless to say� that Corollary � is a less known result� The main�stream research is
directed to constructing from a dyadic MRA orthogonal� semiorthogonal� and biorthog�
onal wavelet bases or� generally� Riesz bases suitable for L��IR� and for Sobolev spaces�
Below� we will survey some of these constructions� A systematic methodological study
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of these issues for general MRA was undertaken by Dahmen ���� ���� where further ref�
erences can be found �see also the recent survey ������ The crucial moment is the study
of pairs of MRA"s fVjg and f #Vjg which are dual to each other �for dyadic MRA on IR�
see ���� Section ������ The construction and investigation of the dual MRA f #Vjg starting
from a given choice of direct sum splittings Vj � Vj�� ��Wj� j � �� is an interesting issue�
even for dyadic MRA� In order to prepare for the examples below� in the dyadic MRA
case we create the collections �j also from a �nite number of wavelets ��� � � � � �L � V�
according to

�j � f�m
j�k�t� � �l��j��t� k� � k � ZZ� l � �� � � � � Lg � j � � � ����

In most cases� it is assumed that these collections form L��Riesz systems �i�e�� Riesz
bases in their span Wj�� Note that our notation is consistent with that of the previous
section� not with the standard in wavelet papers� W� �not W�� is the span of the integer
shifts of the functions �l�

Again� let us restrict to L � � and denote � � ��� Since � � V� we have a unique
decomposition

��t� �
X
k

bk���t� k� � ���

In most of the examples we will look for compactly supported � resp� for a ��mask �bk�
of �nite support� In analogy� we set C� � �fk � bk �� g and de�ne the symbol of � by

m���� �
�

�

X
k

bke
�ik� �

��� Orthogonal wavelets

The construction of orthonormal systems from a dyadic MRA on IR is a central theme of
wavelet theory �and applied harmonic analysis in general�� Forerunners of the modern
developments in this area are the Haar� Faber�Schauder� Walsh and Franklin systems
which have been extended into a whole family of spline bases on �� �� and later mani�
folds in IRd by Ciesielski and co�workers during the 
�ies �for some mysterical reasons�
o�cial wavelet history �see� e�g�� ���� ���� pays tribute to Stroemberg who used these
developments in the shift�invariant situation to deal with basis constructions for real
Hardy spaces on IRd�� Another source from classical analysis are Littlewood�Paley tech�
niques and the modern theory of function spaces based on decomposition techniques�
We refer to �	�� ��� ��� for more historical information� It should be emphasized that
the broad acceptance of the wavelet machinery comes mainly from the successful syn�
thesis of multiscale modelling� fast algorithms� and harmonic analysis tools which were
evolving in parallel for many years�

A necessary prerequisite is the construction of a scaling function � such that the
system of its ZZ�shifts �� is an orthonormal basis in V�� Having such a � then

��t� �
X
k

����ka���k���t� k�

��



�here� �ak� is the ��mask and the asterisque denotes complex conjugation� will de�ne a
complementary � with the same support properties and such that the resulting multilevel
system F gives a complete orthogonal system in L��IR

d�� According to Theorem � and
its Corollaries �� �� the scaled systems F � will then form CONS in L��IR� �if s � � and
Riesz bases in Hs�IR�� �� � s � �� where � is the Sobolev regularity of �� Clearly� there
are other possible choices for � such that the ZZ�shifts of � are a CONS inW� � V��L�V�
but the above one is the default�

A quick calculation shows that� under the above assumptions �i�e�� the axioms of a
dyadic MRA on IR�� orthonormality of �� is equivalent to

g������ � � � jm���j� � jm�� � ��j� � � � TT � ����

The �rst relation follows by computing the Fourier coe�cients of the ���periodic function
g���� the second is then obvious from

g������� � jm���j�g������ � jm�� � ��j�g����� � �� �

which can be deduced from ��	�� Both relations in ���� can be the starting point for
constructions� E�g�� following Meyer� take any real�valued C��IR� function g��� with
support ���� � ��� � � �� � � � � � is �xed�� and set

 ���� �
g���

�
P

k jg�� � ��k�j����� �

This indeed gives a MRA on IR� with � � B	

� The symbol of the associated re�nement
equation is the ���periodic continuation of

m��� �

�
 �����
 ���� if ��� � ��
� � � � �� � ��
�
 if j� � ��j � �� � ��
�

and in C��TT� by construction �note that for � � �
� one necessarily has  ���� � � on
the support of  ����� which simpli�es the above formula�� Unfortunately� m��� is not a
polynomial� and � cannot be compactly supported� See ���� Example 
����

In order to produce her famous orthogonal basis of compactly supported wavelets�
Daubechies directly constructed polynomial solutions of the form m��� � mN ��� for
the second relation in ����� with additional properties and depending on an integer
N � �� Thus� compact support of the resulting � is obvious� The di�cult part is
guessing a suitable solution of ���� and establishing the properties of �N�t� via ��	��
The derivation is well�documented in ��� Chapter 	�
�� ���� Part II� Chapter ��� or ����
Section 
���� The steps are as follows�

	 Check that

R�x� �
N��X
k��

�
N � k � �

k

�
xk

is a solution of � � ��� x�NR�x� � xNR��� x��

��



	 De�ne the non�negative trigonometric polynomial p��� � R�sin���
��� � � and
check that

cos�N��
��p��� � sin�N ��
��p�� � �� � � �

	 Use the Riesz theorem to �nd a Laurent polynomial q��� �
PN��

k�� qke
�ik� with real

coe�cients qk such that jq���j� � p��� �compare ���� Theorem 
��
���

	 Finally� set

mN ��� �

�
� � e�i�

�

�N
q��� �

Since q��� in step � is not uniquely de�ned� there might be several mN ���� see ���
p���������� for tables of the coe�cients qk for several N � and for graphical visualizations�
The factor ���� e�i��
��N guarantees that polynomials of degree � N �� can be locally
reproduced in Vj which leads to good approximation orders when using the MRA fVjg
for discretization purposes� The construction works also for N � � and leads to the
re�nement equation associated with ���t� � ������t�� Note that the Sobolev regularity
�as well as the C��regularity� of �N asymptotically grows as � N�� � �log ��
�log ���
while the support is �� �N � �� �clearly� C� � C� � �N � for the latter� see below��

A quite similar construction leads to coi�ets � see ��� Section ���� or ���� � which
have larger support but better� explicit polynomial reproduction

p�t� �
X
k

p�k���t� k� � p � IPN�� �

Finally� we would like to refer to ���� Example �� p������ for an interesting example
of a non�stationary orthonormal wavelet system consisting of C� functions for which
Corollary � is applicable for all �� � s ��� Nonstationary means that the �� and ��
masks change with j � for the example under consideration their size grows proportional
to j� Thus� the price to pay for unlimited regularity of the approximation scheme is the
loss of algorithmical optimality �typical AJ will contain 
 Jd�J non�zero elements� and
the multilevel V�cycles will take about the same number of arithmetical operations��

It is relatively easy to see that �except for the piecewise constant case� orthonormal
systems of compactly supported spline wavelets cannot exist� This� and the popularity
of spline approximation schemes in applied sciences� has caused a lot of work for weak�
ening the orthogonality concept� see below� More �exibility for constructing orthogonal
wavelet systems is available if we go to multiwavelets where typically M � L � �� Re�
cently� such constructions have been proposed by using iterated function systems ���� ����
See also examples by ��
� and �����

��� Interpolatory wavelets

This topic is of interest for two reasons� on the one hand� it is closely related to the
orthogonal case� on the other� it is important for the theoretical understanding and
practical application of wavelet collocation methods�

�



Suppose that fVjg is a dyadic MRA on IR� with scaling function � � L��IR��C�IR��
Then� we call � interpolatory if

��l� � �l �
�

� if l � 
 if l �� 

� ����

Let Ij denote the interpolation projector into Vj given by

�Iju��t� �
X
k

u���jk��j�k�t�

which is well�de�ned at least on C��IR� � L��IR�� A natural choice for W� resp� � is
given by

W� � ran�I� � I�� � ��t� � ���t� �� �

The potential representation of a continuous function u with respect to the resulting
system F will then necessarily have the form

u�t� �X
k�ZZ

u�k����k�t� �
�X
j��

X
k�ZZ

�u� Ij��u���
�j��k � ����j�k�t� �

and the properties of F with respect to the scale of Sobolev spaces are intimately con�
nected with the properties of the interpolation process fIjg� Without proof� let us state
that under the assumptions of Corollary � and if � is interpolatory� the scaled system
F � will be a Riesz bases in Hs�IR� if and only if �

�
� s � �� In higher dimensions� the

lower bound is d
�
�

Under analogous technical conditions� a necessary and su�cient condition for ����
to hold is

m��� �m�� � �� � � � � � TT � ����

Comparing with the second relation in ����� we see how orthogonal and interpolatory
MRA are related� If � is associated with an orthogonal MRA then the convolution

�new�t� �
Z
IR
��s���s� t� ds

leads to an interpolatory MRA since d�new��� � j ����j� and� thus� m�new��� � jm����j��
The other direction was already explored in Daubechies" construction� If m��� is the
symbol associated with an interpolatory MRA� i�e�� satis�es ����� and is a non�negative
polynomial then� according to the Riesz theorem� there is a polynomial mnew��� for
which m��� � jmnew���j�� The simplest example of this connection is that of the Haar�
and Faber�Schauder systems �take N � � in Daubechies" construction�� The Faber�
Schauder system comes from the interpolatory MRA of linear splines� see ��� Figure �
b��c�� or Figure � below for the associated � and �� respectively� For the case N � ��
see ���� Example �� p� ������

Interpolatory scaling functions arise naturally in interpolatory subdivision schemes
a la Deslauries�Dubuc �see ���� Example �� p����������� Smooth interpolatory spline
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wavelets �with in�nite support except for the linear case� have been studied in great detail
by Chui and Wang� see ���� section 	���� The MRA is given by setting V� � Sm��

m �T�� �
Sm��
IPm �T��� where m is here the degree of the smooth splines under consideration �not the

order as in ���� which would be m� ��� T� is given by the ZZ�shifts of the unit interval�
This MRA is also called B�spline MRA since the m�th degree B�spline may serve as
generating scaling function �to be de�nite� the corresponding ��t� is the m�th degree
B�spline with respect to T� supported on �� m��� and scaled such that

P
k ��t�k� � ��

the associated symbol is m��� � ��m���� � e�i��m
��� Smooth interpolatory spline
wavelets �which are based on taking the cardinal splines instead of B�splines� possess
exponential decay at in�nity and are still practical through truncation processes� If
compact support is desired� relaxation of smoothness requirements �take Sr

m�T�� with
r � m� � and consider spline multiwavelets� or knot insertion �take suitable subspaces
of V� � are the options� Applications to collocation methods have been tried �see �	���

��� Semiorthogonal wavelets

The semiorthogonal case is of interest for several reasons� As we have seen� it is well�
adapted to applications to Sobolev spaces� see Corollary �� On the other hand� semi�
orthogonal spline wavelets of compact support can be constructed�

A system F associated with a dyadic MRA is called semiorthogonal if the system
�� �i�e�� the collection of ZZ�shifts of the �"s� forms a Riesz basis of the orthogonal com�
plement space W� � V� �L� V�� The related function�s� � are called semiorthogonal
wavelets �in other places� these are called prewavelets�� A detailed study of semiorthog�
onal wavelets in the case M � L � � is given in ���� Section ��	� 	��� and will not be
repeated here� The important message is that� starting from a suitable dyadic MRA
with compactly supported scaling function �� we can always �nd a compactly supported
semiorthogonal �$ For the m�th degree B�spline MRA� the symbol m� of the minimally
supported � is given as follows �compare ���� Section 	��� �	��������

m���� �

�
�� e�i�

�

�m
� �mX
l��

����lb�le�il� ����

where b�l is the �non�zero� value of the ��m � ���th degree B�spline at t � l � �� l �
� � � � � �m� The support of this � is �� �m� �� which is asymptotically twice as large as
that of the underlying m�th degree B�spline� Again� for m � � the Haar basis comes
out� The case m � � is depicted in Figure �� Generalizations to higher dimensions are
discussed in section ��

��� Biorthogonal wavelets

The analysis of multilevel systems in Sobolev spaces makes �implicitly and explicitly�
heavy use of duality concepts� According to ��� Section ��� as soon as we have a multilevel
frame F in L���� generated from a MRA� we have a dual frame #F and we can formally

��
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Figure �� Linear spline MRA� � and various �

split it into pieces #�� � f#���ig and #�j � f #�j�ig� j � � �as before� we will identify ��

resp� #�� with �� resp� #���� If the frame is a Riesz basis then biorthogonality of the
systems F and #F follows from ��� ����� ��j�i� #�j��i��L� �  except for �j� i� � �j �� i�� when
this scalar product is ��

Unfortunately� it is not true a priori that the dual system of a dyadic MRA again
is related to a dyadic MRA �for a counterexample� see ���� Section ������ In case it is
�what we will assume in the following�� full information about the quadrupel of subspace
sequences �fVjg� fWjg� f #Vjg� f #Wjg� resp� of scaling functions%wavelets ��� �� #�� #�� resp�
of symbols �m�m�� #m � m��� m ��� is very helpful� Beginning with the seminal paper
����� it became convenient to start with a biorthogonal system rather than to derive it
as a by�product of some other construction� Two dyadic MRA fVjg� f #Vjg with scaling
functions �� #� are called biorthogonal if

� #�� ���k�L� � �k � k � ZZ � ����

In terms of symbols� up to technical assumptions� ���� is equivalent to

m��� #m���� �m�� � �� #m��� � �� � � � � � TT � ��	�

Orthonormal MRA are a special case �#� � ��� and interpolatory MRA� in a certain
sense� too �#� is the delta distribution� with symbol #m��� � ���

From a practical point of view� the biorthogonality assumption is su�ciently �exible
to construct a variety of examples where both �� #� are compactly supported� It is
possible to choose for � the m�th degree B�spline while for the associated #� the Sobolev
smoothness grows linearly with m� In Figure �� the wavelet � of minimal support
corresponding to the case m � � is shown �the Sobolev smoothness of the associated #�
can be calculated as #� � ���
	���

Having such a pair of biorthogonal dyadic MRA� it is then easy to construct a variety
of wavelet systems� in particular� such that � and #� are also compactly supported� By
choosing this �exibility in the right way� approximation properties� moment conditions�
and smoothness of the resulting systems can be tuned to the application at hand� This
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is important for applications to variational problems in the Sobolev scale� E�g�� the
smoothness of �� #� essentially determines the range of Sobolev spaces where the scaled
systems F �� #F � are Riesz bases�

Theorem � Let be given a biorthogonal pair of dyadic MRA� with compactly supported
scaling functions �� #�� Let �ak�� �#ak� denote the masks of the corresponding re�nement
equations� Set

m���� � e�i� #m�� � ��� � m ����� � e�i�m�� � ���

or� equivalently�

��t� �
X
k�ZZ

����k#a���k���t� k� � #��t� �
X
k�ZZ

����ka���k #���t� k� �

Then the scaled systems F � resp� #F � are biorthogonal Riesz bases in Hs�IR� if �and only
if� �#� � s � � resp� if �� � s � #�� Here�

� � supfs � � � Hs�IR�g � #� � supfs � #� � Hs�IR�g �

are called Sobolev regularity exponents of � and #�� respectively�

The above choice of �� #� guarantees compact support� other choices are covered as
well �as soon as the biorthogonality Wj�L�

#Wj�� j �� j �� and the Riesz basis property of
�j inWj resp� of #�j� in #Wj are preserved�� The result for orthogonal MRA is completely
contained in the above formulation �� � #��� For a proof of the if�part in Theorem 	�
see ���� �this paper uses the language of Jackson�Bernstein inequalities which reduces in
the particular case to just knowledge of the Sobolev regularity exponents �� #��� Consult
also the results on characterizing the exact Sobolev regularity of re�nable functions� see
���� ��� ���� which show that under the above assumptions one always has �� #� � �
In the above mentioned example from ����� the Riesz basis property of the scaled F �

consisting of compactly supported linear spline functions is consequently satis�ed for
Sobolev spaces with ����
	� � s � �
�� Similar results hold for d � �� see Section
����

In ��� ��� an analogous result has been obtained if we start with a dyadic MRA
given by a compactly supported � and a choice of our favorite compactly supported � �no
compact support is assumed for #��� This setting is quite natural if we are only interested
in multilevel solvers based on a ��discretization and multilevel preconditioning� In that
case� it is much more important to care about the size of �� and ��masks than on
properties of the dual system �however� these are implicitly used in the proof of the
Riesz basis property of a system�� If we investigate ad hoc choices of ��� combinations
then we have typically no direct access to #�� However� under reasonable assumptions on
the two�level decomposition V� � V� ��W� induced by a given choice of � and �� one can
compute the symbol #m of the potential dual MRA from the biorthogonality relations
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�see� e�g�� ���� Section ������ and prove similar results� The di�erence to the setting of
Theorem 	 is that #m may not be a polynomial �i�e�� the #��mask may be in�nite� but
only a rational function in e�i�� Still� the correct #� can be computed from properties
of a so�called transfer operator associated with j #m���j� and may be positive �in which
case a dual #� exists� is in L��IR� and generates an MRA� as well as non�positive� In
the latter case� Theorem 	 is not applicable since a biorthogonal dyadic MRA on IR
for which the given � is a complimentary function for � does not exist �at least� not in
the L��setting�� Computational methods for obtaining #� are discussed in ��� ��� The
following family of examples for the linear B�spline MRA has been considered in ���
Section ����� We give the �l�expressions� l � � �� � � �� The resulting Fl have been called
�l � ���point hierarchical bases in ��� since C�l � l � �� and l �  reduces the prototyp
of a hierarchical basis� to the Faber�Schauder system��

�l�t� �
lX

k��

����k��l��a�l	k ���t� �k � �� �l
���� � a
�l	
k �

�
l
k

�
� k � � � � � � l �

Note that for l � �� �a
�l	
k � �the remaining values are set to � is� up to a scaling factor

and an index shift� the mask of the B�spline of degree l� �� Also� �l satis�es l moment
conditions� i�e�� �l�L�IPl��� Explicit formulas for the rational dual symbols #ml��� as�
sociated with this ���l choice have been computed in ��� ���	��� These symbols have
appeared in the literature in a di�erent context �see ��� ���� i�e�� the dual MRA which
we are not particularly interested in� has some other interesting applications�� In Figure
�� a schematic picture of the graph of �l and the range in which F �

l is a Riesz basis in
Hs�IR� are shown for l � �� Results for larger l and for other B�splines replacing the
linear hat function as the choice for � can be deduced from ��� ���

Here is yet another !toy" example which can be investigated by the above methods�
Again� for the linear spline MRA� de�ne the one�parameter family of � by the formula

��t� � ���t� ��� a����t� �� � ���t��� ��
�� a�����t� �� � ���t� ��� � ��
�

These � are symmetric about t � �
�� and satisfy moment conditions of order �� The
stability assumption on �� with respect to W� is satis�ed if and only if  � a � �� The
family ��
� !interpolates" the following special cases� semiorthogonal linear wavelets �for
a � �
��� the functions �� �after a sign change for a � �
�� and �� �for a � �
�� from
the previous example� and also the biorthogonal wavelet from Figure � �for a � �
��
this is the only value for which the dual #� has compact support�� The case a � �
� is
exceptional � this is the only case where � satis�es moment conditions of order �� Figure
� shows the graph of the lower bound �#� � �#��a� for the s�interval �#� � s � �
�� such
that the Riesz basis property of the scaled systems F � holds in Hs�IR�� The true value
for the exceptional case is �#���
�� � ���������� in all other cases we have �#��a� �
�� �this example shows that the Sobolev exponents of re�nable functions may behave
discontinuously� due to changes in the number of moment conditions��
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Figure �� The �l � ���point �l for the linear spline MRA

��� Further examples

We wish to mention that there are numerous other examples� Multiwavelets are an area
of current research activities� The simplest situation �which is close to our intention to
stay in an !observable" neighborhood of classical spline and �nite element schemes� is the
dyadic MRA associated with V� � S�

��T�� �quadratic C��splines� for which M � L � �
is appropriate� Figure � shows our choices for the two scaling functions ��� is the
linear B�spline while �� represents a quadratic !bubble" function with support on �� ���
���t� � ��t��� t��
�� and the two semiorthogonal wavelets

���t� � ����t� �
�

�
�����t� �� � ����t� ���� ��

�	
�����t� � ����t� ���

� 


�	
�����t� �� � ����t� ��� �

���t� � ����t� ��� ����t� ��� ��

��
�����t�� ����t� ���

��


��
�����t� �� � ����t� ��� �

The remarkable fact is that the supports of ��� �� are smaller compared to the semior�
thogonal linear spline wavelet shown in Figure � above� This and the obvious symmetry
properties make it easier to introduce boundary modi�cations�

Another option would be to change the dilation factor �the author should admit that
he knows only of one paper on multilevel schemes for the numerical solution of PDE

�	
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Figure �� Linear spline �l for a� a triadic MRA and b� a tight frame

where other than dyadic dilation has been tried in a practical application�� Figure � a�
depicts a choice of semiorthogonal spline wavelets ��� �� related to a linear spline MRA
based on triadic dilation� I�e�� we de�ne now u � Vj � u���j� � V� while the other
requirements for a MRA remain unchanged� Again� better localization and symmetry
properties of the �l are the result� at the expense of having to deal with two instead
of one ��mask� There are some papers that study MRA on IR associated with rational
dilation parameter �see� e�g�� ���� in higher dimensions there is a much greater variety of
dilation procedures�

The next remark concerns the existence of multilevel frames in Hs�IR� other than the
standard one covered by Corollary � which is only good for s � � In general� there is
also some doubt whether frames are a reasonable concept at all for the case s � � The
question is not yet studied in su�cient detail although it seems to be not a hopeless one�
Take again the dyadic linear spline MRA generated from the linear B�spline � shown in
Figure �� and consider the two complementing functions

���t� � ��

�
���t� �� � ���t�� �

�
���t� ��

���t� �
�p
�
���t� ��� �p

�
���t� �� �

see Figure � b�� These complementary functions have been introduced in ���� section
���� as partial case of a whole family of compactly supported tight spline frames in L��IR�
�actually� ���� considers the bi�in�nite case� i�e�� the correct statement is that f����jt�
k�� ����jt � k� � j� k � ZZg forms a tight frame in L��IR

d��� Note that these functions
are orthogonal to IP�� and possess symmetry properties�

Our statement is that the scaled multilevel system F � constructed from � �M � ��
and the �l �L � �� is a frame in Hs�IR� for all �� � s � �
�� We will not prove the
complete result but show the frame property for part of this interval� The idea is the
following� Observe that

���t� � ��

�
������ t� � ���t� ��� � ���t� �

�p
�
������ t�� ���t� ��� �

��



where ���t� is the wavelet function introduced in subsection ��� �see Figure � � l � ���
Thus� our F is actually the !linear combination" of F� and another� similar system F�

�

which is obtained by replacing ���t� by ����t�� Vice versa� the union of F� and F�
�

can be expressed by F in a similar way� From ��� we have that F �
� is a Riesz basis

�and therefore a frame$� in Hs�IR� for all ������
 � s � �
�� The same is true for
�F�

� �� �consider the coordinate transformation t � �t which is an isometry in Hs�IR�
and transforms F�

� into F��� Looking at the de�nition of a frame via moments and
expressing the moments with respect to one system through moments with respect to
the other system� we easily see that F � must be a frame in Hs�IR� for at least the
same range of s� To cover the full range of s � ���� �
��� one has to relate F with
F� and suitable perturbations of it and to use a limiting argument� Alternatively� one
can view the union F� � ��F�

� � �neglect the component for j �  for a moment� as the
result of applying the di�erentiation operator d

dt
to the standard frame associated with

the quadratic B�spline MRA� According to Corollary �� the latter is a frame in Hs�IR�
for all  � s � �
� while the di�erentiation operator provides a lift from Hs to Hs��

�the problems with the ���part can easily be �xed�� This trick gives the same result�
Clearly� the same considerations can be applied to the �nite sections of these systems�
We suggest the problem of creating interesting frames for further investigation�

Finally� for d � �� there are also some promising results concerning the construction
of orthogonal� semiorthogonal� and biorthogonal systems with respect to other scalar
products� In particular� since we are looking for optimal solvers for elliptic variational
problems� �semi��orthogonality with respect to the energy scalar product a�� � would
be most desirable� One new direction which we will touch upon in later parts of these
lectures is the systematic use of vaguelettes initiated by Meyer et al�� Another approach
is to consider �semi�orthogonalization with respect to the Hs�seminorm� see ��
� ����
However� for d � � these attempts to tailor multilevel systems to the operator equation
at hand are of limited practical use since they seemingly interfere with the desire to keep
�� and ��masks local and small ���� ����

� Multilevel �nite element systems in Hs���

��� Nodal basis frame

We continue with Example � of Section ��� and give some details on verifying the
properties of a �nite element �FE� MRA which are necessary for the theory of multilevel
systems in Sobolev spaces� For an extensive discussion of the approach� see ��	��

As in Example � above� let � � IRd� d � �� be polyhedral� satisfy the extension prop�
erty� and be equipped with an increasing sequence of quasi�uniform� regular partitions
Tj� j � � Here are examples of �nite element spaces Vj for which the requirements of an
MRA in L���� hold if we choose the collections of so�called nodal basis functions as the
default bases �j in Vj� We will not give complete de�nitions� and refer the interested
reader to the literature �generally� ���� �	� could be consulted��
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	 Lagrange C��elements of degree m for IRd�simplices or IRd�rectangles� where IPm �
Vj � Hs��� � C���� for s � �
� �see ������

	 Bogner�Fox�Schmidt rectangles �and their analogs for d � ��� where IP� � Vj �
Hs��� � C���� for s � �
��

	 triangular Powell�Sabin macro elements �see ������ d � �� with IP� � Vj � Hs����
C���� for s � �
��

	 quadrilateral Fraeijs De Veubeke�Sanders macroelements �see ������ d � �� with
IP� � Vj � Hs��� � C���� for s � �
��

For a schematical display of the local interpolation problems associated with the FE
types used below� see Figure 	� The graphical notation for the interpolation conditions
reads as follows� Small dots represent interpolation of function values at a point �small
circles stand for those points which are omitted if the serendipity element of the same
type is considered� see ���� for details�� larger circles mean interpolation of the complete
set of �rst resp� second order partial derivatives at a point� one arrow denotes a direc�
tional derivative �here� normal derivatives at edge midpoints� while two arrows denote
interpolation of the mixed derivative uxy� In all cases the maximal value of m has been
shown� The �rst � element types lead to globally C� �nite element functions and are
suitable for conforming Galerkin approximations of second order elliptic boundary value
problems� The remaining � element types represent C� �nite elements� and could be ap�
plied to fourth order problems such as the biharmonic problem� The last two examples
are C��macroelements� The local space consists of C� continuous piecewise polynomi�
als of a given degree �m � � resp� m � � in our examples� with respect to the given
secondary partition of the element�

Other FE schemes that �t the rules might be constructed as well but will be too
complicated to be included into the list of practical FE constructions �some of the above
are already too involved from an practitioner"s viewpoint�� Compared to what else the
interested reader will �nd in ����� the above list is short� for essentially one reason� very
often the monotonicity condition ��� is violated� E�g�� Argyris and Bell C��elements�
Hermite and reduced Hermite C��elements� other serendipity elements� Clough�Tocher
macroelements� all nonconforming FEs etc� have this defect�

To implement the program of Section �� we need to verify an appropriate set of
Jackson�Bernstein inequalities� We only sketch the steps following ��	� where further
references can be found� We need a quantity called k�th order modulus of continuity�

�k�t� f�L� � sup
h�IRd � jhj	t

k�k
hfkL���h	 � f � L����� t �  � ����

Here� �k
hf�x� is the k�th order di�erence operator with stepsize h �i�e�� a linear combina�

tion of the function values f�x� lh�� l � � � � � � k�� and �h � fx � � � �x� x�kh� � �g�
The advantage of this function is that its behavior for t�  measures L��smoothness up
to order k on a �ne scale� without involving derivatives� It can be used to de�ne Besov
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Bicubic Bogner-Fox-Schmit element:Quintic Argyris element:  m=5

(serendipity element:  m = 3)(serendipity element:  m = 2)
Bicubic Lagrange element:  m=3Cubic Hermite element:  m = 3

m = 3

Piecewise cubic C  quadrilateral11

macroelement: m = 3(Powell-Sabin split):  m = 2
Piecewise quadratic C  macroelement

(serendipity element: m = 2)
Linear Lagrange element:  m = 1                 Cubic Lagrange element:  m = 3

Figure 	� Local interpolation problems for some FE types
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spaces Bs
��q��� in an elementary and explicit way� For the domains under consideration�

one has

�k�t� f�L� 
 K�t� f�L� � inf
g�Hk��	

�kf � gkL� � tkjDkgjL�� � t�  � ����

which links it to interpolation theory� The notation

jDkgjL� � �
X

��ZZd�� j�j�k

k�
�g

�x�
k�L�����

stands for a seminorm in Hk����� Without proof� note the equivalence

Hs��� � Bs
������ � ff � L���� � kfk�Bs

���
� kfk�L���	�

�X
j��

��sj�k��
�j� f��L� ��g ���

which is valid for any s �  and integer k � s �the norms are equivalent for di�erent
such k��

To prove Jackson inequalities for FE spaces� the following approach is standard�

	 Construct a sequence of so�called quasi�interpolant operators Qj � L����� Vj by
setting

Qjf �
X
i

�j�i�f��j�i

where a� the coe�cient functionals �j�i�f� are linear functionals on L����� and
satisfy

j�j�i�f�j � C���j kfkL���j�i	 �

where �j�i � � is called support of �j�i� and b� polynomials from some IPm are
reproduced locally�

Qjp � p �p � IPm �

and� in order to de�ne the locality requirement� assume that for each � � Tj there
exists a suitable set �� � � which contains all those �j�i for which � intersects
the support of �j�i� Then� the sets �� � � � Tj � should have regular boundary�
have diameter � C��j� and form a locally �nite family of sets such thatX

��Tj

kfk�L����	 � Ckfk�L���	 �

Constants should be independent of j� in practice this follows from the assumptions
on Tj automatically�

A partial case is the construction of quasi�interpolant projectors where additionally
Qjvj � vj for all vj � Vj �the proper m is de�ned as the largest integer such
that IPm � Vj for all j� see above for these m in particular cases�� Necessarily�
�j�i��j�i�� � �i�i�� in particular� �j�i should be a subset of the support Kj�i of the
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nodal basis function �j�i� In this case� the construction and properties of f��g are
straightforward� Suitable �j�i can be determined from locally �on each � � Tj�
constructing biorthogonal systems to the �nite set f�j�ij�g� For the linear FE case�
see ��	� p� ����� A �exible use of quasi�interpolant techniques can help a lot$

	 Now check that

kQjfkL� � CkfkL� � f � L���� � j �  �

and
kg �QjgkL� � C��j�m
�	kDm
�gkL� � g � Hm
���� � j �  �

The latter inequality implies the Jackson estimate with � � m � �� and is proved
by applying the Bramble�Hilbert lemma locally on ��� Indeed� by de�nition of
�� and the polynomial reproduction assumption� we have

kg �QjgkL���	 � kg � pkL���	 � kQj�g � p�kL���	 � Ckg � pkL����	
for all p � IPm and � � Tj �the last step requires several steps and needs almost all
assumptions on �j�i and �j� it is left to the reader as a stimulating exercise�� Now�
the Bramble�Hilbert lemma applies� and it remains to add all local estimates�

The L��boundedness is much simpler to prove� From the Riesz basis assumption
of �j and the bound for �j�i�

kQjfk�L� � C
X
i

��
j j�j�i�f�j� � C

X
i

kfk�L���j�i	
�

We conclude by using the fact that f�j�ig is a locally �nite family of sets� too
�why&��

	 The Jackson type estimate for H�����  � � � m� �� as well as the one in terms
of moduli of smoothness

ej�f�L� � kf �QjfkL� � C�m
���
�j� f�L� � f � L����� j �  �

follow by interpolation �for the latter� use ���� with k � m� � after applying the
above inequalities to the decomposition

f �Qjf � �f � g� � �g �Qjg� �Qj�g � f� � g � Hm
���� ��

The Bernstein inequality �in terms of moduli of smoothness� for spaces of piecewise
polynomials has been established in ��	� Section ����� For our examples �and all other
reasonable FE constructions�� it reads

�k�t� vj�L� � Cmin��� ��jt�min�r
����k	�kvjkL� � t �  �
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for all vj � Vj� where r denotes the global smoothness �i�e�� derivatives of order r are
continuous while for r � � they may be discontinuous� of the FE functions in Vj� Thus�
we have r �  for Lagrange C� elements� and r � � for the remaining examples in the
above list� The reader is recommended to prove this inequality for linear FE� where
k � � and r �  are appropriate� The case t � C��j is trivial since

k�k
hfkL���h	 � �kkfkL�

by de�nition of the k�th order di�erence� By choosing k su�ciently large and substituting
into ��� it follows that

kvjkHs � C�jskvjkL� � vj � Vj� j �  �  � s � r � �
� �

Thus� we are ready to apply Theorem �� We will do it in the language of space
splittings� To this end� let again Vj�i be the one�dimensional subspaces associated with
the nodal basis functions �j�i�

Theorem � Let fVjg be a FE MRA as speci�ed above� Let r � ��� � � � � denote the
global smoothness order of the FE scheme� and m the largest integer for which the above
quasi�interpolant construction works� Set

� � min�r � �
�� m� ��

�for all examples in the above list� � � r � �
�� i�e�� � � �
� for C��elements� and
� � �
� for C��elements�� and assume  � s � �� Let a�� � be any symmetric Hs����
elliptic bilinear form� Then the splitting

fHs���� ag �
�X
j��

fVj� ��sj�� �L�g �
�X
j��

X
i

fVj�i� ��sj�� �L�g

resp� its �nite sections

fVJ � ag �
JX
j��

fVj� ��sj�� �L�g �
JX
j��

X
i

fVj�i� ��sj�� �L�g � J �  �

are stable� with upper and lower stability constants and condition numbers that are uni�
formly bounded with respect to J� The condition numbers depend on �� on the parameters
characterizing the regularity and quasi�uniformity of the sequence fTjg� on the FE type�
on s� and on the ellipticity constants of the form a�� ��

This result applies to both bounded and unbounded polyhedral domains satisfying
the formulated conditions� Slit domains for which the extension property does not
hold� are formally excluded �see ��	� for arguments that show that the results remain
true�� The associated system F � f�j�ig will be called nodal basis FE frame �the precise
meaning of this catchy phrase is that the scaled systems F � will be frames in Hs���
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for the corresponding parameter range�� The above splittings will be called basic FE
multilevel splittings� to underline that they are central for the understanding of whole
classes of optimal preconditioning methods �this will be demonstrated in the third part
of these lectures��

The main practical application of this type of result is restricted to integer s� thus
s � � �second'order elliptic boundary value problems� and s � � �fourth'order problems�
if r � ��� Then the sti�ness matrices AJ are sparse� and the �rst of the two approaches
to multilevel solvers mentioned in subsection ���� makes sense� In connection with this
problem class� essential boundary conditions are an issue� and the space splittings need
to be tuned to them� It turns out �see ��	�� that this can be done on the basis of
Theorem 
� without attracting essentially new ideas� The restriction we have to pose is
that the part ( � �� of the boundary where essential boundary conditions are included
into the test space should be resolved by the partition T�� i�e�� ( should be the union
of �d� ���dimensional faces of simplices from T�� For simplicity� consider homogeneous
Dirichlet boundary conditions u �  on ( � ��� Then

 Vj � fvj � Vj � vjj� � g � j �  �

is the promising FE MRA� and the subspace

Hs
���� � fu � Hs��� � uj� � g � s �

�

�
�

of Hs��� the appropriate !energy space"� The restriction on s is natural� and is required
for a meaningful trace de�nition�

We may assume that the Riesz basis  �j is a subset of �j� for all j �  �in all of the
above examples� this can be achieved by modifying the de�nition of �j�i for boundary
nodes� for Lagrange C��elements� no changes are required at all�� What we claim is that
the stability of the splitting

fHs
����� a�g �

�X
j��

f  Vj� ��sj�� �L�g �
�X
j��

X
i ��j�ij���

fVj�i� ��sj�� �L�g ����

is valid for any symmetric Hs
�����elliptic form follows from the result of Theorem 


where additionally s � �
� has to be required� The corresponding statements on the
sections of the splitting ���� are also valid�

As can easily be seen� the new splitting is a subsplitting �obtained by selection� see
the terminology of ��� Section ��� of the old one� thus the lower stability bound is trivial�
In order to prove the upper bound� use the inclusion Hs

���� � Hs�(� and the upper
bound result from Theorem 
� For any u � Hs

����� there exist uj � Vj� j � � such that

u �
�X
j��

uj �
X
j

��sjkujk�L� � #Ba�u� u� � C #Bkuk�Hs � C #Ba��u� u� �

��



Now� we will !correct" the representation to a representation with respect to the new
MRA f  Vjg as follows� Consider the partial sums

vj �
jX

k��

uk �
X
i

cj�i�j�i

and project them into  Vj by setting

 vj �
X

i ��j�ij���

cj�i�j�i �

Finally� set  uj �  vj �  vj��� j � � and  u� �  v�� Then� at least in L����� we have again

u �
�X
j��

 uj �  uj �  Vj � j �  �

Now� there comes the technically tricky point� Since

 uj � � vj � vj� � uj � � vj�� � vj��� � j � � �

one needs estimates for the L��norms of the di�erences of the functions

wj � vj �  vj �
X

i ��j�ij� �
�

cj�i�j�i

which are essentially de�ned by there values on ( and do not vanish only in a small
boundary corridor of size � C��j� Due to the local� element�wise de�nition of FE�
functions� one easily sees that in all of the cases covered by Theorem 
� we have kwjk�L� 

��jkwjj�k�L���	 and

wjj� � vjj� � �
�X
k�j

ukj� �

Thus� the L��norm of the traces of wj can be estimated from the L��norms of traces of
uk� k � j� and it remains to use the inverse direction kukj�kL���	 � C�kkukkL� to �nally
come back to the information we started with� The intermediate result is

kwjk�L� � C
X
k�j

��tkkukk�L� � t �
�

�
�

the �nal �after choosing an appropriate �
� � t � s� substitution� and a change of the
order of summation�

�X
j��

��sjk ujk�L� � C
�X
j��

��sj�kwjk�L� � kujk�L�� � C
�X
k��

��skk ukk�L� � Ca��u� u� �

This proves the upper stability bound for the splitting in �����
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Implicitly� this proof contains the core idea of constructing trace spaces� restriction
and extension operators from multilevel FE decompositions and their �nite sections
which are of importance in many problems� both on an algorithmical and theoretical
level�

After having established the basic FE multilevel splittings �including boundary condi�
tions if required�� a lot of further desires come to mind� hierarchical bases �the FE coun�
terpart of interpolatory MRA�� semi�orthogonal FE schemes �suitable for Hs�problems
with s � �� biorthogonal Riesz systems �direct sum splittings� and so on� Some recent
research for the linear FE MRA on polygonal domains in IR� is given in the next sub�
section� This material partly generalizes to other FE schemes and to d � �� The last
subsection brie�y deals with more general domains in IRd�

��� Linear FE multilevel systems

In this subsection we go to more details in a very speci�c case� We consider the FE MRA
for C� Lagrange elements of degree m � �� i�e� for linear �nite elements� Everything
simpli�es� Theorem 
 is applicable for  � s � �
�� and the case s � � covers applications
to standard second�order elliptic boundary value problems� Since this particular case
is a central problem in the FE�community� studied in great detail and re�used in other
applications� it deserves special attention�

We give some list of linear FE multilevel systems �other than the nodal basis frame��
with references to algorithms which have been suggested before �and after� the terminol�
ogy of multilevel systems was created� and some rough impression on the performance
one can expect from one or the other multilevel scheme� On the other hand� we also
borrow ideas from the wavelet community to further enlarge the number of examples�
The reader can �nd a partly more exhaustive discussion in ���� ��� special examples
appear also in greater detail in work by Stevenson �	�� 	��� Vassilevski �	��� Dahmen et
al� ���� ��� or were already covered by the material of ��	� Section �����

Unless stated otherwise� we consider the two�dimensional case d � �� � is a bounded
polygonal domain �or IR� if we discuss the wavelet counterparts of some examples�� the
re�nement for producing the triangulations Tj is uniform and dyadic �as shown in Figure
���� The nodal basis functions �j�i � �j�P are the standard hat functions �value � at
the associated vertex P � Pj�i of Tj�� These sets of basis functions �t the concept of
interpolatory scaling functions� as for spline spaces in one dimension� orthogonal bases
in Vj would have global support� It is easy to geometrically count the dimension of
Vj� nj � dim Vj � ��j � �Vj � where Vj � fPj�ig denotes the vertex set of Tj� All
our further examples will aim at providing Riesz bases and are based on a direct�sum
splitting

Vj � Vj�� ��Wj � Wj � ��j� � j � � �

and mj � dim Wj � ��j � nj � nj�� equals the number of edges in Tj��� Thus� it
is quite natural to talk about functions �j�i � �j�e associated with the edges e from
Tj�� or� equivalently� with the midpoints Me of these edges �this set will be denoted by
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Wj � VjnVj��� j � ��� Thus� all our examples will be� in a certain sense� edge�oriented
�just to mention� the !geometric language" of vertices� edges� faces� etc�� is also impor�
tant for a purely applied reason� FE programs are often part of larger CAD systems�
and geometrically oriented data structures are often natural for implementations on
unstructured� adaptive grids�� The numerical computations of condition numbers and
iteration counts for the SCG method documented in the tables below have been done on
a square domain �and with the spaces f  Vjg rather than with fVjg�� The bilinear forms
considered correspond to the Poisson problem with homogeneous Dirichlet boundary
conditions �s � �� and to the L��scalar product �s � �� The stopping criterion for the
pcg�iterations was given by a relative error reduction by � ����

	 Hierarchical basis �Yserentant �
���� Consider the system

FHB �
��
j��

f�j�i � Pj�i � Wjg

the �nite sections FJ�HB � FHB � VJ of which form algebraic bases in VJ �and�
therefore� Riesz bases in fVJ � �� �Hsg for any J and s � �
��� Yserentant �
��
has essentially proved that for s � � and d � � the Riesz bounds #AJ � #BJ and
the condition numbers J � �PJ�HB� of the scaled sections F �

J�HB satisfy the
asymptotic relations

#AJ 
 � � #BJ 
 J� �� J 
 J� �

For the case d � �� the growth is even exponential� J 
 �J �

Yserentant"s preconditioner is identical� up to minor details such as the speci�c
choices for S� � A��

� and the diagonal matrices Sj� with the AS multilevel pre�
conditioner for the splitting associated with FJ�HB� It is suboptimal for two�
dimensional H��problems �i�e�� the iteration count grows mildly rather than ex�
ponentially with J�� and a huge improvement over solving the discretized system
AJxJ � fJ without preconditioning� In contrast� solving generic L��elliptic prob�
lems based on FJ�HB is not a good idea� compare the the numerical evidence
provided at the end of this section� This observation is in full coincidence with our
theory ��	� Section ������ since for d � � �as expected from the material of Section
���� F �

HB is a frame in Hs��� if and only if � � s � �
�� Thus the interval of
optimality is far away from the L��case �s � ��

Let us note some good things� The resulting algorithm is cheap with respect
to the operation count �OpsJ �e�g�� the operations  ITj �  Ij do not require any
serious action� just selecting a subvector resp� copying a vector into a longer zero�
vector�� is relatively robust� and simple to implement which explains its popularity
�see the description of Bank"s PLTMG�� However� almost the same advantages
are characteristic for the standard nodal basis frame which we will denote by
FBPX since the corresponding AS method� the so�called BPX preconditioner�
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was introduced by Bramble� Pasciak� Xu ���� For H��problems� the practical
condition numbers are not only bounded with J but also surprisingly small� see the
corresponding table below for the values in the case of a two�dimensional square�
Our experiments show that the detoriation of condition numbers for the L��case
is also moderate �the computations reproduce exactly the theoretical behavior
J 
 J which follows from the considerations in ����� Implementations are available
for d � � and d � �� e�g�� the adaptive code Kaskade ��x can be obtained via elib�

	 Three�point hierarchical basis �Stevenson �	�� 	���� In an attempt to im�
prove the convergence behavior of the hierarchical basis method as well as to add
robustness and to preserve the basis property� Stevenson proposes the following
modi�cation� For any e from Tj��� j � �� with midpoint Me � Vj and endpoints
P� P � � Vj��� set

�j�e � �j�e � cj�e�j�P � c�j�e�j�P �

with constants cj�e� c
�
j�e such that �j�e is discretely L��orthogonal to Vj��� For a

uniform grid� the constants are cj�e � c�j�e � ��
�� The resulting multilevel FE
system will be denoted by F�HB �the number � is chosen because C� � ��� In
�	��� for d � � and uniform grids� the Riesz basis property in Hs��� is essentially
established for the range �s� � s � �
�� with an unspeci�ed s� � � Experiments
for d � � �	�� and recent theoretical investigations �	�� yield an analogous result
for the nested re�nement case and d � �� Thus� the use of FJ��HB improves the
BPX�algorithm for the L� case while being only slightly more complicated and
a bit slower in the H� case �the condition numbers reported in �	�� 	�� for the
above mentioned generic H��problem are about �
 for d � � and � for d � � and
J � 
�� Due to the validity of the Riesz basis property also for negative Sobolev
exponents� the systems FJ��HB might be attractive for integral and boundary in�
tegral equations� particularly for d � � �actually� in ��	�� the authors have used a
numerical scheme for solving an L��elliptic integral equation based on this system
before its detailed investigation by Stevenson�� On uniform partitions and away
from the boundary� the �j�e are orthogonal to IP�� in the general case at least to
constants� In ���� we have investigated some properties of the wavelet counterpart
of F�HB associated with the corresponding dyadic linear FE MRA on IRd� d � ��
Using the machinery of multivariate wavelet theory� we could compute the exact
range ������	 � s � �
� for the Sobolev exponent s such that F �

�HB is a Riesz
basis in Hs�IRd�� The result does holds for d � �� and shows the �exibility and
potential of this modi�cation for various standard applications�

	 L��semiorthogonal constructions ������ ��	�� �	��� ����� According to the general
results of section ���� it would be desirable to construct a L��stable basis f�j�eg of
the L��orthogonal complement space Wj � Vj �L� Vj�� � j � �� since in that case
the resulting �scaled� system F �

L�
will be a Riesz basis in Hs��� for all ��
� �

s � �
�� The proof of the existence of such basis functions �j�e� with support
in a �nite union of simplices near the associated edge e �uniformly in j� for all
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sequences of quasi�uniform triangulations fTjg is still an open question� However�
the following local procedure worked extremely well for d � �� Let �j�e be the
union of all triangles in Tj�� the closure of which has at least one intersection
point with the closed edge e� Let P� P � denote the endpoints of e� and Ej���e the
set of all edges e� in Tj�� emanating from either P or P �� with the exception of e�
Then� we determine

�j�e � �j�Me
� aP�j�P � aP ��j�P � �

X
e��Ej���e

be��j�Me�

such that it is L��orthogonal to Vj��� andX
e��Ej���e

b�e� � min �

If this construction is applied in the setting of the dyadic linear FE MRA on IR��
the corresponding systems �j have indeed the desired Riesz basis properties as
shown in ��	�� Below� the support of the �j�e associated with a vertical edge and
the �� non�zero coe�cients in the ��mask are shown� The masks for the other
edges can be obtained by rotation� For comparison� the masks are also depicted
for some of the following multilevel suystems�

No rigorous proof of the Riesz basis property of such F �
L�

is available for more gen�
eral polygonal domains resp� for d � �� A similar construction has been considered
in a thesis by Junkherr ����� in connection with the solution of integral equations�
Very recently� Floater and Quak ���� proposed another local scheme of constructing
piecewise linear semi�orthogonal prewavelets� and proved the Riesz basis property
of the resulting F �

L�
under weak conditions on the triangulations� Before that�

for shift�invariant simplicial partitions of IRd� whole families of semiorthogonal
box spline wavelets have been introduced by several authors� however� all these
examples exhibit larger supports and masks�

Stevenson �	�� has proposed another explicit construction which works for more
general situations and is in addition more economical to implement then the ones
previously discussed� To �x the idea� here is the construction� In a �rst step� let
us construct a biorthogonal system #�j�� � f#�j���P � P � Vj��g � Vj for �j� i�e��

��j���P � #�j���Q�L� � �PQ � P�Q � Vj�� �

It turns out that under the above assumptions on the re�nement process� one can
�nd #�j���P such that its support is in the support of �j���P � P � Vj��� Clearly� the
biorthogonal system #�j�� could be used to de�ne a quasi�interpolant projection
onto Vj���

Qj��u �
X

P�Vj��

�u� #�j���P �L��j���P �

�



see below� The remarkable fact is that the range of the operator Idj� #Qj�� � Vj �
Vj� where

#Qj��u �
X

P�Vj��

�u� �j���P �L� #�j���P �

is orthogonal to Vj��� Hence� setting

#�j�e � �j�Me
� #Qj���j�Me

where e is any edge in Tj��� one can prove under reasonable assumptions on the
re�nement process that the resulting systems �j form Riesz bases in the orthogonal
complement spaces Vj �L� Vj��� uniformly in j � �� For details� we refer to the
original paper �	�� by Stevenson �compare also ���� for generalizations��

	 Biorthogonal Riesz bases obtained by !repairing" FHB �Vassilevski� Wang �
�

�� 	��� Carnicer� Dahmen� Pe#na ����� Sweldens �		�� Dahmen� Stevenson ������ In
these papers� the above semiorthogonal complement space Wj is replaced by

W approx
j � �f�j�eg� � �j�e � �Id�Qapprox

j�� ��j�Me �

where Qapprox
j�� � Vj � Vj�� are suitable substitutes for the L��orthogonal projection

Qj�� onto Vj�� �if the latter are used� the Wj of the previous example would have
resulted�� This can be viewed as a coarse�grid correction substracted from the
functions in the hierarchical basis FHB� If worked out in the setting of a dyadic
MRA on IRd� such corrections always lead to �nitely supported masks for the
potential dual scaling function #� which does not yet guarantees the existence of #�
in the L��sense but greatly simpli�es the analysis� and is desirable for a number of
applications� General contributions in this direction are the papers �		�� �����

The choice of Qapprox
j�� in �
� 
�� is described in the form

Qapprox
j���m � pm���Gj���I

�
jGj � pm���t� �

�

	

m��X
l��

��� t

	
�l �

where 	 is an upper bound for the spectrum of the Gram matrix Gj�� of the nodal
basis �j�� of Vj��� and I

�
j is the adjoint of the natural embedding of Vj�� � Vj� The

main result of �
� part I� is� reformulated in our language� that the scaled version
of the resulting system F approx is a Riesz basis in Hs��� for a given  � s � � if
m is chosen su�ciently large� The proof assumes the validity of the result for the
nodal basis FE frame but otherwise it is general� The numerical experiments �
�
part II� show that already small m lead to signi�cant improvements �compared to
the use of FHB�� however� the BPX�method is not outperformed� Below� we will
look at the cheapest casem � � of this construction� with the exact value 	 � h�j���

suitable for uniform triangulations in IR�� ���� Section ���� discusses �as a speci�c
example within a more general approach� the use of a standard quasi�interpolant
operator for Qapprox

j�� �

��



In ���� a ��parameter family of wavelet functions �e was introduced which general�
izes both examples �again in the setting of a dyadic linear FE MRA on IR��� Some
details are given These �e possess vanishing moments of order � �orthogonality of
the � to IP��� Numerical computations of the range of the Sobolev exponent s for
the Riesz basis property to hold in Hs�IRd� are reported on in ���� and provide
interesting insight into the potential of these quite similar proposals� According
to our computations� a � ��
�	 is the optimal choice and gives the largest s�
interval� Surprisingly enough� this special case was already considered in ���� �it
appears to be the only choice of the parameter a where the dual #� is compactly
supported�� However� we do not know of a natural generalization of this example
to more general domains and triangulations� Numerical tests reported on below
show the quite good performance of the corresponding multilevel preconditioner�
One should add that for coarse�grid corrected multilevel schemes� the complexity
of  Ij is not determined by the average size C� of the ��masks as de�ned above
but� provided a slightly modi�ed implementation� by a smaller number� In the
particular case� it is equivalent to setting C� � � which has motivated us to call
this type of linear FE multilevel system a ��point hierarchical basis� too�

At the end of this section� we also show some results from ��� for a ��point hi�
erarchical basis� It is similar to the Stevenson system� but uses a correction only at
one endpoint of the edge e� say� at P � Orthogonality to IP� can be achieved on general
grids� however� there are no good rules for the choice of P so far� Finally� we give some
more precise information about �OpsJ for a generic implementation of the cg�method
with any of the multilevel preconditioners surveyed in this section� The !rule of thumb"
for calculating the factor N� associated with the choice of the � is N� � �C� � �� Due
to a certain large overhead �scalar products etc�� of the cg�method� most of the above
examples of multilevel systems would lead to comparable overall complexity estimates
per iteration� This may change for the multiplicative versions of the algorithms or if
parallel computing is a must� At least for general re�nement schemes� there is also a
considerable setup time and an increased storage for all components of the multilevel
preconditioner CJ �

��� More general domains

We will not give a detailed treatment of this topic� We will go back to the wavelet
setting of a dyadic MRA on IRd� Examples can be obtained from dyadic MRA on IR�
First variant� Tensor product wavelet systems such as

F ��	 � F ��	 � f�j�i�j��i��x�� x�� � �
��	
j�i �x���

��	
j��i��x��g

for d � � �with applications to anisotropic problems and large�d�problems using sparse
grid resp� hyperbolic cross approximations�� Second variant� Tensor product dyadic

MRA can be generated from V� � V
��	
� � V

��	
� with scaling function

��x�� x�� � ���	�x���
��	�x��

��



and detail space

W� � W
��	
� � V

��	
� � V

��	
� �W

��	
� �W

��	
� �W

��	
� �

�to each term in the sum of spaces� a natural generating � is associated�� This is the
standard for isotropic behavior� The supports of scaling and wavelet functions of level
j are d�dimensional rectangles of size 
 ��j in each coordinate direction� Alternatively�
true multivariate MRAs� with less directional preference or more general dilation ma�
trices� are a theoretical option� We do not know attractive examples for possible PDE
applications� except for FE MRA as discussed before� Box spline MRA such as the linear
FE MRA are intermediate� they are� in some sense� tensor products with more than d
directions �look at the de�nition of box splines in the Fourier transform domain� �����

How to adapt a multilevel system F coming from a dyadic MRA on IRd to a domain&
The case �� ��d �or of domains that are logical cubes� is treatable� look at the literature
on wavelets on �� �� and use tensor products� For some special types of wavelet functions
�such as discussed in subsection ���� it is almost obvious what to do� Exercise� Construct
spaces suitable for an L�shaped domain such as ���� ���n�� ���$ To just give the reader
an orientation� here are� in our opinion� the main�stream options�

	 Interior constructions including a boundary modication� Here� one starts
with dividing the shifts of scaling functions%wavelets into two groups� interior and
boundary group� The rule of thumb is to declare a wavelet%scaling function as
interior if the distance of its support to the boundary is larger than a �xed constant
times the diameter of the support� Then think of a reasonable transformation
of the boundary functions� See the Cohen%Dahmen%DeVore construction of a
biorthogonal Riesz basis for rather general domains� For extensions of the frame
concept in connection with solvers for elliptic problems of �m�th order� see ��
��

	 Glueing patches together� For this CAGD�motivated approach� see the survey
����� natural for manifolds but also for other patch�decomposable domains�

	 Domain embedding techniques We mean mainly �ctitious domain and �c�
titious space methods� The problem is mapped into a larger problem �say� the
wavelet�discretized analog on a rectangular domain containing ��� and the prob�
lem are adequate transfer operations �extension and restriction�� see ���� for an
example where wavelets are used for the extended problem� compare also ��
��
Appending boundary conditions �see� e�g�� ����� may also be formulated as a vari�
ant of the �ctitious space method involving a larger� unconstrained but mixed
problem�

	 Do not touch general domains by wavelet methods� This recommendation
should not be taken too seriously but in the long run this might happen� for
several reasons� among them practical performance� There are enough problems
involving smoothness which live on well�structured domains� From time to time�

��



an analogous discussion �structured versus unstructured grids� can be heard in
conferences devoted to classical �nite element%di�erence discretization techniques�
At least for very complicated domains �and problems which are far away from
the generic Hs�elliptic case�� the use of pre�xed� problem�independent multilevel
systems is not justi�able anymore�
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